This file is indexed.

/usr/include/libint2/boys.h is in libint2-dev 2.3.0~beta3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
/*
 *  This file is a part of Libint.
 *  Copyright (C) 2004-2014 Edward F. Valeev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Library General Public License, version 2,
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this program.  If not, see http://www.gnu.org/licenses/.
 *
 */

// prototype for the Boys function engines (Boys function = Fm(T))
// the Chebyshev extrapolation code is based on that by Frank Neese

#ifndef _libint2_src_lib_libint_boys_h_
#define _libint2_src_lib_libint_boys_h_

#if defined(__cplusplus)

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <stdexcept>
#include <libint2/util/vector.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <limits>
#include <type_traits>

// from now on at least C++11 is required by default
#include <libint2/util/cxxstd.h>
#if LIBINT2_CPLUSPLUS_STD < 2011
# error "Libint2 C++ API requires C++11 support"
#endif

#include <libint2/boys_fwd.h>
#include <memory>

#if HAVE_LAPACK // use F77-type interface for now, switch to LAPACKE later
extern "C" void dgesv_(const int* n,
                       const int* nrhs, double* A, const int* lda,
                       int* ipiv, double* b, const int* ldb,
                       int* info);
#endif

namespace libint2 {

  /// holds tables of expensive quantities
  template<typename Real>
  class ExpensiveNumbers {
    public:
      ExpensiveNumbers(int ifac = -1, int idf = -1, int ibc = -1) {
        if (ifac >= 0) {
          fac.resize(ifac + 1);
          fac[0] = 1.0;
          for (int i = 1; i <= ifac; i++) {
            fac[i] = i * fac[i - 1];
          }
        }

        if (idf >= 0) {
          df.resize(idf + 1);
          /* df[i] gives (i-1)!!, so that (-1)!! is defined... */
          df[0] = 1.0;
          if (idf >= 1)
            df[1] = 1.0;
          if (idf >= 2)
            df[2] = 1.0;
          for (int i = 3; i <= idf; i++) {
            df[i] = (i - 1) * df[i - 2];
          }
        }

        if (ibc >= 0) {
          bc_.resize((ibc+1)*(ibc+1));
          std::fill(bc_.begin(), bc_.end(), Real(0));
          bc.resize(ibc+1);
          bc[0] = &bc_[0];
          for(int i=1; i<=ibc; ++i)
            bc[i] = bc[i-1] + (ibc+1);

          for(int i=0; i<=ibc; i++)
            bc[i][0] = 1.0;
          for(int i=0; i<=ibc; i++)
            for(int j=1; j<=i; ++j)
              bc[i][j] = bc[i][j-1] * Real(i-j+1) / Real(j);
        }

        for (int i = 0; i < 128; i++) {
          twoi1[i] = 1.0 / (Real(2.0) * i + Real(1.0));
          ihalf[i] = Real(i) - Real(0.5);
        }

      }

      ~ExpensiveNumbers() {
      }

      std::vector<Real> fac;
      std::vector<Real> df;
      std::vector<Real*> bc;

      // these quantitites are needed with indices <= mmax
      // 64 is sufficient to handle up to 4 center integrals with up to L=15 basis functions
      // but need higher values for Yukawa integrals ...
      Real twoi1[128]; /* 1/(2 i + 1); needed for downward recursion */
      Real ihalf[128]; /* i - 0.5, needed for upward recursion */

    private:
      std::vector<Real> bc_;
  };

#define _local_min_macro(a,b) ((a) > (b) ? (a) : (b))

  /** Computes the Boys function, \f$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \f$,
    * using single algorithm (asymptotic expansion). Slow for the sake of precision control.
    * Useful in two cases:
    * <ul>
    *   <li> for reference purposes, if \c Real supports high/arbitrary precision, and </li>
    *   <li> for moderate values of \f$ T \f$, if \c Real is a low-precision floating-point type.
    *        N.B. FmEval_Reference2 , which can compute for all practical values of \f$ T \f$ and \f$ m \f$, is recommended
    *        with standard \c Real types (\c double and \c float). </li>
    * </ul>
    *
    * \note Precision is controlled heuristically, i.e. cannot be guaranteed mathematically;
    *       will stop if absolute precision is reached, or precision of \c Real is exhausted.
    *       It is important that \c std::numeric_limits<Real> is defined appropriately.
    *
    * @tparam Real the type to use for all floating-point computations.
    *         Must be able to compute logarithm and exponential, i.e.
    *         log(x) and exp(x), where x is Real, must be valid expressions.
    */
  template<typename Real>
  struct FmEval_Reference {

      /// computes a single value of \f$ F_m(T) \f$ using MacLaurin series.
      static Real eval(Real T, size_t m, Real absolute_precision) {
        assert(m < 100);
        static const Real T_crit = std::numeric_limits<Real>::is_bounded == true ? -log( std::numeric_limits<Real>::min() * 100.5 / 2. ) : Real(0) ;
        if (std::numeric_limits<Real>::is_bounded && T > T_crit)
          throw std::overflow_error("FmEval_Reference<Real>::eval: Real lacks precision for the given value of argument T");
        Real denom = (m + 0.5);
        Real term = 0.5 * exp(-T) / denom;
        Real old_term = 0.0;
        Real sum = term;
        //Real rel_error;
        Real epsilon;
        const Real relative_zero = std::numeric_limits<Real>::epsilon();
        const Real absolute_precision_o_1000 = absolute_precision * 0.001;
        do {
          denom += 1.0;
          old_term = term;
          term = old_term * T / denom;
          sum += term;
          //rel_error = term / sum;
          // stop if adding a term smaller or equal to absolute_precision/1000 and smaller than relative_zero * sum
          // When sum is small in absolute value, the second threshold is more important
          epsilon = _local_min_macro(absolute_precision_o_1000, sum*relative_zero);
        } while (term > epsilon || old_term < term);

        return sum;
      }

      /// fills up an array of Fm(T) for m in [0,mmax]
      /// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
      /// @param[in] T the Boys function argument
      /// @param[in] mmax the maximum value of m for which Boys function will be computed;
      /// @param[in] absolute_precision the absolute precision to which to compute the result
      static void eval(Real* Fm, Real T, size_t mmax, Real absolute_precision) {

        // evaluate for mmax using MacLaurin series
        // it converges fastest for the largest m -> use it to compute Fmmax(T)
        //  see JPC 94, 5564 (1990).
        for(size_t m=0; m<=mmax; ++m)
          Fm[m] = eval(T, m, absolute_precision);
        return;
        /** downward recursion does not maintain absolute precision, only relative precision, and cannot be used for T > 10
        if (mmax > 0) {
          const Real T2 = 2.0 * T;
          const Real exp_T = exp(-T);
          for (int m = mmax - 1; m >= 0; m--)
            Fm[m] = (Fm[m + 1] * T2 + exp_T) / (2 * m + 1);
        }
        */
      }

  };

  /** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
    * using multi-algorithm approach (upward precision for T>=30, and asymptotic summation for T<30).
    * This is slow and should be used for reference purposes, e.g. computing the interpolation tables.
    * Precision is not always guaranteed as it is limited by the precision of \c Real type.
    * When \c Real is \c double, can maintain 1e-14 precision for up to m=38 and 0<=T<=1e9 .
    *
    * @tparam Real the type to use for all floating-point computations.
    *         Must be able to compute logarithm, exponential, square root, and error function, i.e.
    *         log(x), exp(x), sqrt(x), and erf(x), where x is Real, must be valid expressions.
    */
  template<typename Real>
  struct FmEval_Reference2 {

      /// fills up an array of Fm(T) for m in [0,mmax]
      /// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
      /// @param[in] t the Boys function argument
      /// @param[in] mmax the maximum value of m for which Boys function will be computed;
      /// @param[in] absolute_precision the absolute precision to which to compute the result
      static void eval(Real* Fm, Real t, size_t mmax, Real absolute_precision) {

        if (t < Real(30)) {
          FmEval_Reference<Real>::eval(Fm,t,mmax,absolute_precision);
        }
        else {
          const Real two_over_sqrt_pi{1.128379167095512573896158903121545171688101258657997713688171443421284936882986828973487320404214727};
          const Real K = 1.0/two_over_sqrt_pi;

          auto t2 = 2*t;
          auto et = exp(-t);
          auto sqrt_t = sqrt(t);
          Fm[0] = K*erf(sqrt_t)/sqrt_t;
          if (mmax > 0)
          for(size_t m=0; m<=mmax-1; m++) {
            Fm[m+1] = ((2*m + 1)*Fm[m] - et)/(t2);
          }
        }
      }

  };

  /** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
    * using 7-th order Chebyshev interpolation.
    */
  template <typename Real = double>
  class FmEval_Chebyshev7 {

      static const int ORDER = 7;   //!, interpolation order
      static const int ORDERp1 = ORDER+1;   //!< ORDER + 1

      const Real T_crit;          //!< critical value of T above which safe to use upward recusion
      Real delta;           //!< interval size
      Real one_over_delta;  //! 1/delta
      int mmax;                   //!< the maximum m that is tabulated
      ExpensiveNumbers<double> numbers_;
      Real *c; /* the Chebyshev coefficients table, N by mmax*interpolation_order */

    public:
      /// \param m_max maximum value of the Boys function index; set to -1 to skip initialization
      /// \param precision the desired precision
      FmEval_Chebyshev7(int m_max, double = 0.0) :
          T_crit(30.0), // this translates in appr. 1e-15  error in upward recursion, see the note below
          mmax(m_max), numbers_(14) {
        assert(mmax <= 63);
        if (m_max >= 0)
          init();
      }
      ~FmEval_Chebyshev7() {
        if (mmax >= 0) {
          free(c);
        }
      }

      /// Singleton interface allows to manage the lone instance; adjusts max m values as needed in thread-safe fashion
      static const std::shared_ptr<FmEval_Chebyshev7>& instance(int m_max, double = 0.0) {

        // thread-safe per C++11 standard [6.7.4]
        static auto instance_ = std::shared_ptr<FmEval_Chebyshev7>{};

        const bool need_new_instance = !instance_ || (instance_ && instance_->max_m() < m_max);
        if (need_new_instance) {
          auto new_instance = std::make_shared<FmEval_Chebyshev7>(m_max);
          instance_ = new_instance; // thread-safe
        }

        return instance_;
      }

      /// @return the maximum value of m for which the Boys function can be computed with this object
      int max_m() const { return mmax; }

      /// fills in Fm with computed Boys function values for m in [0,mmax]
      /// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
      /// @param[in] x the Boys function argument
      /// @param[in] mmax the maximum value of m for which Boys function will be computed; mmax must be <= the value returned by max_m
      inline void eval(Real* Fm, Real x, int m_max) const {

        // large T => use upward recursion
        // cost = 1 div + 1 sqrt + (1 + 2*(m-1)) muls
        if (x > T_crit) {
          const double one_over_x = 1.0/x;
          Fm[0] = 0.88622692545275801365 * sqrt(one_over_x); // see Eq. (9.8.9) in Helgaker-Jorgensen-Olsen
          if (m_max == 0)
            return;
          // this upward recursion formula omits - e^(-x)/(2x), which for x>T_crit is <1e-15
          for (int i = 1; i <= m_max; i++)
            Fm[i] = Fm[i - 1] * numbers_.ihalf[i] * one_over_x; // see Eq. (9.8.13)
          return;
        }

        // ---------------------------------------------
        // small and intermediate arguments => interpolate Fm and (optional) downward recursion
        // ---------------------------------------------
        // which interval does this x fall into?
        const Real x_over_delta = x * one_over_delta;
        const int iv = int(x_over_delta); // the interval index
        const Real xd = x_over_delta - (Real)iv - 0.5; // this ranges from -0.5 to 0.5
        const int m_min = 0;

#if defined(__AVX__)
        const auto x2 = xd*xd;
        const auto x3 = x2*xd;
        const auto x4 = x2*x2;
        const auto x5 = x2*x3;
        const auto x6 = x3*x3;
        const auto x7 = x3*x4;
        libint2::simd::VectorAVXDouble x0vec(1., xd, x2, x3);
        libint2::simd::VectorAVXDouble x1vec(x4, x5, x6, x7);
#endif // AVX

        const Real *d = c + (ORDERp1) * (iv * (mmax+1) + m_min); // ptr to the interpolation data for m=mmin
        int m = m_min;
#if defined(__AVX__)
        if (m_max-m >=3) {
          const int unroll_size = 4;
          const int m_fence = (m_max + 2 - unroll_size);
          for(; m<m_fence; m+=unroll_size, d+=ORDERp1*unroll_size) {
            libint2::simd::VectorAVXDouble d00v, d01v, d10v, d11v,
                                           d20v, d21v, d30v, d31v;
            d00v.load_aligned(d);            d01v.load_aligned((d+4));
            d10v.load_aligned(d+ORDERp1);    d11v.load_aligned((d+4)+ORDERp1);
            d20v.load_aligned(d+2*ORDERp1);  d21v.load_aligned((d+4)+2*ORDERp1);
            d30v.load_aligned(d+3*ORDERp1);  d31v.load_aligned((d+4)+3*ORDERp1);
            libint2::simd::VectorAVXDouble fm0 = d00v * x0vec + d01v * x1vec;
            libint2::simd::VectorAVXDouble fm1 = d10v * x0vec + d11v * x1vec;
            libint2::simd::VectorAVXDouble fm2 = d20v * x0vec + d21v * x1vec;
            libint2::simd::VectorAVXDouble fm3 = d30v * x0vec + d31v * x1vec;
            libint2::simd::VectorAVXDouble sum0123 = horizontal_add(fm0, fm1, fm2, fm3);
            sum0123.convert(&Fm[m]);
          }
        } // unroll_size=4
        if (m_max-m >=1) {
          const int unroll_size = 2;
          const int m_fence = (m_max + 2 - unroll_size);
          for(; m<m_fence; m+=unroll_size, d+=ORDERp1*unroll_size) {
            libint2::simd::VectorAVXDouble d00v, d01v, d10v, d11v;
            d00v.load_aligned(d);
            d01v.load_aligned((d+4));
            d10v.load_aligned(d+ORDERp1);
            d11v.load_aligned((d+4)+ORDERp1);
            libint2::simd::VectorAVXDouble fm0 = d00v * x0vec + d01v * x1vec;
            libint2::simd::VectorAVXDouble fm1 = d10v * x0vec + d11v * x1vec;
            libint2::simd::VectorSSEDouble sum01 = horizontal_add(fm0, fm1);
            sum01.convert(&Fm[m]);
          }
        } // unroll_size=2
        { // no unrolling
          for(; m<=m_max; ++m, d+=ORDERp1) {
            libint2::simd::VectorAVXDouble d0v, d1v;
            d0v.load_aligned(d);
            d1v.load_aligned(d+4);
            Fm[m] = horizontal_add(d0v * x0vec + d1v * x1vec);
          }
        }
#else // AVX not available
        for(m=m_min; m<=m_max; ++m, d+=ORDERp1) {
          Fm[m] = d[0]
                + xd * (d[1]
                + xd * (d[2]
                + xd * (d[3]
                + xd * (d[4]
                + xd * (d[5]
                + xd * (d[6]
                + xd * (d[7])))))));

          //        // check against the reference value
          //        if (false) {
          //          double refvalue = FmEval_Reference2<double>::eval(x, m, 1e-15); // compute F(T)
          //          if (abs(refvalue - Fm[m]) > 1e-10) {
          //            std::cout << "T = " << x << " m = " << m << " cheb = "
          //                      << Fm[m] << " ref = " << refvalue << std::endl;
          //          }
          //        }
        }
#endif


      } // eval()

    private:

      void init() {

#include <libint2/boys_cheb7.h>

        if (mmax > cheb_table_mmax)
          throw std::runtime_error(
              "FmEval_Chebyshev7::init() : requested mmax exceeds the "
              "hard-coded mmax");
        if (T_crit != cheb_table_tmax)
          throw std::runtime_error(
              "FmEval_Chebyshev7::init() : boys_cheb7.h does not match "
              "FmEval_Chebyshev7");
        delta = cheb_table_delta;
        one_over_delta = 1 / delta;
        const int N = cheb_table_nintervals;

        // get memory
        void* result;
        posix_memalign(&result, ORDERp1*sizeof(Real), (mmax + 1) * N * ORDERp1 * sizeof(Real));
        c = static_cast<Real*>(result);

        // copy contents of static table into c
        // need all intervals
        for (int iv = 0; iv < N; ++iv) {
          // but only values of m up to mmax
          std::copy(cheb_table[iv], cheb_table[iv]+(mmax+1)*ORDERp1, c+(iv*(mmax+1))*ORDERp1);
        }
      }

  }; // FmEval_Chebyshev7

#ifndef STATIC_OON
#define STATIC_OON
  namespace {
    const double oon[] = {0.0, 1.0, 1.0/2.0, 1.0/3.0, 1.0/4.0, 1.0/5.0, 1.0/6.0, 1.0/7.0, 1.0/8.0, 1.0/9.0, 1.0/10.0, 1.0/11.0};
  }
#endif

  /** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
    * using Taylor interpolation of up to 8-th order.
    * @tparam Real the type to use for all floating-point computations. Must support std::exp, std::pow, std::fabs, std::max, and std::floor.
    * @tparam INTERPOLATION_ORDER the interpolation order. The higher the order the less memory this object will need, but the computational cost will increase (usually very slightly)
    */
  template<typename Real = double, int INTERPOLATION_ORDER = 7>
  class FmEval_Taylor {
    public:
      static const int max_interp_order = 8;
      static const bool INTERPOLATION_AND_RECURSION = false; // compute F_lmax(T) and then iterate down to F_0(T)? Else use interpolation only
      const double soft_zero_;

      /// Constructs the object to be able to compute Boys funcion for m in [0,mmax], with relative \c precision
      FmEval_Taylor(unsigned int mmax, Real precision) :
          soft_zero_(1e-6), cutoff_(precision), numbers_(
              INTERPOLATION_ORDER + 1, 2 * (mmax + INTERPOLATION_ORDER - 1)) {

        assert(mmax <= 63);

        const double sqrt_pi = std::sqrt(M_PI);

        /*---------------------------------------
         We are doing Taylor interpolation with
         n=TAYLOR_ORDER terms here:
         error <= delT^n/(n+1)!
         ---------------------------------------*/
        delT_ = 2.0
            * std::pow(cutoff_ * numbers_.fac[INTERPOLATION_ORDER + 1],
                       1.0 / INTERPOLATION_ORDER);
        oodelT_ = 1.0 / delT_;
        max_m_ = mmax + INTERPOLATION_ORDER - 1;

        T_crit_ = new Real[max_m_ + 1]; /*--- m=0 is included! ---*/
        max_T_ = 0;
        /*--- Figure out T_crit for each m and put into the T_crit ---*/
        for (int m = max_m_; m >= 0; --m) {
          /*------------------------------------------
           Damped Newton-Raphson method to solve
           T^{m-0.5}*exp(-T) = epsilon*Gamma(m+0.5)
           The solution is the max T for which to do
           the interpolation
           ------------------------------------------*/
          double T = -log(cutoff_);
          const double egamma = cutoff_ * sqrt_pi * numbers_.df[2 * m]
              / std::pow(2.0, m);
          double T_new = T;
          double func;
          do {
            const double damping_factor = 0.2;
            T = T_new;
            /* f(T) = the difference between LHS and RHS of the equation above */
            func = std::pow(T, m - 0.5) * std::exp(-T) - egamma;
            const double dfuncdT = ((m - 0.5) * std::pow(T, m - 1.5)
                - std::pow(T, m - 0.5)) * std::exp(-T);
            /* f(T) has 2 roots and has a maximum in between. If f'(T) > 0 we are to the left of the hump. Make a big step to the right. */
            if (dfuncdT > 0.0) {
              T_new *= 2.0;
            } else {
              /* damp the step */
              double deltaT = -func / dfuncdT;
              const double sign_deltaT = (deltaT > 0.0) ? 1.0 : -1.0;
              const double max_deltaT = damping_factor * T;
              if (std::fabs(deltaT) > max_deltaT)
                deltaT = sign_deltaT * max_deltaT;
              T_new = T + deltaT;
            }
            if (T_new <= 0.0) {
              T_new = T / 2.0;
            }
          } while (std::fabs(func / egamma) >= soft_zero_);
          T_crit_[m] = T_new;
          const int T_idx = (int) std::floor(T_new / delT_);
          max_T_ = std::max(max_T_, T_idx);
        }

        // allocate the grid (see the comments below)
        {
          const int nrow = max_T_ + 1;
          const int ncol = max_m_ + 1;
          grid_ = new Real*[nrow];
          grid_[0] = new Real[nrow * ncol];
          //std::cout << "Allocated interpolation table of " << nrow * ncol << " reals" << std::endl;
          for (int r = 1; r < nrow; ++r)
            grid_[r] = grid_[r - 1] + ncol;
        }

        /*-------------------------------------------------------
         Tabulate the gamma function from t=delT to T_crit[m]:
         1) include T=0 though the table is empty for T=0 since
         Fm(0) is simple to compute
         -------------------------------------------------------*/
        /*--- do the mmax first ---*/
        for (int T_idx = max_T_; T_idx >= 0; --T_idx) {
          const double T = T_idx * delT_;
          libint2::FmEval_Reference2<double>::eval(grid_[T_idx], T, max_m_, 1e-100);
        }
      }

      ~FmEval_Taylor() {
        delete[] T_crit_;
        delete[] grid_[0];
        delete[] grid_;
      }

      /// Singleton interface allows to manage the lone instance;
      /// adjusts max m and precision values as needed in thread-safe fashion
      static const std::shared_ptr<FmEval_Taylor>& instance(unsigned int mmax, Real precision) {

        // thread-safe per C++11 standard [6.7.4]
        static auto instance_ = std::shared_ptr<FmEval_Taylor>{};

        const bool need_new_instance = !instance_ ||
                                       (instance_ && (instance_->max_m() < mmax ||
                                                      instance_->precision() > precision));
        if (need_new_instance) {
          auto new_instance = std::make_shared<FmEval_Taylor>(mmax, precision);
          instance_ = new_instance; // thread-safe
        }

        return instance_;
      }

      /// @return the maximum value of m for which this object can compute the Boys function
      int max_m() const { return max_m_ - INTERPOLATION_ORDER + 1; }
      /// @return the precision with which this object can compute the Boys function
      Real precision() const { return cutoff_; }

      /// computes Boys function values with m index in range [0,mmax]
      /// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
      /// @param[in] x the Boys function argument
      /// @param[in] mmax the maximum value of m for which Boys function will be computed;
      ///                  it must be <= the value returned by max_m() (this is not checked)
      void eval(Real* Fm, Real T, int mmax) const {
        const double sqrt_pio2 = 1.2533141373155002512;
        const double two_T = 2.0 * T;

        // stop recursion at mmin
        const int mmin = INTERPOLATION_AND_RECURSION ? mmax : 0;
        /*-------------------------------------
         Compute Fm(T) from mmax down to mmin
         -------------------------------------*/
        const bool use_upward_recursion = true;
        if (use_upward_recursion) {
//          if (T > 30.0) {
          if (T > T_crit_[0]) {
            const double one_over_x = 1.0/T;
            Fm[0] = 0.88622692545275801365 * sqrt(one_over_x); // see Eq. (9.8.9) in Helgaker-Jorgensen-Olsen
            if (mmax == 0)
              return;
            // this upward recursion formula omits - e^(-x)/(2x), which for x>T_crit is <1e-15
            for (int i = 1; i <= mmax; i++)
              Fm[i] = Fm[i - 1] * numbers_.ihalf[i] * one_over_x; // see Eq. (9.8.13)
            return;
          }
        }

        // since Tcrit grows with mmax, this condition only needs to be determined once
        if (T > T_crit_[mmax]) {
          double pow_two_T_to_minusjp05 = std::pow(two_T, -mmax - 0.5);
          for (int m = mmax; m >= mmin; --m) {
            /*--- Asymptotic formula ---*/
            Fm[m] = numbers_.df[2 * m] * sqrt_pio2 * pow_two_T_to_minusjp05;
            pow_two_T_to_minusjp05 *= two_T;
          }
        }
        else
        {
          const int T_ind = (int) (0.5 + T * oodelT_);
          const Real h = T_ind * delT_ - T;
          const Real* F_row = grid_[T_ind] + mmin;

#if defined (__AVX__)
          libint2::simd::VectorAVXDouble h0123, h4567;
          if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
            const double h2 = h*h*oon[2];
            const double h3 = h2*h*oon[3];
            h0123 = libint2::simd::VectorAVXDouble (1.0, h, h2, h3);
            if (INTERPOLATION_ORDER == 7) {
              const double h4 = h3*h*oon[4];
              const double h5 = h4*h*oon[5];
              const double h6 = h5*h*oon[6];
              const double h7 = h6*h*oon[7];
              h4567 = libint2::simd::VectorAVXDouble (h4, h5, h6, h7);
            }
          }
          //          libint2::simd::VectorAVXDouble h0123(1.0);
          //          libint2::simd::VectorAVXDouble h4567(1.0);
#endif

          int m = mmin;
          if (mmax-m >=1) {
            const int unroll_size = 2;
            const int m_fence = (mmax + 2 - unroll_size);
            for(; m<m_fence; m+=unroll_size, F_row+=unroll_size) {

#if defined(__AVX__)
              if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
                 libint2::simd::VectorAVXDouble fr0_0123; fr0_0123.load(F_row);
                 libint2::simd::VectorAVXDouble fr1_0123; fr1_0123.load(F_row+1);
                 libint2::simd::VectorSSEDouble fm01 = horizontal_add(fr0_0123*h0123, fr1_0123*h0123);
                 if (INTERPOLATION_ORDER == 7) {
                   libint2::simd::VectorAVXDouble fr0_4567; fr0_4567.load(F_row+4);
                   libint2::simd::VectorAVXDouble fr1_4567; fr1_4567.load(F_row+5);
                   fm01 += horizontal_add(fr0_4567*h4567, fr1_4567*h4567);
                 }
                 fm01.convert(&Fm[m]);
              }
              else {
#endif
              Real total0 = 0.0, total1 = 0.0;
              for(int i=INTERPOLATION_ORDER; i>=1; --i) {
                total0 = oon[i]*h*(F_row[i] + total0);
                total1 = oon[i]*h*(F_row[i+1] + total1);
              }
              Fm[m] = F_row[0] + total0;
              Fm[m+1] = F_row[1] + total1;
#if defined(__AVX__)
              }
#endif
            }
          } // unroll_size = 2
          if (m<=mmax) { // unroll_size = 1
#if defined(__AVX__)
            if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
              libint2::simd::VectorAVXDouble fr0123; fr0123.load(F_row);
              if (INTERPOLATION_ORDER == 7) {
                libint2::simd::VectorAVXDouble fr4567; fr4567.load(F_row+4);
//                libint2::simd::VectorSSEDouble fm = horizontal_add(fr0123*h0123, fr4567*h4567);
//                Fm[m] = horizontal_add(fm);
                Fm[m] = horizontal_add(fr0123*h0123 + fr4567*h4567);
              }
              else { // INTERPOLATION_ORDER == 3
                Fm[m] = horizontal_add(fr0123*h0123);
              }
            }
            else {
#endif
            Real total = 0.0;
            for(int i=INTERPOLATION_ORDER; i>=1; --i) {
              total = oon[i]*h*(F_row[i] + total);
            }
            Fm[m] = F_row[0] + total;
#if defined(__AVX__)
            }
#endif
          } // unroll_size = 1

          // check against the reference value
//          if (false) {
//            double refvalue = FmEval_Reference2<double>::eval(T, mmax, 1e-15); // compute F(T) with m=mmax
//            if (abs(refvalue - Fm[mmax]) > 1e-14) {
//              std::cout << "T = " << T << " m = " << mmax << " cheb = "
//                  << Fm[mmax] << " ref = " << refvalue << std::endl;
//            }
//          }

        } // if T < T_crit

        /*------------------------------------
         And then do downward recursion in j
         ------------------------------------*/
        if (INTERPOLATION_AND_RECURSION && mmin > 0) {
          const Real exp_mT = std::exp(-T);
          for (int m = mmin - 1; m >= 0; --m) {
            Fm[m] = (exp_mT + two_T * Fm[m+1]) * numbers_.twoi1[m];
          }
        }
      }

    private:
      Real **grid_; /* Table of "exact" Fm(T) values. Row index corresponds to
       values of T (max_T+1 rows), column index to values
       of m (max_m+1 columns) */
      Real delT_; /* The step size for T, depends on cutoff */
      Real oodelT_; /* 1.0 / delT_, see above */
      Real cutoff_; /* Tolerance cutoff used in all computations of Fm(T) */
      int max_m_; /* Maximum value of m in the table, depends on cutoff
       and the number of terms in Taylor interpolation */
      int max_T_; /* Maximum index of T in the table, depends on cutoff
       and m */
      Real *T_crit_; /* Maximum T for each row, depends on cutoff;
       for a given m and T_idx <= max_T_idx[m] use Taylor interpolation,
       for a given m and T_idx > max_T_idx[m] use the asymptotic formula */

      ExpensiveNumbers<double> numbers_;

      /**
       * Power series estimate of the error introduced by replacing
       * \f$ F_m(T) = \int_0^1 \exp(-T t^2) t^{2 m} \, \mathrm{d} t \f$ with analytically
       * integrable \f$ \int_0^\infty \exp(-T t^2) t^{2 m} \, \mathrm{d} t = \frac{(2m-1)!!}{2^{m+1}} \sqrt{\frac{\pi}{T^{2m+1}}} \f$
       * @param m
       * @param T
       * @return the error estimate
       */
      static double truncation_error(unsigned int m, double T) {
        const double m2= m * m;
        const double m3= m2 * m;
        const double m4= m2 * m2;
        const double T2= T * T;
        const double T3= T2 * T;
        const double T4= T2 * T2;
        const double T5= T2 * T3;

        const double result = exp(-T) * (105 + 16*m4 + 16*m3*(T - 8) - 30*T + 12*T2
            - 8*T3 + 16*T4 + 8*m2*(43 - 9*T + 2*T2) +
            4*m*(-88 + 23*T - 8*T2 + 4*T3))/(32*T5);
        return result;
      }
      /**
       * Leading-order estimate of the error introduced by replacing
       * \f$ F_m(T) = \int_0^1 \exp(-T t^2) t^{2 m} \, \mathrm{d} t \f$ with analytically
       * integrable \f$ \int_0^\infty \exp(-T t^2) t^{2 m} \, \mathrm{d} t = \frac{(2m-1)!!}{2^{m+1}} \sqrt{\frac{\pi}{T^{2m+1}}} \f$
       * @param m
       * @param T
       * @return the error estimate
       */
      static double truncation_error(double T) {
        const double result = exp(-T) /(2*T);
        return result;
      }
  };


  //////////////////////////////////////////////////////////
  /// core integral for Yukawa and exponential interactions
  //////////////////////////////////////////////////////////

#if 0
  /**
   * Evaluates core integral for the Yukawa potential \f$ \exp(- \zeta r) / r \f$
   * @tparam Real real type
   */
  template<typename Real>
  struct YukawaGmEval {

      static const int mmin = -1;

      ///
      YukawaGmEval(unsigned int mmax, Real precision) :
        mmax_(mmax), precision_(precision),
        numbers_(),
        Gm_0_U_(256) // should be enough to hold up to G_{255}(0,U)
      { }

      unsigned int max_m() const { return mmax; }
      /// @return the precision with which this object can compute the result
      Real precision() const { return precision_; }

      ///
      void eval_yukawa(Real* Gm, Real T, Real U, size_t mmax, Real absolute_precision) {
        assert(false); // not yet implemented
      }
      ///
      void eval_slater(Real* Gm, Real T, Real U, size_t mmax, Real absolute_precision) {
        assert(false); // not yet implemented
      }

      /// Scheme 1 of Ten-no: upward recursion from \f$ G_{-1} (T,U) \f$ and \f$ G_0 (T,U) \f$
      /// T must be non-zero!
      /// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
      static void eval_yukawa_s1(Real* Gm, Real T, Real U, size_t mmax) {
        Real G_m1;

        const Real sqrt_U = sqrt(U);
        const Real sqrt_T = sqrt(T);
        const Real oo_sqrt_T = 1 / sqrt_T;
        const Real oo_sqrt_U = 1 / sqrt_U;
        const Real exp_mT = exp(-T);
        const Real kappa = sqrt_U - sqrt_T;
        const Real lambda = sqrt_U + sqrt_T;
        const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
        const Real pfac = sqrtPi_over_4 * exp_mT;
        const Real erfc_k = exp(kappa*kappa) * (1 - erf(kappa));
        const Real erfc_l = exp(lambda*lambda) * (1 - erf(lambda));

        Gm[0] = pfac * (erfc_k + erfc_l) * oo_sqrt_U;
        Gm[1] = pfac * (erfc_k - erfc_l) * oo_sqrt_T;
        if (mmax > 0) {

          // first application of URR
          const Real oo_two_T = 0.5 / T;
          const Real two_U = 2.0 * U;

          for(unsigned int m=1, two_m_minus_1=1; m<=mmax; ++m, two_m_minus_1+=2) {
            Gm[m+1] = oo_two_T * ( two_m_minus_1 * Gm[m] + two_U * Gm[m-1] - exp_mT);
          }
        }

        return;
      }

      /// Scheme 2 of Ten-no:
      /// - evaluate G_m(0,U) for m = mmax ... mmax+n, where n is the number of terms in Maclaurin expansion
      ///   how? see eval_yukawa_Gm0U
      /// - then MacLaurin expansion for \f$ G_{m_{\rm max}}(T,U) \f$ and \f$ G_{m_{\rm max}-1}(T,U) \f$
      /// - then downward recursion
      /// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
      void eval_yukawa_s2(Real* Gm, Real T, Real U, size_t mmax) {

        // TODO estimate the number of expansion terms for the given precision
        const int expansion_order = 60;
        eval_yukawa_Gm0U(Gm_0_U_, U, mmax - 1 + expansion_order);

        // Maclaurin


        // downward recursion
        //Gm[m + 1] = 1/(2 U) (E^-T - (2 m + 3) Gm[[m + 2]] + 2 T Gm[[m + 3]])
        const Real one_over_twoU = 0.5 / U;
        const Real one_over_twoU = 2.0 * T;
        const Real exp_mT = exp(-T);
        for(int m=mmax-2; m>=-1; --m)
          Gm[m] = one_over_twoU (exp_mT - numbers_.twoi1[m+1] * Gm[m+1] + twoT Gm[m+2])

        // testing ...
        std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm);

        return;
      }

      /// Scheme 3 of Ten-no:
      /// - evaluate G_m(0,U) for m = 0 ... mmax+n, where n is the max order of terms in Maclaurin expansion
      ///   how? see eval_yukawa_Gm0U
      /// - then MacLaurin expansion for \f$ G_{m}(T,U) \f$ for m = 0 ... mmax
      /// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
      void eval_yukawa_s3(Real* Gm, Real T, Real U, size_t mmax) {

        // Ten-no's prescription:
        //

        assert(false);

        // testing ...
        std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm);

        return;
      }


      /**
       * computes prerequisites for MacLaurin expansion of Gm(T,U)
       * for m in [-1,mmax); uses Ten-no's prescription, i.e.
       *
       *
       * @param[out] Gm0U
       * @param[in] U
       * @param[in] mmax
       */
      void eval_yukawa_Gm0U(Real* Gm0U, Real U, int mmax, int mmin = -1) {

        // Ten-no's prescription:
        // start with Gm*(0,T)
        // 1) for U < 5, m* = -1
        // 2) for U > 5, m* = min(U,mmax)
        int mstar;

        // G_{-1} (0,U) is easy
        if (U < 5.0) {
          mstar = -1;

          const Real sqrt_U = sqrt(U);
          const Real exp_U = exp(U);
          const Real oo_sqrt_U = 1 / sqrt_U;
          const Real sqrtPi_over_2(
              0.88622692545275801364908374167057259139877472806119);
          const Real pfac = sqrtPi_over_2 * exp_U;
          const Real erfc_sqrt_U = 1.0 - erf(sqrt_U);
          Gm_0_U_[0] = pfac * exp_U * oo_sqrt_U * erfc_sqrt_U;
          // can get G0 for "free"
          // this is the l'Hopital-transformed expression for G_0 (0,T)
//          const Real sqrtPi(
//              1.7724538509055160272981674833411451827975494561224);
//          Gm_0_U_[1] = 1.0 - exp_U * sqrtPi * sqrt_U * erfc_sqrt_U;
        }
        else { // use continued fraction for m*
          mstar = std::min((size_t)U,(size_t)mmax);
          const bool implemented = false;
          assert(implemented == true);
        }

        { // use recursion if needed
          const Real two_U = 2.0 * U;
          // simplified URR
          if (mmax > mstar) {
            for(int m=mstar+1; m<=mmax; ++m) {
              Gm_0_U_[m+1] = numbers_.twoi1[m] * (1.0 - two_U * Gm_0_U_[m]);
            }
          }

          // simplified DRR
          if (mstar > mmin) { // instead of -1 because we trigger this only for U > 5
            const Real one_over_U = 2.0 / two_U;
            for(int m=mstar-1; m>=mmin; --m) {
              Gm_0_U_[m+1] = one_over_U * ( 0.5 - numbers_.ihalf[m+2] * Gm_0_U_[m+2]);
            }
          }
        }

        // testing ...
        std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm0U);

        return;
      }


      /// computes a single value of G_{-1}(T,U)
      static Real eval_Gm1(Real T, Real U) {
        const Real sqrt_U = sqrt(U);
        const Real sqrt_T = sqrt(T);
        const Real exp_mT = exp(-T);
        const Real kappa = sqrt_U - sqrt_T;
        const Real lambda = sqrt_U + sqrt_T;
        const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
        const Real result = sqrtPi_over_4 * exp_mT *
            (exp(kappa*kappa) * (1 - erf(kappa)) + exp(lambda*lambda) * (1 - erf(lambda))) / sqrt_U;
        return result;
      }
      /// computes a single value of G_0(T,U)
      static Real eval_G0(Real T, Real U) {
        const Real sqrt_U = sqrt(U);
        const Real sqrt_T = sqrt(T);
        const Real exp_mT = exp(-T);
        const Real kappa = sqrt_U - sqrt_T;
        const Real lambda = sqrt_U + sqrt_T;
        const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
        const Real result = sqrtPi_over_4 * exp_mT *
            (exp(kappa*kappa) * (1 - erf(kappa)) - exp(lambda*lambda) * (1 - erf(lambda))) / sqrt_T;
        return result;
      }
      /// computes \f$ G_{-1}(T,U) \f$ and \f$ G_{0}(T,U) \f$ , both are needed for Yukawa and Slater integrals
      /// @param[out] result result[0] contains \f$ G_{-1}(T,U) \f$, result[1] contains \f$ G_{0}(T,U) \f$
      static void eval_G_m1_0(Real* result, Real T, Real U) {
        const Real sqrt_U = sqrt(U);
        const Real sqrt_T = sqrt(T);
        const Real oo_sqrt_U = 1 / sqrt_U;
        const Real oo_sqrt_T = 1 / sqrt_T;
        const Real exp_mT = exp(-T);
        const Real kappa = sqrt_U - sqrt_T;
        const Real lambda = sqrt_U + sqrt_T;
        const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
        const Real pfac = sqrtPi_over_4 * exp_mT;
        const Real erfc_k = exp(kappa*kappa) * (1 - erf(kappa));
        const Real erfc_l = exp(lambda*lambda) * (1 - erf(lambda));
        result[0] = pfac * (erfc_k + erfc_l) * oo_sqrt_U;
        result[1] = pfac * (erfc_k - erfc_l) * oo_sqrt_T;
      }

      /// computes a single value of G(T,U) using MacLaurin series.
      static Real eval_MacLaurinT(Real T, Real U, size_t m, Real absolute_precision) {
        assert(false); // not yet implemented
        return 0.0;
      }

    private:
      std::vector<Real> Gm_0_U_; // used for MacLaurin expansion
      unsigned int mmax_;
      Real precision_;
      ExpensiveNumbers<Real> numbers_;

      // since evaluation may involve several functions, will store some intermediate constants here
      // to avoid the cost of extra parameters
      //Real exp_U_;
      //Real exp_mT_;

      size_t count_tenno_algorithm_branches[3]; // counts the number of times each branch Ten-no algorithm
                                                // was picked

  };
#endif

  template<typename Real, int k>
    struct GaussianGmEval;

  namespace detail {

    /// some evaluators need thread-local scratch, but most don't
    template <typename CoreEval> struct CoreEvalScratch {
        CoreEvalScratch() = default;
        CoreEvalScratch(int) { }
    };
    /// GaussianGmEval<Real,-1> needs extra scratch data
    template <typename Real>
    struct CoreEvalScratch<GaussianGmEval<Real, -1>> {
      std::vector<Real> Fm_;
      std::vector<Real> g_i;
      std::vector<Real> r_i;
      std::vector<Real> oorhog_i;
      CoreEvalScratch() = default;
      CoreEvalScratch(int mmax) {
        init(mmax);
      }
      private:
      void init(int mmax) {
        Fm_.resize(mmax+1);
        g_i.resize(mmax+1);
        r_i.resize(mmax+1);
        oorhog_i.resize(mmax+1);
        g_i[0] = 1.0;
        r_i[0] = 1.0;
      }
    };
  } // namespace libint2::detail

  //////////////////////////////////////////////////////////
  /// core integrals r12^k \sum_i \exp(- a_i r_12^2)
  //////////////////////////////////////////////////////////

  /**
   * Evaluates core integral \$ G_m(\rho, T) = \left( - \frac{\partial}{\partial T} \right)^n G_0(\rho,T) \f$,
   * \f$ G_0(\rho,T) = \int \exp(-\rho |\vec{r} - \vec{P} + \vec{Q}|^2) g(r) \, {\rm d}\vec{r} \f$
   * over a general contracted
   * Gaussian geminal \f$ g(r_{12}) = r_{12}^k \sum_i c_i \exp(- a_i r_{12}^2), \quad k = -1, 0, 2 \f$ .
   * The integrals are needed in R12/F12 methods with STG-nG correlation factors.
   * Specifically, for a correlation factor \f$ f(r_{12}) = \sum_i c_i \exp(- a_i r_{12}^2) \f$
   * integrals with the following kernels are needed:
   * <ul>
   *   <li> \f$ f(r_{12}) \f$  (k=0) </li>
   *   <li> \f$ f(r_{12}) / r_{12} \f$  (k=-1) </li>
   *   <li> \f$ f(r_{12})^2 \f$ (k=0, @sa GaussianGmEval::eval ) </li>
   *   <li> \f$ [f(r_{12}), [\hat{T}_1, f(r_{12})]] \f$ (k=2, @sa GaussianGmEval::eval ) </li>
   * </ul>
   *
   * N.B. ``Asymmetric'' kernels, \f$ f(r_{12}) g(r_{12}) \f$ and
   *   \f$ [f(r_{12}), [\hat{T}_1, g(r_{12})]] \f$, where f and g are two different geminals,
   *   can also be handled straightforwardly.
   *
   * \note for more details see DOI: 10.1039/b605188j
   */
  template<typename Real, int k>
  struct GaussianGmEval : private detail::CoreEvalScratch<GaussianGmEval<Real,k>> // N.B. empty-base optimization
  {

      /**
       * @param[in] mmax the evaluator will be used to compute Gm(T) for 0 <= m <= mmax
       */
      GaussianGmEval(int mmax, Real precision) :
          detail::CoreEvalScratch<GaussianGmEval<Real, k>>(mmax), mmax_(mmax),
          precision_(precision), fm_eval_(),
          numbers_(-1,-1,mmax) {
        assert(k == -1 || k == 0 || k == 2);
        // for k=-1 need to evaluate the Boys function
        if (k == -1) {
          fm_eval_ = FmEval_Taylor<Real>::instance(mmax_, precision_);
        }
      }

      ~GaussianGmEval() {
      }

      /// Singleton interface allows to manage the lone instance;
      /// adjusts max m and precision values as needed in thread-safe fashion
      static const std::shared_ptr<GaussianGmEval>& instance(unsigned int mmax, Real precision) {

        // thread-safe per C++11 standard [6.7.4]
        static auto instance_ = std::shared_ptr<GaussianGmEval>{};

        const bool need_new_instance = !instance_ ||
                                       (instance_ && (instance_->max_m() < mmax ||
                                                      instance_->precision() > precision));
        if (need_new_instance) {
          auto new_instance = std::make_shared<GaussianGmEval>(mmax, precision);
          instance_ = new_instance; // thread-safe
        }

        return instance_;
      }

      /// @return the maximum value of m for which the \f$ G_m(\rho, T) \f$ can be computed with this object
      int max_m() const { return mmax_; }
      /// @return the precision with which this object can compute the Boys function
      Real precision() const { return precision_; }

      /** computes \f$ G_m(\rho, T) \f$ using downward recursion.
       *
       * @warning NOT reentrant if \c k == -1 and C++11 is not available
       *
       * @param[out] Gm array to be filled in with the \f$ Gm(\rho, T) \f$ values, must be at least mmax+1 elements long
       * @param[in] rho
       * @param[in] T
       * @param[in] mmax mmax the maximum value of m for which Boys function will be computed;
       *                 it must be <= the value returned by max_m() (this is not checked)
       * @param[in] geminal the Gaussian geminal for which the core integral \f$ Gm(\rho, T) \f$ is computed
       * @param[in] scr if \c k ==-1 and need this to be reentrant, must provide ptr to
       *                the per-thread \c libint2::detail::CoreEvalScratch<GaussianGmEval<Real,-1>> object;
       *                no need to specify \c scr otherwise
       */
      template <typename AnyReal>
      void eval(Real* Gm, Real rho, Real T, size_t mmax,
                const std::vector<std::pair<AnyReal, AnyReal> >& geminal,
                void* scr = 0) {

        std::fill(Gm, Gm+mmax+1, Real(0));

        const auto sqrt_rho = sqrt(rho);
        const auto oo_sqrt_rho = 1/sqrt_rho;
        if (k == -1) {
          void* _scr = (scr == 0) ? this : scr;
          auto& scratch = *(reinterpret_cast<detail::CoreEvalScratch<GaussianGmEval<Real, -1>>*>(_scr));
          for(int i=1; i<=mmax; i++) {
            scratch.r_i[i] = scratch.r_i[i-1] * rho;
          }
        }

        typedef typename std::vector<std::pair<AnyReal, AnyReal> >::const_iterator citer;
        const citer gend = geminal.end();
        for(citer i=geminal.begin(); i!= gend; ++i) {

          const auto gamma = i->first;
          const auto gcoef = i->second;
          const auto rhog = rho + gamma;
          const auto oorhog = 1/rhog;

          const auto gorg = gamma * oorhog;
          const auto rorg = rho * oorhog;
          const auto sqrt_rho_org = sqrt_rho * oorhog;
          const auto sqrt_rhog = sqrt(rhog);
          const auto sqrt_rorg = sqrt_rho_org * sqrt_rhog;

          /// (ss|g12|ss)
          constexpr Real const_SQRTPI_2(0.88622692545275801364908374167057259139877472806119); /* sqrt(pi)/2 */
          const auto SS_K0G12_SS = gcoef * oo_sqrt_rho * const_SQRTPI_2 * rorg * sqrt_rorg * exp(-gorg*T);

          if (k == -1) {
            void* _scr = (scr == 0) ? this : scr;
            auto& scratch = *(reinterpret_cast<detail::CoreEvalScratch<GaussianGmEval<Real, -1>>*>(_scr));

            const auto rorgT = rorg * T;
            fm_eval_->eval(&scratch.Fm_[0], rorgT, mmax);

#if 1
            constexpr Real const_2_SQRTPI(1.12837916709551257389615890312154517);   /* 2/sqrt(pi)     */
            const auto pfac = const_2_SQRTPI * sqrt_rhog * SS_K0G12_SS;
            scratch.oorhog_i[0] = pfac;
            for(int i=1; i<=mmax; i++) {
              scratch.g_i[i] = scratch.g_i[i-1] * gamma;
              scratch.oorhog_i[i] = scratch.oorhog_i[i-1] * oorhog;
            }
            for(int m=0; m<=mmax; m++) {
              Real ssss = 0.0;
              Real* bcm = numbers_.bc[m];
              for(int n=0; n<=m; n++) {
                ssss += bcm[n] * scratch.r_i[n] * scratch.g_i[m-n] * scratch.Fm_[n];
              }
              Gm[m] += ssss * scratch.oorhog_i[m];
            }
#endif
          }

          if (k == 0) {
            auto ss_oper_ss_m = SS_K0G12_SS;
            Gm[0] += ss_oper_ss_m;
            for(int m=1; m<=mmax; ++m) {
              ss_oper_ss_m *= gorg;
              Gm[m] += ss_oper_ss_m;
            }
          }

          if (k == 2) {

            /// (ss|g12*r12^2|ss)
            const auto rorgT = rorg * T;
            const auto SS_K2G12_SS_0 = (1.5 + rorgT) * (SS_K0G12_SS * oorhog);
            const auto SS_K2G12_SS_m1 = rorg * (SS_K0G12_SS * oorhog);

            auto SS_K2G12_SS_gorg_m = SS_K2G12_SS_0 ;
            auto SS_K2G12_SS_gorg_m1 = SS_K2G12_SS_m1;
            Gm[0] += SS_K2G12_SS_gorg_m;
            for(int m=1; m<=mmax; ++m) {
              SS_K2G12_SS_gorg_m *= gorg;
              Gm[m] += SS_K2G12_SS_gorg_m - m * SS_K2G12_SS_gorg_m1;
              SS_K2G12_SS_gorg_m1 *= gorg;
            }
          }

        }

      }

    private:
      int mmax_;
      Real precision_; //< absolute precision
      std::shared_ptr<FmEval_Taylor<Real>> fm_eval_;

      ExpensiveNumbers<Real> numbers_;
  };

  template <typename GmEvalFunction>
  struct GenericGmEval : private GmEvalFunction {

    typedef typename GmEvalFunction::value_type Real;

      GenericGmEval(int mmax, Real precision) : GmEvalFunction(mmax, precision),
          mmax_(mmax), precision_(precision) {}

      static std::shared_ptr<GenericGmEval> instance(int mmax, Real precision = 0.0) {
        return std::make_shared<GenericGmEval>(mmax, precision);
      }

      template <typename Real, typename... ExtraArgs>
      void eval(Real* Gm, Real rho, Real T, int mmax, ExtraArgs... args) {
        assert(mmax <= mmax_);
        (GmEvalFunction(*this))(Gm, rho, T, mmax, std::forward<ExtraArgs>(args)...);
      }

      /// @return the maximum value of m for which the \f$ G_m(\rho, T) \f$ can be computed with this object
      int max_m() const { return mmax_; }
      /// @return the precision with which this object can compute the Boys function
      Real precision() const { return precision_; }

    private:
      int mmax_;
      Real precision_;
  };

  // these Gm engines need extra scratch data
  namespace os_core_ints {
  template <typename Real, int K> struct r12_xx_K_gm_eval;
  template <typename Real> struct erfc_coulomb_gm_eval;
  }

  namespace detail {
  /// r12_xx_K_gm_eval<1> needs extra scratch data
  template <typename Real>
  struct CoreEvalScratch<os_core_ints::r12_xx_K_gm_eval<Real, 1>> {
    std::vector<Real> Fm_;
    CoreEvalScratch() = default;
    // need to store Fm(T) for m = 0 .. mmax+1
    explicit CoreEvalScratch(int mmax) { Fm_.resize(mmax+2); }
  };
  /// erfc_coulomb_gm_eval needs extra scratch data
  template <typename Real>
  struct CoreEvalScratch<os_core_ints::erfc_coulomb_gm_eval<Real>> {
    std::vector<Real> Fm_;
    CoreEvalScratch() = default;
    // need to store Fm(T) for m = 0 .. mmax
    explicit CoreEvalScratch(int mmax) { Fm_.resize(mmax+1); }
  };
  }

  /// Obara-Saika core ints code
  namespace os_core_ints {

    /// core integral evaluator delta function kernels
  template <typename Real>
  struct delta_gm_eval {
    typedef Real value_type;

    delta_gm_eval(unsigned int, Real) {}
    void operator()(Real* Gm, Real rho, Real T, int mmax) {
      constexpr static auto one_over_two_pi = 1.0 / (2.0 * M_PI);
      const auto G0 = exp(-T) * rho * one_over_two_pi;
      std::fill(Gm, Gm + mmax + 1, G0);
    }
  };

  /// core integral evaluator for \f$ r_{12}^K \f$ kernel
  /// @tparam K currently supported \c K=1 (use Boys engine directly for \c K=-1)
  /// @note need extra scratch for Boys function values when \c K==1,
  ///       the Gm vector is not long enough for scratch

  template <typename Real, int K>
  struct r12_xx_K_gm_eval;

  template <typename Real>
  struct r12_xx_K_gm_eval<Real, 1>
      : private detail::CoreEvalScratch<r12_xx_K_gm_eval<Real, 1>> {
    typedef detail::CoreEvalScratch<r12_xx_K_gm_eval<Real, 1>> base_type;
    typedef Real value_type;

    r12_xx_K_gm_eval(unsigned int mmax, Real precision)
        : base_type(mmax) {
      fm_eval_ = FmEval_Taylor<Real>::instance(mmax + 1, precision);
    }
    void operator()(Real* Gm, Real rho, Real T, int mmax) {
      fm_eval_->eval(&base_type::Fm_[0], T, mmax + 1);
      auto T_plus_m_plus_one = T + 1.0;
      Gm[0] = T_plus_m_plus_one * base_type::Fm_[0] - T * base_type::Fm_[1];
      auto minus_m = -1.0;
      T_plus_m_plus_one += 1.0;
      for (auto m = 1; m <= mmax;
           ++m, minus_m -= 1.0, T_plus_m_plus_one += 1.0) {
        Gm[m] =
            minus_m * base_type::Fm_[m - 1] + T_plus_m_plus_one * base_type::Fm_[m] - T * base_type::Fm_[m + 1];
      }
    }

   private:
    std::shared_ptr<FmEval_Taylor<Real>> fm_eval_;  // need for odd K
  };

  /// core integral evaluator for \f$ \mathrm{erf}(\omega r) / r \f$ kernel
  template <typename Real>
  struct erf_coulomb_gm_eval {
    typedef Real value_type;

    erf_coulomb_gm_eval(unsigned int mmax, Real precision) {
      fm_eval_ = FmEval_Taylor<Real>::instance(mmax, precision);
    }
    void operator()(Real* Gm, Real rho, Real T, int mmax, Real omega) {
      if (omega > 0) {
        auto omega2 = omega * omega;
        auto omega2_over_omega2_plus_rho = omega2 / (omega2 + rho);
        fm_eval_->eval(Gm, T * omega2_over_omega2_plus_rho,
                       mmax);

        auto ooversqrto2prho_exp_2mplus1 =
            std::sqrt(omega2_over_omega2_plus_rho);
        for (auto m = 0; m <= mmax;
             ++m, ooversqrto2prho_exp_2mplus1 *= omega2_over_omega2_plus_rho) {
          Gm[m] *= ooversqrto2prho_exp_2mplus1;
        }
      }
      else {
        std::fill(Gm, Gm+mmax+1, Real{0});
      }
    }

     private:
      std::shared_ptr<FmEval_Taylor<Real>> fm_eval_;  // need for odd K
  };

  /// core integral evaluator for \f$ \mathrm{erfc}(\omega r) / r \f$ kernel
  /// @note need extra scratch for Boys function values,
  ///       since need to call Boys engine twice
  template <typename Real>
  struct erfc_coulomb_gm_eval : private
  detail::CoreEvalScratch<erfc_coulomb_gm_eval<Real>> {
    typedef detail::CoreEvalScratch<erfc_coulomb_gm_eval<Real>> base_type;
    typedef Real value_type;

    erfc_coulomb_gm_eval(unsigned int mmax, Real precision)
        : base_type(mmax) {
      fm_eval_ = FmEval_Taylor<Real>::instance(mmax, precision);
    }
    void operator()(Real* Gm, Real rho, Real T, int mmax, Real omega) {
      fm_eval_->eval(&base_type::Fm_[0], T, mmax);
      std::copy(base_type::Fm_.cbegin(), base_type::Fm_.cbegin() + mmax + 1, Gm);
      if (omega > 0) {
        auto omega2 = omega * omega;
        auto omega2_over_omega2_plus_rho = omega2 / (omega2 + rho);
        fm_eval_->eval(&base_type::Fm_[0], T * omega2_over_omega2_plus_rho,
                       mmax);

        auto ooversqrto2prho_exp_2mplus1 =
            std::sqrt(omega2_over_omega2_plus_rho);
        for (auto m = 0; m <= mmax;
             ++m, ooversqrto2prho_exp_2mplus1 *= omega2_over_omega2_plus_rho) {
          Gm[m] -= ooversqrto2prho_exp_2mplus1 * base_type::Fm_[m];
        }
      }
    }

     private:
      std::shared_ptr<FmEval_Taylor<Real>> fm_eval_;  // need for odd K
  };

  }  // namespace os_core_ints

  /*
   *  Slater geminal fitting is available only if have LAPACK
   */
#if HAVE_LAPACK
  /*
  f[x_] := - Exp[-\[Zeta] x] / \[Zeta];

  ff[cc_, aa_, x_] := Sum[cc[[i]]*Exp[-aa[[i]] x^2], {i, 1, n}];
  */
  template <typename Real>
  Real
  fstg(Real zeta,
       Real x) {
    return -std::exp(-zeta*x)/zeta;
  }

  template <typename Real>
  Real
  fngtg(const std::vector<Real>& cc,
        const std::vector<Real>& aa,
        Real x) {
    Real value = 0.0;
    const Real x2 = x * x;
    const unsigned int n = cc.size();
    for(unsigned int i=0; i<n; ++i)
      value += cc[i] * std::exp(- aa[i] * x2);
    return value;
  }

  // --- weighting functions ---
  // L2 error is weighted by ww(x)
  // hence error is weighted by sqrt(ww(x))
  template <typename Real>
  Real
  wwtewklopper(Real x) {
    const Real x2 = x * x;
    return x2 * std::exp(-2 * x2);
  }
  template <typename Real>
  Real
  wwcusp(Real x) {
    const Real x2 = x * x;
    const Real x6 = x2 * x2 * x2;
    return std::exp(-0.005 * x6);
  }
  // default is Tew-Klopper
  template <typename Real>
  Real
  ww(Real x) {
    //return wwtewklopper(x);
    return wwcusp(x);
  }

  template <typename Real>
  Real
  norm(const std::vector<Real>& vec) {
    Real value = 0.0;
    const unsigned int n = vec.size();
    for(unsigned int i=0; i<n; ++i)
      value += vec[i] * vec[i];
    return value;
  }

  template <typename Real>
  void LinearSolveDamped(const std::vector<Real>& A,
                         const std::vector<Real>& b,
                         Real lambda,
                         std::vector<Real>& x) {
    const size_t n = b.size();
    std::vector<Real> Acopy(A);
    for(size_t m=0; m<n; ++m) Acopy[m*n + m]  *= (1 + lambda);
    std::vector<Real> e(b);

    //int info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, n, 1, &Acopy[0], n, &ipiv[0], &e[0], n );
    {
      std::vector<int> ipiv(n);
      int n = b.size();
      int one = 1;
      int info;
      dgesv_(&n, &one, &Acopy[0], &n, &ipiv[0], &e[0], &n, &info);
      assert (info == 0);
    }

    x = e;
  }

  /**
   * computes a least-squares fit of \f$ -exp(-\zeta r_{12})/\zeta = \sum_{i=1}^n c_i exp(-a_i r_{12}^2) \f$
   * on \f$ r_{12} \in [0, x_{\rm max}] \f$ discretized to npts.
   * @param[in] n
   * @param[in] zeta
   * @param[out] geminal
   * @param[in] xmin
   * @param[in] xmax
   * @param[in] npts
   */
  template <typename Real>
  void stg_ng_fit(unsigned int n,
                 Real zeta,
                 std::vector< std::pair<Real, Real> >& geminal,
                 Real xmin = 0.0,
                 Real xmax = 10.0,
                 unsigned int npts = 1001) {

    // initial guess
    std::vector<Real> cc(n, 1.0); // coefficients
    std::vector<Real> aa(n); // exponents
    for(unsigned int i=0; i<n; ++i)
      aa[i] = std::pow(3.0, (i + 2 - (n + 1)/2.0));

    // first rescale cc for ff[x] to match the norm of f[x]
    Real ffnormfac = 0.0;
    for(unsigned int i=0; i<n; ++i)
      for(unsigned int j=0; j<n; ++j)
        ffnormfac += cc[i] * cc[j]/std::sqrt(aa[i] + aa[j]);
    const Real Nf = std::sqrt(2.0 * zeta) * zeta;
    const Real Nff = std::sqrt(2.0) / (std::sqrt(ffnormfac) *
        std::sqrt(std::sqrt(M_PI)));
    for(unsigned int i=0; i<n; ++i) cc[i] *= -Nff/Nf;

    Real lambda0 = 1000; // damping factor is initially set to 1000, eventually should end up at 0
    const Real nu = 3.0; // increase/decrease the damping factor scale it by this
    const Real epsilon = 1e-15; // convergence
    const unsigned int maxniter = 200;

    // grid points on which we will fit
    std::vector<Real> xi(npts);
    for(unsigned int i=0; i<npts; ++i) xi[i] = xmin + (xmax - xmin)*i/(npts - 1);

    std::vector<Real> err(npts);

    const size_t nparams = 2*n; // params = expansion coefficients + gaussian exponents
    std::vector<Real> J( npts * nparams );
    std::vector<Real> delta(nparams);

//    std::cout << "iteration 0" << std::endl;
//    for(unsigned int i=0; i<n; ++i)
//      std::cout << cc[i] << " " << aa[i] << std::endl;

    Real errnormI;
    Real errnormIm1 = 1e3;
    bool converged = false;
    unsigned int iter = 0;
    while (!converged && iter < maxniter) {
//      std::cout << "Iteration " << ++iter << ": lambda = " << lambda0/nu << std::endl;

        for(unsigned int i=0; i<npts; ++i) {
          const Real x = xi[i];
          err[i] = (fstg(zeta, x) - fngtg(cc, aa, x)) * std::sqrt(ww(x));
        }
        errnormI = norm(err)/std::sqrt((Real)npts);

//        std::cout << "|err|=" << errnormI << std::endl;
        converged = std::abs((errnormI - errnormIm1)/errnormIm1) <= epsilon;
        if (converged) break;
        errnormIm1 = errnormI;

        for(unsigned int i=0; i<npts; ++i) {
          const Real x2 = xi[i] * xi[i];
          const Real sqrt_ww_x = std::sqrt(ww(xi[i]));
          const unsigned int ioffset = i * nparams;
          for(unsigned int j=0; j<n; ++j)
            J[ioffset+j] = (std::exp(-aa[j] * x2)) * sqrt_ww_x;
          const unsigned int ioffsetn = ioffset+n;
          for(unsigned int j=0; j<n; ++j)
            J[ioffsetn+j] = -  sqrt_ww_x * x2 * cc[j] * std::exp(-aa[j] * x2);
        }

        std::vector<Real> A( nparams * nparams);
        for(size_t r=0, rc=0; r<nparams; ++r) {
          for(size_t c=0; c<nparams; ++c, ++rc) {
            double Arc = 0.0;
            for(size_t i=0, ir=r, ic=c; i<npts; ++i, ir+=nparams, ic+=nparams)
              Arc += J[ir] * J[ic];
            A[rc] = Arc;
          }
        }

        std::vector<Real> b( nparams );
        for(size_t r=0; r<nparams; ++r) {
          Real br = 0.0;
          for(size_t i=0, ir=r; i<npts; ++i, ir+=nparams)
            br += J[ir] * err[i];
          b[r] = br;
        }

        // try decreasing damping first
        // if not successful try increasing damping until it results in a decrease in the error
        lambda0 /= nu;
        for(int l=-1; l<1000; ++l) {

          LinearSolveDamped(A, b, lambda0, delta );

          std::vector<double> cc_0(cc); for(unsigned int i=0; i<n; ++i) cc_0[i] += delta[i];
          std::vector<double> aa_0(aa); for(unsigned int i=0; i<n; ++i) aa_0[i] += delta[i+n];

          // if any of the exponents are negative the step is too large and need to increase damping
          bool step_too_large = false;
          for(unsigned int i=0; i<n; ++i)
            if (aa_0[i] < 0.0) {
              step_too_large = true;
              break;
            }
          if (!step_too_large) {
            std::vector<double> err_0(npts);
            for(unsigned int i=0; i<npts; ++i) {
              const double x = xi[i];
              err_0[i] = (fstg(zeta, x) - fngtg(cc_0, aa_0, x)) * std::sqrt(ww(x));
            }
            const double errnorm_0 = norm(err_0)/std::sqrt((double)npts);
            if (errnorm_0 < errnormI) {
              cc = cc_0;
              aa = aa_0;
              break;
            }
            else // step lead to increase of the error -- try dampening a bit more
              lambda0 *= nu;
          }
          else // too large of a step
            lambda0 *= nu;
        } // done adjusting the damping factor

      } // end of iterative minimization

      // if reached max # of iterations throw if the error is too terrible
      assert(not (iter == maxniter && errnormI > 1e-10));

      for(unsigned int i=0; i<n; ++i)
        geminal[i] = std::make_pair(aa[i], cc[i]);
    }
#endif

} // end of namespace libint2

#endif // C++ only
#endif // header guard