This file is indexed.

/usr/include/itpp/comm/modulator_nd.h is in libitpp-dev 4.3.1-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/*!
 * \file
 * \brief Definition of vector (MIMO) modulator classes
 * \author Mirsad Cirkic, Erik G. Larsson and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2012  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef MODULATOR_ND_H
#define MODULATOR_ND_H

#include <itpp/base/vec.h>
#include <itpp/base/array.h>
#include <itpp/comm/llr.h>
#include <itpp/itexports.h>
#include <itpp/base/base_exports.h>

namespace itpp
{

/*!
 * \addtogroup modulators
 */

// ----------------------------------------------------------------------
// Modulator_ND
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * \brief Base class for an N-dimensional (ND) vector (MIMO) modulator.
 *
 * See \c ND_UPAM class for examples.
 *
 * \note Can also be used for scalar modulation/demodulation as an
 * alternative to \c Modulator_1D or \c Modulator_2D. Mixed use of \c
 * Modulator_1D or \c Modulator_2D and \c Modulator_ND is <b>not
 * advised</b>.
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT Modulator_ND
{
public:
  //! Soft demodulation method
  enum Soft_Demod_Method {
    //! Log-MAP demodulation by "brute-force" enumeration of all points
    FULL_ENUM_LOGMAP,
    //! Max-Log demodulation by "brute-force" enumeration of all points
    FULL_ENUM_MAXLOG,
    //! Zero-Forcing Log-MAP approximated demodulation
    ZF_LOGMAP
  };

  //! Default constructor
  Modulator_ND(LLR_calc_unit llrcalc_in = LLR_calc_unit()):
    llrcalc(llrcalc_in), demod_initialized(false) {}
  //! Destructor
  virtual ~Modulator_ND() {}

  //! Set LLR calculation unit
  void set_llrcalc(LLR_calc_unit llrcalc_in) {
    llrcalc = llrcalc_in;
  };

  //! Get LLR calculation unit
  LLR_calc_unit get_llrcalc() const {
    return llrcalc;
  }

  //! Get number of dimensions
  int get_dim() const {
    return nt;
  }

  //! Get number of bits per modulation symbol per dimension
  ivec get_k() const {
    return k;
  }

  //! Get number of bits per modulation symbol per dimension
  ivec bits_per_symbol() const {
    return k;
  }

  //! Get number of modulation symbols per dimension
  ivec get_M() const {
    return M;
  }

  //! Get bit pattern in decimal
  Array<ivec> get_bits2symbols() const {
    return bits2symbols;
  }

  //! Get Bit mapping table
  Array<bmat> get_bitmap() const {
    return bitmap;
  }

protected:
  //! Number of dimensions
  int nt;
  //! Number of bits in the symbol vector
  int nb;
  //! LLR calculation unit
  LLR_calc_unit llrcalc;
  //! Number of bits per modulation symbol
  ivec k;
  //! Number of modulation symbols along each dimension
  ivec M;
  //! Flag indicating whether the demodulator has been initialized
  bool demod_initialized;
  //! Bit mapping table (one table per dimension)
  Array<bmat> bitmap;
  //! Bit pattern in decimal form ordered and the corresponding symbols (one pattern per dimension)
  Array<ivec> bits2symbols;
  //! The normalization factor in the exponent (in front of the square norm) in the Gaussian distribution
  double gaussnorm;  
  //! Norms part dependent on H
  itpp::vec hnorms;
  //! Norms part depending on both H and y
  itpp::QLLRvec Qnorms;
  //! A prioi information
  itpp::QLLRvec llrapr;
  //! The bit to column mapping
  itpp::ivec bpos2cpos;
  //! The cumulative sum of bits in the symbol vector
  itpp::ivec bitcumsum;
  //! The Gray to decimal mapping
  itpp::Array<itpp::Vec<unsigned> > gray2dec;
  //! Convert LLR to log-probabilities
  QLLRvec probabilities(QLLR l); // some abuse of what QLLR stands for...
  //! Convert LLR to log-probabilities, vector version
  Array<QLLRvec> probabilities(const QLLRvec &l);
  //! Marginalize (sum) over the bits
  void marginalize_bits(itpp::QLLRvec& llr, Soft_Demod_Method method) const;
  //! Hardcoded implementation of 1:st bit demodulation
  void demodllrbit0(itpp::QLLR& llr) const;
  //! Hardcoded implementation of 2:nd bit demodulation
  void demodllrbit1(itpp::QLLR& llr) const;
  //! Hardcoded implementation of 3:rd bit demodulation
  void demodllrbit2(itpp::QLLR& llr) const;
  //! Hardcoded implementation of 1:st bit demodulation
  void demodmaxbit0(itpp::QLLR& maxllr) const;
  //! Hardcoded implementation of 2:nd bit demodulation
  void demodmaxbit1(itpp::QLLR& maxllr) const;
  //! Hardcoded implementation of 3:rd bit demodulation
  void demodmaxbit2(itpp::QLLR& maxllr) const;

  /*!
   * \brief Update LLR (for internal use)
   *
   * This function updates the numerator and denominator in the expression
   * \f[
   * \log \left( \frac {\sum_{s:b_k=0} \exp(-x^2) P(s)}
   *                   {\sum_{s:b_k=1} \exp(-x^2) P(s)} \right)
   * \f]
   *
   * \param[in]   logP_apriori  Vector of a priori probabilities per bit
   * \param[in]   s             Symbol vector
   * \param[in]   scaled_norm   Argument of the exponents in the above
   *                            equation
   * \param[out]  num           Logarithm of the numerator in the above
   *                            expression
   * \param[out]  denom         Logarithm of the denominator in the above
   *                            expression
   */
  void update_LLR(const Array<QLLRvec> &logP_apriori, const ivec &s,
                  QLLR scaled_norm, QLLRvec &num, QLLRvec &denom);

  /*!
   * \brief Update LLR, for scalar channel (for internal use)
   *
   * This function updates the numerator and denominator in the expression
   * \f[
   * \log \left( \frac {\sum_{s:b_k=0} \exp (-x^2) P(s)}
   *                   {\sum_{s:b_k=1} \exp (-x^2) P(s)} \right)
   * \f]
   *
   * \param[in]   logP_apriori  Vector of a priori probabilities per bit
   * \param[in]   s             Symbol
   * \param[in]   scaled_norm   Argument of the exponents in the above
   *                            equation
   * \param[in]   j             Channel index (dimension)
   * \param[out]  num           Logarithm of the numerator in the above
   *                            expression
   * \param[out]  denom         Logarithm of the denominator in the above
   *                            expression
  */
  void update_LLR(const Array<QLLRvec> &logP_apriori, int s,
                  QLLR scaled_norm, int j, QLLRvec &num, QLLRvec &denom);
};


// ----------------------------------------------------------------------
// Modulator_NRD
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * \brief Base class for N-dimensional vector (MIMO) channel
 * modulators/demodulators with real-valued components.
 *
 * This class can be used to perform modulation and demodulation for a
 * matrix (MIMO) channel of the form
 * \f[ y = Hx+e \f],
 * where H is the channel matrix of dimension \f$n_r\times n_t\f$, \f$y\f$
 * is a received vector of length \f$n_r\f$, \f$x\f$ is a transmitted vector
 * of length \f$n_t\f$ and \f$e\f$ is a noise vector.
 *
 * The class supports soft-input soft-output demodulation. It can also be
 * used for scalar modulation to take advantage of this feature.
 *
 * Complex MIMO channels can be handled by using the \c Modulator_NCD
 * class. Alternatively, if the signal constellation is separable in I/Q
 * then the complex channel can be first transformed to a real channel
 * \f[
 * G = \left[ \begin{array}{cc} H_r & -H_i \\ H_i & H_r \end{array} \right]
 * \f]
 *
 * See \c ND_UPAM for examples.
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT Modulator_NRD : public Modulator_ND
{
public:
  //! Constructor
  Modulator_NRD() {}
  //! Destructor
  virtual ~Modulator_NRD() {}

  //! Get modulation symbols per dimension
  Array<vec> get_symbols() const;

  //! Modulate \c bits into \c symbols
  void modulate_bits(const bvec &bits, vec &symbols) const;

  //! Modulate \c bits vector. Symbols are returned.
  vec modulate_bits(const bvec &bits) const;

	  /*!
  * \brief Soft MAP demodulation for multidimensional channel, by
  * "brute-force" enumeration of all constellation points.
  *
  * This function precomputes the norms
  * \f[\frac{|Hs|^2}{2\sigma^2}\f]
  * used to compute the LLR values
  * \f[
  * LLR(k) = \log \left( \frac
  * {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * \right)
  * \f]
  *
  * without approximations. It is assumed that H is
  * real-valued. Complex-valued channels can be handled using the \c
  * Modulator_NCD class.
  */
  void init_soft_demodulator(const itpp::mat& H, const double& sigma2);

	
  /*!
  * \brief Soft MAP demodulation for multidimensional channel, by
  * "brute-force" enumeration of all constellation points.
  *
  * This function computes the LLR values
  * \f[
  * LLR(k) = \log \left( \frac
  * {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * \right)
  * \f]
  *
  * without approximations. It is assumed that H, y and s are
  * real-valued. Complex-valued channels can be handled using the \c
  * Modulator_NCD class. Currently the following two demodulation methods
  * are supported:
  * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
  *   enumeration of all constellation points
  * - FULL_ENUM_MAXLOG - max-log approximate demodulation, which use "brute-force"
  *   enumeration to find the constellation points that give the smallest euclidian
  *   distances
  *
  * \param[in]   y                Received vector
  *                               (typically \f$N_0/2\f$)
  * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
  * \param[out]  LLR_aposteriori  Vector of a posteriori LLR values
  * \param[in]   method           Soft demodulation method
  *
  * The function performs an exhaustive search over all possible points
  * \c s in the n-dimensional constellation. This is only feasible for
  * relatively small constellations. The Jacobian logarithm is used to
  * compute the sum-exp expression.
  */
  void demodulate_soft_bits(const vec &y,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori,
                            Soft_Demod_Method method = FULL_ENUM_LOGMAP);

  /*!
   * \brief Soft demodulation wrapper function for various methods
   *
   * Currently the following three demodulation methods are supported:
   * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
   *   enumeration of all constellation points
   * - FULL_ENUM_MAXLOG - max-log approximate demodulation, which use "brute-force"
   *   enumeration to find the constellation points that give the smallest euclidian
   *   distances
   * - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
   *   which sometimes tends to perform poorly, especially for poorly
   *   conditioned H
   *
   * \param[in]   y                Received vector
   * \param[in]   H                Channel matrix
   * \param[in]   sigma2           Noise variance per real dimension
   *                               (typically \f$N_0/2\f$)
   * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
   * \param[out]  LLR_aposteriori  Vector of a posteriori LLR values
   * \param[in]   method           Soft demodulation method
   */
  void demodulate_soft_bits(const vec &y, const mat &H, double sigma2,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori,
                            Soft_Demod_Method method = FULL_ENUM_LOGMAP);


  /*!
   * \brief Soft demodulation wrapper function for various methods
   *
   * Currently the following two demodulation methods are supported:
   * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
   *   enumeration of all constellation points
   * - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
   *   which sometimes tends to perform poorly, especially for poorly
   *   conditioned H
   *
   * \param[in]   y                Received vector
   * \param[in]   H                Channel matrix
   * \param[in]   sigma2           Noise variance per real dimension
   *                               (typically \f$N_0/2\f$)
   * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
   * \param[in]   method           Soft demodulation method
   * \return                       Vector of a posteriori LLR values
   */
  QLLRvec demodulate_soft_bits(const vec &y, const mat &H, double sigma2,
                               const QLLRvec &LLR_apriori,
                               Soft_Demod_Method method = FULL_ENUM_LOGMAP);


  /*!
   * \brief Soft MAP demodulation for parallelchannels without crosstalk.
   *
   * This function is a much faster equivalent to \c demodulate_soft_bits
   * with \f$H = \mbox{diag}(h)\f$. Its complexity is linear in the number
   * of subchannels.
   */
  void demodulate_soft_bits(const vec &y, const vec &h, double sigma2,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori);

  //! Output some properties of the MIMO modulator (mainly to aid debugging)
  friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const Modulator_NRD &m);

protected:
  //! Vectors of modulation symbols (along each dimension)
  Array<vec> symbols;

  /*!
   * \brief Update residual norm (for internal use).
   *
   * Update the residual norm \f$|y-Hs|\f$ when moving from one
   * constellation point to an adjacent point.
   *
   * \param[in,out]  norm  Norm to be updated
   * \param[in]      k     Position where s changed
   * \param[in]      sold  Old value of s[k]
   * \param[in]      snew  New value of s[k]
   * \param[in]      ytH   y'H vector
   * \param[in]      HtH   Grammian matrix H'H
   * \param[in]      s     Symbol vector
   */
  void update_norm(double &norm, int k, int sold, int snew, const vec &ytH,
                   const mat &HtH, const ivec &s);

  //! Calculation of the part of the norms that depends on H
  void hxnormupdate(itpp::vec& Hx, unsigned& bitstring, unsigned& ind, unsigned bit);

  //! Calculation of the remaining part of the norms that depends both on H and y
  void yxnormupdate(double& yx, itpp::QLLR& lapr, unsigned& bitstring, unsigned& ind, unsigned bit);

	//! Real channel matrix
	itpp::mat H;
	//! The spacing between different constellation points multiplied by the different H columns
	itpp::Array<itpp::Array<itpp::vec> > hspacings;
	//! The spacing between different constellation points scaled by different y elements
  itpp::Array<itpp::vec> yspacings;
};

/*!
 * \relatesalso Modulator_NRD
 * \brief Print some properties of the MIMO modulator (mainly to aid debugging)
 */
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const Modulator_NRD &m);


// ----------------------------------------------------------------------
// Modulator_NCD
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * \brief Base class for vector (MIMO) channel modulator/demodulators
 * with complex valued components.
 *
 * This class is equivalent to \c Modulator_NRD except for that all
 * quantities are complex-valued.
 *
 * See \c ND_UPAM for examples.
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT Modulator_NCD : public Modulator_ND
{
public:
  //! Constructor
  Modulator_NCD() {}
  //! Destructor
  virtual ~Modulator_NCD() {}

  //! Get modulation symbols per dimension
  Array<cvec> get_symbols() const;

  //! Modulate \c bits into \c symbols
  void modulate_bits(const bvec &bits, cvec &symbols) const;

  //! Modulation of bits
  cvec modulate_bits(const bvec &bits) const;

	/*!
  * \brief Soft MAP demodulation for multidimensional channel, by
  * "brute-force" enumeration of all constellation points.
  *
  * This function computes the norms
  * \f[\frac{|y - Hs|^2}{2\sigma^2}\f]
  * used to compute the LLR values
  * \f[
  * LLR(k) = \log \left( \frac
  * {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * \right)
  * \f]
  *
  * without approximations. It is assumed that H is
  * real-valued. Complex-valued channels can be handled using the \c
  * Modulator_NCD class.
  */
  void init_soft_demodulator(const itpp::cmat& H, const double& sigma2);

  /*!
  * \brief Soft MAP demodulation for multidimensional channel, by
  * "brute-force" enumeration of all constellation points.
  *
  * This function computes the LLR values
  * \f[
  * LLR(k) = \log \left( \frac
  * {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
  * \right)
  * \f]
  *
  * without approximations. Currently the following two demodulation methods
  * are supported:
  * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
  *   enumeration of all constellation points
  * - FULL_ENUM_MAXLOG - max-log approximate demodulation, which use "brute-force"
  *   enumeration to find the constellation points that give the smallest euclidian
  *   distances
  *
  * \param[in]   y                Received vector
  *                               (typically \f$N_0/2\f$)
  * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
  * \param[out]  LLR_aposteriori  Vector of a posteriori LLR values
  * \param[in]   method           Soft demodulation method
  *
  * The function performs an exhaustive search over all possible points
  * \c s in the n-dimensional constellation. This is only feasible for
  * relatively small constellations. The Jacobian logarithm is used to
  * compute the sum-exp expression.
  */
  void demodulate_soft_bits(const cvec &y,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori,
                            Soft_Demod_Method method = FULL_ENUM_LOGMAP);

  //! Soft demodulation wrapper function for various methods
  /*!
   * \brief Soft demodulation wrapper function for various methods
   *
   * Currently the following three demodulation methods are supported:
   * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
   *   enumeration of all constellation points
	* - FULL_ENUM_MAXLOG - max-log approximate demodulation, which use "brute-force"
	*   enumeration to find the constellation points that give the smallest euclidian
	*   distances
   * - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
   *   which sometimes tends to perform poorly, especially for poorly
   *   conditioned H
   *
   * \param[in]   y                Received vector
   * \param[in]   H                Channel matrix
   * \param[in]   sigma2           Noise variance per complex dimension,
   *                               i.e. the sum of real and imaginary parts
   *                               (typically \f$N_0\f$)
   * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
   * \param[out]  LLR_aposteriori  Vector of a posteriori LLR values
   * \param[in]   method           Soft demodulation method
   */
  void demodulate_soft_bits(const cvec &y, const cmat &H, double sigma2,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori,
                            Soft_Demod_Method method = FULL_ENUM_LOGMAP);

  /*!
   * \brief Soft demodulation wrapper function for various methods
   *
   * Currently the following three demodulation methods are supported:
   * - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
   *   enumeration of all constellation points
	* - FULL_ENUM_MAXLOG - max-log approximate demodulation, which use "brute-force"
	*   enumeration to find the constellation points that give the smallest euclidian
	*   distances
   * - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
   *   which sometimes tends to perform poorly, especially for poorly
   *   conditioned H
   *
   * \param[in]   y                Received vector
   * \param[in]   H                Channel matrix
   * \param[in]   sigma2           Noise variance per complex dimension,
   *                               i.e. the sum of real and imaginary parts
   *                               (typically \f$N_0\f$)
   * \param[in]   LLR_apriori      Vector of a priori LLR values per bit
   * \param[in]   method           Soft demodulation method
   * \return                       Vector of a posteriori LLR values
   */
  QLLRvec demodulate_soft_bits(const cvec &y, const cmat &H, double sigma2,
                               const QLLRvec &LLR_apriori,
                               Soft_Demod_Method method = FULL_ENUM_LOGMAP);


  /*!
   * \brief Soft MAP demodulation for parallelchannels without crosstalk.
   *
   * This function is a much faster equivalent to \c demodulate_soft_bits
   * with \f$H = \mbox{diag}(h)\f$. Its complexity is linear in the number
   * of subchannels.
   */
  void demodulate_soft_bits(const cvec &y, const cvec &h, double sigma2,
                            const QLLRvec &LLR_apriori,
                            QLLRvec &LLR_aposteriori);

  //! Print some properties of the MIMO modulator (mainly to aid debugging)
  friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const Modulator_NCD &m);

protected:
  //! Vectors of modulation symbols (along each dimension)
  Array<cvec> symbols;
	//! Complex-valued channel matrix
	itpp::cmat H;
	//! The spacing between different constellation points multiplied by the different H columns
	itpp::Array<itpp::Array<itpp::cvec> > hspacings;
	//! The spacing between different constellation points scaled by different y elements
  itpp::Array<itpp::vec> yspacings;
	void hxnormupdate(itpp::cvec& Hx, unsigned& bitstring, unsigned& ind, unsigned bit);
	void yxnormupdate(double& yx, itpp::QLLR& lapr, unsigned& bitstring, unsigned& ind, unsigned bit);
};

/*!
 * \relatesalso Modulator_NCD
 * \brief Print some properties of the MIMO modulator (mainly to aid debugging)
 */
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const Modulator_NCD &m);


// ----------------------------------------------------------------------
// ND_UPAM
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * \brief Real-valued MIMO channel with uniform PAM along each dimension.
 *
 * <b>Example: (4 x 3 matrix channel with 4-PAM)</b>
 * \code
 * ND_UPAM chan; // multidimensional channel with uniform PAM
 * chan.set_M(3, 4); // 3-dimensional matrix channel, 4-PAM per dimension
 * cout << chan << endl;
 * bvec b = randb(3*2); // 3*2 bits in total
 * vec x = chan.modulate_bits(b);
 * mat H = randn(4,3); // 4 x 3 real matrix channel
 * double sigma2 = 0.01; // noise variance per real dimension
 * vec y = H*x + sqrt(sigma2)*randn(4); // transmit vector x
 * QLLRvec llr; // log-likelihood ratios
 * QLLRvec llr_ap = zeros_i(3*2);  // a priori equiprobable bits
 * chan.demodulate_soft_bits(y, H, sigma2, llr_ap, llr);
 * cout << "True bits:" << b << endl;
 * cout << "LLRs:" << chan.get_llrcalc().to_double(llr) << endl;
 * \endcode
 *
 * <b>Example: (scalar channel with 8-PAM)</b>
 * \code
 * ND_UPAM chan;
 * chan.set_M(1, 8); // scalar channel, 8-PAM (3 bits per symbol)
 * cout << chan << endl;
 * bvec b = randb(3);
 * vec x = chan.modulate_bits(b);
 * mat H = "1.0";      // scalar channel
 * double sigma2 = 0.01;
 * vec y= H*x + sqrt(sigma2)*randn(); // transmit vector x
 * QLLRvec llr;
 * QLLRvec llr_ap = zeros_i(3);
 * chan.demodulate_soft_bits(y, H, sigma2, llr_ap, llr);
 * cout << "True bits:" << b << endl;
 * cout << "LLRs:" << chan.get_llrcalc().to_double(llr) << endl;
 * \endcode
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT ND_UPAM : public Modulator_NRD
{
public:
  //! Constructor
  ND_UPAM(int nt = 1, int Mary = 2);
  //! Destructor
  virtual ~ND_UPAM() {}

  //! Set component modulators to M-PAM with Gray mapping
  void set_M(int nt = 1, int Mary = 2);

  //! Set component modulators to M-PAM with Gray mapping, different M per component
  void set_M(int nt = 1, ivec Mary = "2");

  /*!
   * \brief Sphere decoding
   *
   * This function solves the integer-constrained minimization problem
   * \f[
   * \mbox{min} |y - Hs|
   * \f]
   * with respect to \f$s\f$ using a sphere decoding algorithm and the
   * Schnorr-Eucner search strategy (see the source code for further
   * implementation notes). The function starts with an initial search
   * radius and increases it with a factor (\c stepup) until the search
   * succeeds.
   *
   * \param[in]  y              received data vector (\f$n_r\times 1\f$)
   * \param[in]  H              channel matrix (\f$n_r\times n_t\f$)
   * \param[in]  rmax           maximum possible sphere radius to try
   * \param[in]  rmin           sphere radius in the first try
   * \param[in]  stepup         factor with which the sphere radius is
   *                            increased if the search fails
   * \param[out] detected_bits  result of the search (hard decisions only,
   *                            QLLR for a sure "1" is set to 1000)
   * \return status of the decoding: 0 if the search suceeds, -1 otherwise
   */
  int sphere_decoding(const vec &y, const mat &H, double rmin, double rmax,
                      double stepup, QLLRvec &detected_bits);

private:
  // Sphere decoding search with Schnorr Eucner strategy.
  int sphere_search_SE(const vec &y, const mat &H, const imat &zrange,
                       double r, ivec &zhat);

  vec spacing;  // spacing between the constellation points

  inline int sign_nozero_i(int a) {
    return (a > 0 ? 1 : -1);
  }
  inline int sign_nozero_i(double a) {
    return (a > 0.0 ? 1 : -1);
  }
};

// ----------------------------------------------------------------------
// ND_UQAM
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * \brief Complex MIMO channel with uniform QAM per dimension
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT ND_UQAM : public Modulator_NCD
{
public:
  //! Constructor
  ND_UQAM(int nt = 1, int Mary = 4);
  //! Destructor
  virtual ~ND_UQAM() {}

  //! Set component modulators to M-QAM with Gray mapping
  void set_M(int nt = 1, int Mary = 4);

  //! Set component modulators to M-QAM with Gray mapping, different M per component
  void set_M(int nt = 1, ivec Mary = "4");

  /*!
   * \brief Set the constellation points
   * \param[in] nth - number of antenna
   * \param[in] inConstellation - new constellation points
   * \param[in] vector of mapping transmitted data symbols (index in the vector) to constellation points (value in the vector).
   *
   * <h3>Example of use:</h3>
   * \code
   * ND_UQAM qam(1,16); //QAM-16 with Gray mapping
   *
   * //now set the new Gray mapping (a little bit different than hardcoded in it++).
   * qam.set_constellation_points(1, qam.get_symbols()(0), "0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12");
   *
   * bvec bits = "0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1";
   * cvec modulated_symbols = qam.modulate_bits(bits);
   * \endcode
   */
  void set_constellation_points(const int nth, const cvec& inConstellation, const ivec& in_bit2symbols);

protected:
  ivec L;  //!< the square root of M
};

// ----------------------------------------------------------------------
// ND_UPSK
// ----------------------------------------------------------------------

/*!
 * \ingroup modulators
 * Complex MIMO channel with uniform PSK per dimension
 *
 * \note For issues relating to the accuracy of LLR computations,
 * please see the documentation of \c LLR_calc_unit
 */
class ITPP_EXPORT ND_UPSK : public Modulator_NCD
{
public:
  //! Constructor
  ND_UPSK(int nt = 1, int Mary = 4);
  //! Destructor
  virtual ~ND_UPSK() {}

  //! Set component modulators to M-QAM with Gray mapping
  void set_M(int nt = 1, int Mary = 4);

  //! Set component modulators to M-QAM with Gray mapping, different M per component
  void set_M(int nt = 1, ivec Mary = "4");
};


} // namespace itpp

#endif // #ifndef MODULATOR_ND_H