This file is indexed.

/usr/include/itpp/base/factory.h is in libitpp-dev 4.3.1-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*!
 * \file
 * \brief Base class for class factories and memory allocation functions
 * \author Johan Bergman and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef FACTORY_H
#define FACTORY_H

#include <complex>
#include <itpp/base/binary.h>
#include <itpp/itexports.h>

namespace itpp
{

// Forward declarations
template<class T> class Array;
template<class Num_T> class Mat;
template<class Num_T> class Vec;

/*!
  \brief Base class for class factories

  A class factory (or virtual constructor) is a class that can create instances
  of another class. Factory is a base class for such factories. When declaring
  an Array, Vec or Mat, a factory can be passed as an (optional) constructor
  argument:
  \code
  // Declare a Vec<type> with size=10 and factory=DEFAULT_FACTORY
  Vec<type> a(10);

  // Declare a Vec<type> with size=10 and factory=f
  Factory f;
  Vec<type> b(10, f);
  \endcode

  By default, the factory (\c DEFAULT_FACTORY and \c f in the above examples)
  is not used at all! However, by overloading a help function called
  \e create_elements we can force Array/Vec/Mat to use the factory for element
  creation (instead of using the default constructor for the element type).

  \note It is the \e numeric elements that will be created by the factory,
  i.e. for an Array<Mat<T> >, the factory will be used for creating the Mat
  elements rather than the Array elements.

  Here is an example that (partly) defines a user-defined numeric type My_Type,
  a corresponding factory My_Factory and a corresponding help function
  create_elements<My_Type> that will be used by Array, Vec and Mat for element
  creation.
  \code
  class My_Type {
  public:
  // Default constructor
  My_Type() : data(0) {}
  // Constructor
  My_Type(int d) : data(d) {}
  .
  .
  .
  protected:
  int data;
  };

  class My_Factory : public Factory {
  public:
  // Constructor
  explicit My_Factory(int d) : init_data(d) {}
  // Destructor
  virtual ~My_Factory() {}
  // Create an n-length array of My_Type
  virtual void create(My_Type* &ptr, int n) const {ptr = new My_Type[n](init_data);}
  protected:
  int init_data;
  };

  // Create an n-length array of My_Type using My_Factory f
  template<>
  void create_elements<My_Type>(My_Type* &ptr, int n, const Factory &f)
  {
  if (const My_Factory *my_factory_ptr = dynamic_cast<const My_Factory*>(&f)) {
  // Yes, f seems to be a My_Factory. Now call the My_Factory::create method
  my_factory_ptr->create(ptr, n);
  }
  else {
  // No, f does not seem to be a My_Factory. As a fallback solution,
  // assume that f is DEFAULT_FACTORY and use the default constructor
  ptr = new My_Type[n];
  }
  }
  \endcode

  Now,
  \code
  // Declare a My_Factory for init_data = 123
  My_Factory my123_factory(123);

  // Declare a Vec<My_Type> with size 10 that uses My_Type() for element creation
  Vec<My_Type> v1(10);

  // Declare a Vec<My_Type> with size 10 that uses My_Type(123) for element creation
  Vec<My_Type> v1(10, my123_factory);
  \endcode

  For a more interesting example, see Fix_Factory.
*/
class ITPP_EXPORT Factory
{
public:
  //! Default constructor
  Factory() {}
  //! Destructor
  virtual ~Factory() {}
};

//! Default (dummy) factory
const Factory DEFAULT_FACTORY;


//! Create an n-length array of T to be used as Array, Vec or Mat elements
template<class T> inline
void create_elements(T* &ptr, int n, const Factory &)
{
  void *p = operator new(sizeof(T) * n);
  ptr = reinterpret_cast<T*>(p);
  for (int i = 0; i < n; i++) {
    new(ptr + i) T();
  }
}


//! Specialization for unsigned char data arrays (used in GF2Mat)
template<> inline
void create_elements<unsigned char>(unsigned char* &ptr, int n,
                                    const Factory &)
{
  void *p = operator new(sizeof(unsigned char) * n);
  ptr = reinterpret_cast<unsigned char*>(p);
}

//! Specialization for binary data arrays
template<> inline
void create_elements<bin>(bin* &ptr, int n, const Factory &)
{
  void *p = operator new(sizeof(bin) * n);
  ptr = reinterpret_cast<bin*>(p);
}

//! Specialization for short integer data arrays
template<> inline
void create_elements<short int>(short int* &ptr, int n, const Factory &)
{
  void *p = operator new(sizeof(short int) * n);
  ptr = reinterpret_cast<short int*>(p);
}

//! Specialization for integer data arrays
template<> inline
void create_elements<int>(int* &ptr, int n, const Factory &)
{
  void *p = operator new(sizeof(int) * n);
  ptr = reinterpret_cast<int*>(p);
}

//! Specialization for 16-byte aligned double data arrays
template<> inline
void create_elements<double>(double* &ptr, int n, const Factory &)
{
  void *p0 = operator new(sizeof(double) * n + 16);
  void *p1 = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(p0) + 16)
                                     & (~(std::size_t(15))));
  *(reinterpret_cast<void**>(p1) - 1) = p0;
  ptr = reinterpret_cast<double*>(p1);
}

//! Specialization for 16-byte aligned complex double data arrays
template<> inline
void create_elements<std::complex<double> >(std::complex<double>* &ptr,
    int n, const Factory &)
{
  void *p0 = operator new(sizeof(std::complex<double>) * n + 16);
  void *p1 = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(p0) + 16)
                                     & (~(std::size_t(15))));
  *(reinterpret_cast<void**>(p1) - 1) = p0;
  ptr = reinterpret_cast<std::complex<double>*>(p1);
}



//! Destroy an array of Array, Vec or Mat elements
template<class T> inline
void destroy_elements(T* &ptr, int n)
{
  if (ptr) {
    for (int i = 0; i < n; ++i) {
      ptr[i].~T();
    }
    void *p = reinterpret_cast<void*>(ptr);
    operator delete(p);
    ptr = 0;
  }
}

//! Specialization for unsigned char data arrays (used in GF2Mat)
template<> inline
void destroy_elements<unsigned char>(unsigned char* &ptr, int)
{
  if (ptr) {
    void *p = reinterpret_cast<void*>(ptr);
    operator delete(p);
	ptr = 0;
  }
}

//! Specialization for binary data arrays
template<> inline
void destroy_elements<bin>(bin* &ptr, int)
{
  if (ptr) {
    void *p = reinterpret_cast<void*>(ptr);
    operator delete(p);
    ptr = 0;
  }
}
//! Specialization for short integer data arrays
template<> inline
void destroy_elements<short int>(short int* &ptr, int)
{
  if (ptr) {
    void *p = reinterpret_cast<void*>(ptr);
    operator delete(p);
    ptr = 0;
  }
}

//! Specialization for integer data arrays
template<> inline
void destroy_elements<int>(int* &ptr, int)
{
  if (ptr) {
    void *p = reinterpret_cast<void*>(ptr);
    operator delete(p);
    ptr = 0;
  }
}

//! Specialisation for 16-byte aligned double data arrays
template<> inline
void destroy_elements<double>(double* &ptr, int)
{
  if (ptr) {
    void *p = *(reinterpret_cast<void**>(ptr) - 1);
    operator delete(p);
    ptr = 0;
  }
}

//! Specialisation for 16-byte aligned complex double data arrays
template<> inline
void destroy_elements<std::complex<double> >(std::complex<double>* &ptr, int)
{
  if (ptr) {
    void *p = *(reinterpret_cast<void**>(ptr) - 1);
    operator delete(p);
    ptr = 0;
  }
}


//! Create an n-length array of Array<T> to be used as Array elements
template<class T>
void create_elements(Array<T>* &ptr, int n, const Factory &f)
{
  void *p = operator new(sizeof(Array<T>) * n);
  ptr = reinterpret_cast<Array<T>*>(p);
  for (int i = 0; i < n; ++i) {
    new(ptr + i) Array<T>(f);
  }
}

//! Create an n-length array of Mat<T> to be used as Array elements
template<class T>
void create_elements(Mat<T>* &ptr, int n, const Factory &f)
{
  void *p = operator new(sizeof(Mat<T>) * n);
  ptr = reinterpret_cast<Mat<T>*>(p);
  for (int i = 0; i < n; ++i) {
    new(ptr + i) Mat<T>(f);
  }
}

//! Create an n-length array of Vec<T> to be used as Array elements
template<class T>
void create_elements(Vec<T>* &ptr, int n, const Factory &f)
{
  void *p = operator new(sizeof(Vec<T>) * n);
  ptr = reinterpret_cast<Vec<T>*>(p);
  for (int i = 0; i < n; ++i) {
    new(ptr + i) Vec<T>(f);
  }
}

} // namespace itpp

#endif // #ifndef FACTORY_H