This file is indexed.

/usr/include/kido/planning/RRT.hpp is in libkido-planning-dev 0.1.0+dfsg-2build9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
 * Copyright (c) 2010, Georgia Tech Research Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *     * Redistributions of source code must retain the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer.
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *     * Neither the name of the Georgia Tech Research Corporation nor
 *       the names of its contributors may be used to endorse or
 *       promote products derived from this software without specific
 *       prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY GEORGIA TECH RESEARCH CORPORATION ''AS
 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GEORGIA
 * TECH RESEARCH CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

/** 
 * @file RRT.h
 * @author Tobias Kunz, Can Erdogan
 * @date Jan 31, 2013
 * @brief The generic RRT implementation. It can be inherited for modifications to collision
 * checking, sampling and etc.
 */

#pragma once

#include <vector>
#include <list>
#include <Eigen/Core>

#include "kido/dynamics/SmartPointer.hpp"
#include "kido/simulation/World.hpp"

namespace flann {
	template <class A> class L2;
	template <class A> class Index;
}

namespace kido {

namespace simulation { class World; }
namespace dynamics { class Skeleton; }

namespace planning {

/// The rapidly-expanding random tree implementation
class RRT {
public:

	/// To get byte-aligned Eigen vectors
	EIGEN_MAKE_ALIGNED_OPERATOR_NEW

	/// The result of attempting to create a new node to reach a target node
	typedef enum {
		STEP_COLLISION, // Collided with obstacle. No node added.
		STEP_REACHED,	 // The target node is closer than step size (so reached). No node added.
		STEP_PROGRESS	 // One node added.
	} StepResult;

public:
	// Initialization constants and search variables

	const int ndim;				 ///< Number of dof we can manipulate (may be less than robot's)
	const double stepSize;	///< Step size at each node creation

	int activeNode;	 								///< Last added node or the nearest node found after a search
	std::vector<int> parentVector;		///< The ith node in configVector has parent with index pV[i]

	/// All visited configs
	// NOTE We are using pointers for the VectorXd's because flann copies the pointers for the
	// data points and we give it the copies made in the heap
	std::vector<const Eigen::VectorXd*> configVector; 	

public:

	//// Constructor with a single root 
    RRT(kido::simulation::WorldPtr world, kido::dynamics::SkeletonPtr robot, const std::vector<size_t> &dofs, const Eigen::VectorXd &root,
      double stepSize = 0.02);

	/// Constructor with multiple roots (so, multiple trees)
    RRT(simulation::WorldPtr world, dynamics::SkeletonPtr robot, const std::vector<size_t> &dofs,
			const std::vector<Eigen::VectorXd> &roots, double stepSize = 0.02);

	/// Destructor
	virtual ~RRT() {}

	/// Reach for a random node by repeatedly extending nodes from the nearest neighbor in the tree.
	/// Stop if there is a collision.
	bool connect();

	/// Reach for a target by repeatedly extending nodes from the nearest neighbor. Stop if collide.
	bool connect(const Eigen::VectorXd &target);

	/// Try a single step with the given "stepSize" to a random configuration. Fail if collide.
	StepResult tryStep();
	
	/// Try a single step with the given "stepSize" to the given configuration. Fail if collide.
	StepResult tryStep(const Eigen::VectorXd &qtry);

	/// Tries to extend tree towards provided sample
	virtual StepResult tryStepFromNode(const Eigen::VectorXd &qtry, int NNidx);

	/// Checks if the given new configuration is in collision with an obstacle. Moreover, it is a
	/// an opportunity for child classes to change the new configuration if there is a need. For 
	/// instance, task constrained planners might want to sample around this point and replace it with
	/// a better (less erroroneous due to constraint) node.
	virtual bool newConfig(std::list<Eigen::VectorXd> &intermediatePoints, Eigen::VectorXd &qnew, 
			const Eigen::VectorXd &qnear, const Eigen::VectorXd &qtarget);

	/// Returns the distance between the current active node and the given node.
	/// TODO This might mislead the users to thinking returning the distance between the given target
	/// and the nearest neighbor.
	double getGap(const Eigen::VectorXd &target);

	/// Traces the path from some node to the initConfig node - useful in creating the full path
	/// after the goal is reached.
	void tracePath(int node, std::list<Eigen::VectorXd> &path, bool reverse = false);

	/// Returns the number of nodes in the tree.
	size_t getSize();

	/// Implementation-specific function for checking collisions 
	virtual bool checkCollisions(const Eigen::VectorXd &c);

	/// Returns a random configuration with the specified node IDs 
	virtual Eigen::VectorXd getRandomConfig();

protected:

  simulation::WorldPtr world;                 ///< The world that the robot is in
  dynamics::SkeletonPtr robot;        ///< The ID of the robot for which a plan is generated
	std::vector<size_t> dofs;                    ///< The dofs of the robot the planner can manipulate

	/// The underlying flann data structure for fast nearest neighbor searches 
	flann::Index<flann::L2<double> >* index;

	/// Returns a random value between the given minimum and maximum value
	double randomInRange(double min, double max);

	/// Returns the nearest neighbor to query point
	virtual int getNearestNeighbor(const Eigen::VectorXd &qsamp);

	/// Adds a new node to the tree
	virtual int addNode(const Eigen::VectorXd &qnew, int parentId);
};

} // namespace planning
} // namespace kido