This file is indexed.

/usr/include/itpp/base/algebra/lapack.h is in libitpp-dev 4.3.1-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*!
 * \file
 * \brief Lapack header functions. For internal use only.
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef LAPACK_H
#define LAPACK_H

#ifndef _MSC_VER
#  include <itpp/config.h>
#else
#  include <itpp/config_msvc.h>
#endif

#include <complex>

// Note: HAVE_MKL and HAVE_ACML are hard-defined in <itpp/config_msvc.h>
#if defined(_MSC_VER) && (defined(HAVE_ACML) || defined(HAVE_MKL))
#  define dgetrf_ DGETRF
#  define zgetrf_ ZGETRF
#  define dgetri_ DGETRI
#  define zgetri_ ZGETRI
#  define dgesvd_ DGESVD
#  define zgesvd_ ZGESVD
#  define dsyev_  DSYEV
#  define zheev_  ZHEEV
#  define dgeev_  DGEEV
#  define zgeev_  ZGEEV
#  define dpotrf_ DPOTRF
#  define zpotrf_ ZPOTRF
#  define dgeqrf_ DGEQRF
#  define zgeqrf_ ZGEQRF
#  define dgeqp3_ DGEQP3
#  define zgeqp3_ ZGEQP3
#  define dorgqr_ DORGQR
#  define zungqr_ ZUNGQR
#  define dormqr_ DORMQR
#  define zunmqr_ ZUNMQR
#  define dgesv_  DGESV
#  define zgesv_  ZGESV
#  define dposv_  DPOSV
#  define zposv_  ZPOSV
#  define dtrtrs_ DTRTRS
#  define ztrtrs_ ZTRTRS
#  define dgels_  DGELS
#  define zgels_  ZGELS
#  define dgees_  DGEES
#  define zgees_  ZGEES

#endif // #if defined(_MSC_VER) && (defined(HAVE_ACML) || defined(HAVE_MKL))

#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
  // Exists in ATLAS
  /* LU factorization
   * a is of size m*n and with lda rows.
   * ipiv is the permutation vector of rows. Row i should be replaced by row
   * ipiv(i).
   * info=0 if OK. info=-i if ith value is illegal. info=i factorization OK
   * but the system is singular if solved.
   */
  void dgetrf_(int *m, int *n, double *a, int *lda, int *ipiv, int *info);
  void zgetrf_(int *m, int *n, std::complex<double> *a, int *lda, int *ipiv,
               int *info);

  // In ATLAS
  /* Inverting a matrix of an LU-factored general matrix (first call xGETRF)
   * a is of square size n*n with lda rows containing the factorization as
   * returned by xGETRF
   * ipiv is vector as returned by xGETRF
   * lwork >= n
   * output: a is overwritten by the inverse
   * info=0 if OK. info=-i if ith parameter is illegal. info=i the ith
   * diagonal element = 0 and U is singular.
   */
  void dgetri_(int *n, double *a, int *lda, int *ipiv, double *work, int *lwork,
               int *info);
  void zgetri_(int *n, std::complex<double> *a, int *lda, int *ipiv,
               std::complex<double> *work, int *lwork, int *info);

  /* SVD of a general rectangular matrix A = U S V^H
     a is of size m*n and with lda rows.
     Output: s with sorted singular values (vector)
     u, and vt (for U and V^H). U is m*m, and V^H is n*n
     jobu='A','S','O','N'. Different versions. 'A' = all columns of U
     calculated and returned in u.
     jobvt='A','S','O','N'. Different versions. 'A' = all columns of V^H
     calculated and returned in vt.
     ldu = no rows in U
     ldvt = no rows in V^H
     info = 0 successful, = -i ith parameter is illegal, = i did not converge

     work is a workspace vector of size lwork.
     lwork >= max(3*min(m,n)+max(m,n), 5*min(m,n)) for double
     lwork >= 2*min(m,n)+max(m,n) for std::complex<double>
     Good performance. Make lwork larger!
     rwork is a workspace array for complex version. Size max(1, 5*min(m,n)).
   */
  void dgesvd_(char *jobu, char *jobvt, int *m, int *n, double *a, int *lda,
               double *s, double *u, int *ldu, double *vt, int *ldvt,
               double *work, int *lwork, int *info);
  void zgesvd_(char *jobu, char *jobvt, int *m, int *n, std::complex<double> *a,
               int *lda, double *s, std::complex<double> *u, int *ldu,
               std::complex<double> *vt, int *ldvt, std::complex<double> *work,
               int *lwork, double *rwork, int *info);

  /* Eigenvalues and eigenvectors of a symmetric/hermitian matrix A */
  void dsyev_(char *jobz, char *uplo, int *n, double *a, int *lda, double *w,
              double *work, int *lwork, int *info);
  void zheev_(char *jobz, char *uplo, int *n, std::complex<double> *a, int *lda,
              double *w, std::complex<double> *work, int *lwork, double *rwork,
              int *info);

  /* Eigenvalues and eigenvectors of a general matrix A */
  void dgeev_(char *jobvl, char *jobvr, int *n, double *a, int *lda, double *wr,
              double *wi, double *vl, int *ldvl, double *vr, int *ldvr,
              double *work, int *lwork, int *info);
  void zgeev_(char *jobvl, char *jobvr, int *n, std::complex<double> *a,
              int *lda, std::complex<double> *w, std::complex<double> *vl,
              int *ldvl, std::complex<double> *vr, int *ldvr,
              std::complex<double> *work, int *lwork, double *rwork, int *info);

  // In ATLAS
  /* Cholesky factorization */
  void dpotrf_(char *uplo, int *n, double *a, int *lda, int *info);
  void zpotrf_(char *uplo, int *n, std::complex<double> *a, int *lda,
               int *info);

  /* QR factorization of a general matrix A  */
  void dgeqrf_(int *m, int *n, double *a, int *lda, double *tau, double *work,
               int *lwork, int *info);
  void zgeqrf_(int *m, int *n, std::complex<double> *a, int *lda,
               std::complex<double> *tau, std::complex<double> *work,
               int *lwork, int *info);

  /* QR factorization of a general matrix A with pivoting */
  void dgeqp3_(int *m, int *n, double *a, int *lda, int *jpvt, double *tau,
               double *work, int *lwork, int *info);
  void zgeqp3_(int *m, int *n, std::complex<double> *a, int *lda, int *jpvt,
               std::complex<double> *tau, std::complex<double> *work,
               int *lwork, double *rwork, int *info);

  /* Calculation of Q matrix from QR-factorization */
  void dorgqr_(int *m, int *n, int *k, double *a, int *lda, double *tau,
               double *work, int *lwork, int *info);
  void zungqr_(int *m, int *n, int *k, std::complex<double> *a, int *lda,
               std::complex<double> *tau, std::complex<double> *work,
               int *lwork, int *info);

  /*
   * Multiplies a real matrix by the orthogonal matix Q of the QR
   * factorization formed by dgeqp3_()
   */
  void dormqr_(char *side, char *trans, int *m, int *n, int *k, double *a,
               int *lda, double *tau, double *c, int *ldc, double *work,
               int *lwork, int *info);
  /*
   * Multiplies a complex matrix by the unitary matix Q of the QR
   * factorization formed by zgeqp3_()
   */
  void zunmqr_(char *side, char *trans, int *m, int *n, int *k,
               std::complex<double> *a, int *lda, std::complex<double> *tau,
               std::complex<double> *c, int *ldc, std::complex<double> *work,
               int *lwork, int *info);

  // In ATLAS
  /*
   * Solves a system on linear equations, Ax=b, with a square matrix A,
   * Using LU-factorization
   */
  void dgesv_(int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b,
              int *ldb, int *info);
  void zgesv_(int *n, int *nrhs, std::complex<double> *a, int *lda, int *ipiv,
              std::complex<double> *b, int *ldb, int *info);

  // In ATLAS
  /*
   * Solves a system on linear equations, Ax=b, with a square
   * symmetric/hermitian positive definite matrix A, using
   * Cholesky-factorization
   */
  void dposv_(char *uplo, int *n, int *nrhs, double *a, int *lda, double *b,
              int *ldb, int *info);
  void zposv_(char *uplo, int *n, int *nrhs, std::complex<double> *a, int *lda,
              std::complex<double> *b, int *ldb, int *info);

  /*
   * Solves a system of linear equations with a triangular matrix with
   * multiple right-hand sides
   */
  void dtrtrs_(char *uplo, char *trans, char *diag, int *n, int *nrhs,
               double *a, int *lda, double *b, int *ldb, int *info);
  void ztrtrs_(char *uplo, char *trans, char *diag, int *n, int *nrhs,
               std::complex<double> *a, int *lda, std::complex<double> *b,
               int *ldb, int *info);

  /*
   * Solves a linear over/underdetermined system using QR or LQ
   * factorization. Assumes a full rank matrix
   */
  void dgels_(char *trans, int *m, int *n, int *nrhs, double *a, int *lda,
              double *b, int *ldb, double *work, int *lwork, int *info);
  void zgels_(char *trans, int *m, int *n, int *nrhs, std::complex<double> *a,
              int *lda, std::complex<double> *b, int *ldb,
              std::complex<double> *work, int *lwork, int *info);

  /*
   * Compute for an N-by-N real nonsymmetric matrix A, the eigenvalues,
   * the real Schur form T, and, optionally, the matrix of Schur vectors Z
   */
  void dgees_(char *jobvs, char *sort, int* select, int *n, double *a,
              int *lda, int *sdim, double *wr, double *wi, double *vs,
              int *ldvs, double *work, int *lwork, int *bwork, int *info);

  /*
   * Compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues,
   * the Schur form T, and, optionally, the matrix of Schur vectors Z
   */
  void zgees_(char *jobvs, char *sort, int* select, int *n,
              std::complex<double> *a, int *lda, int *sdim,
              std::complex<double> *w, std::complex<double> *vs, int *ldvs,
              std::complex<double> *work, int *lwork, double *rwork,
              int *bwork, int *info);

#ifdef __cplusplus
} // extern C
#endif /* __cplusplus */

#endif // #ifndef LAPACK_H