/usr/include/gmsh/yamakawa.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
//
// Contributed by Tristan Carrier
#ifndef _YAMAKAWA_H_
#define _YAMAKAWA_H_
#include "GRegion.h"
#include "MVertex.h"
#include "MHexahedron.h"
#include "qualityMeasuresJacobian.h"
#include <set>
#include <map>
#include <iterator>
//#include <tr1/unordered_set>
//#include <tr1/unordered_map>
using namespace std;
extern void export_gregion_mesh(GRegion *gr, string filename);
class Hex {
private:
double quality;
unsigned long long hash;
std::vector<MVertex*> vertices_;
private:
void set_hash()
{
hash = 0.;
for (int i = 0; i < 8; ++i) {
hash += vertices_[i]->getNum();
}
}
void compute_quality()
{
MHexahedron elt(vertices_);
quality = jacobianBasedQuality::minIGEMeasure(&elt, false, true);
}
void initialize()
{
set_hash();
compute_quality();
}
public:
Hex() : quality(0.), hash(0.) {}
Hex(const std::vector<MVertex*>& vertices):
quality(0.), hash(0), vertices_(vertices)
{
initialize();
}
Hex(MVertex* a2, MVertex* b2, MVertex* c2, MVertex* d2, MVertex* e2,
MVertex* f2, MVertex* g2, MVertex* h2) :
quality(0.)
{
vertices_.push_back(a2);
vertices_.push_back(b2);
vertices_.push_back(c2);
vertices_.push_back(d2);
vertices_.push_back(e2);
vertices_.push_back(f2);
vertices_.push_back(g2);
vertices_.push_back(h2);
initialize();
}
~Hex() {};
double get_quality() const { return quality; }
MVertex* getVertex(unsigned int i) const
{
if (i < 8) {
return vertices_[i];
}
else {
cout << "Hex: unknown vertex number " << i << endl;
throw;
return NULL;
}
}
const std::vector<MVertex*>& vertices() const { return vertices_; }
MVertex* vertex_in_facet(unsigned int facet, unsigned int v_in_facet) const;
bool hasVertex(MVertex *v) const
{
for (int i = 0; i < 8; i++) {
if (getVertex(i) == v) {
return true;
}
}
return false;
}
bool same_vertices(Hex *h) const
{
for (int i = 0; i < 8; i++) {
if (!(h->hasVertex(getVertex(i)))) {
return false;
}
}
return true;
}
int vertex_index(MVertex* v) const
{
for (unsigned int i = 0; i < 8; ++i) {
if (vertices_[i] == v) {
return i;
}
}
return -1;
}
bool contains(MVertex* v) const
{
return vertex_index(v) != -1;
}
unsigned long long get_hash()
{
if (hash == 0. && vertices_[0]!=NULL) {
set_hash();
}
return hash;
}
bool operator<(const Hex& hex) const
{
return quality > hex.get_quality(); // Why > ??? Shouldn't it be < ?? Jeanne.
}
};
class Facet {
private:
MVertex *a, *b, *c;
int num[3];
unsigned long long hash;
public:
Facet() : a(NULL), b(NULL), c(NULL), hash(0.)
{
num[0] = -1;
num[1] = -1;
num[2] = -1;
}
Facet(MVertex* a2, MVertex* b2, MVertex* c2) :
a(a2), b(b2), c(c2), hash(0.)
{
num[0] = -1;
num[1] = -1;
num[2] = -1;
compute_hash();
}
~Facet() {};
MVertex* get_a() const { return a; }
MVertex* get_b() const { return b; }
MVertex* get_c() const { return c; }
void set_vertices(MVertex*a2, MVertex*b2, MVertex*c2)
{
a = a2;
b = b2;
c = c2;
compute_hash();
}
bool same_vertices(const Facet& facet) const
{
bool c1 = (a == facet.get_a()) || (a == facet.get_b()) || (a == facet.get_c());
bool c2 = (b == facet.get_a()) || (b == facet.get_b()) || (b == facet.get_c());
bool c3 = (c == facet.get_a()) || (c == facet.get_b()) || (c == facet.get_c());
return c1 && c2 && c3;
}
void compute_hash()
{
num[0] = a->getNum();
num[1] = b->getNum();
num[2] = c->getNum();
std::sort(num, num + 3);
hash = num[2] + 1e4*num[1] + 1e8*num[0];
}
unsigned long long get_hash() const { return hash; }
bool operator<(const Facet& rhs) const {
return hash<rhs.get_hash();
}
};
class Diagonal{
private:
MVertex *a,*b;
unsigned long long hash;
private:
void compute_hash() { hash = a->getNum() + b->getNum(); }
public:
Diagonal() :a(NULL), b(NULL), hash() {};
Diagonal(MVertex*a2, MVertex*b2) :a(a2), b(b2){ compute_hash(); }
~Diagonal() {};
MVertex* get_a() const {return a;}
MVertex* get_b() const {return b;}
void set_vertices(MVertex*a2, MVertex*b2)
{
a = a2;
b = b2;
compute_hash();
}
bool same_vertices(Diagonal diagonal) const
{
bool c1 = (a == diagonal.get_a()) || (a == diagonal.get_b());
bool c2 = (b == diagonal.get_a()) || (b == diagonal.get_b());
return c1 && c2;
}
unsigned long long get_hash() const { return hash; }
bool operator<(const Diagonal& rhs) const { return hash<rhs.get_hash(); }
};
class Tuple{
private:
MVertex *v1,*v2,*v3;
MElement *element;
GFace *gf;
unsigned long long hash;
public:
Tuple() : v1(NULL), v2(NULL), v3(NULL), element(NULL), gf(NULL), hash(0.) {}
Tuple(MVertex* a, MVertex* b, MVertex* c, MElement* element2, GFace* gf2)
{
MVertex* tmp[3] = { a,b,c };
std::sort(tmp, tmp + 3);
v1 = tmp[0];
v2 = tmp[1];
v2 = tmp[2];
hash = a->getNum() + b->getNum() + c->getNum();
element = element2;
gf = gf2;
}
Tuple(MVertex* a, MVertex* b, MVertex* c)
:element(NULL), gf(NULL)
{
MVertex* tmp[3] = { a,b,c };
std::sort(tmp, tmp + 3);
v1 = tmp[0];
v2 = tmp[1];
v2 = tmp[2];
hash = a->getNum() + b->getNum() + c->getNum();
}
~Tuple() {};
MVertex* get_v1() const {return v1;}
MVertex* get_v2() const {return v2;}
MVertex* get_v3() const {return v3;}
MElement* get_element() const { return element; }
GFace* get_gf() const { return gf; }
bool same_vertices(const Tuple& rhs) const
{
if (v1 == rhs.get_v1() && v2 == rhs.get_v2() && v3 == rhs.get_v3()) {
return true;
} else {
return false;
}
}
unsigned long long get_hash() const { return hash; }
bool operator<(const Tuple& rhs) const { return hash< rhs.get_hash(); }
};
// Class in charge of answering connectivity requests on the input tetraedral
// mesh
class TetMeshConnectivity {
public:
typedef std::set<MVertex*> VertexSet;
typedef std::set<MElement*> TetSet;
TetMeshConnectivity() {};
~TetMeshConnectivity() {};
void initialize(GRegion* region)
{
Msg::Info("Initialize Connectivity Information...");
clear();
initialize_vertex_to_vertices(region);
initialize_vertex_to_elements(region);
}
void clear()
{
vertex_to_vertices_.clear();
vertex_to_elements_.clear();
}
VertexSet& vertices_around_vertex(MVertex* v)
{
return vertex_to_vertices_[v];
}
TetSet& tets_around_vertex(MVertex* v)
{
return vertex_to_elements_[v];
}
bool are_vertex_neighbors(MVertex* v0, MVertex* v1)
{
return vertices_around_vertex(v0).count(v1) > 0;
}
void vertices_around_vertices(MVertex* v0, MVertex* v1, VertexSet& result)
{
const VertexSet& neighbors0 = vertices_around_vertex(v0);
const VertexSet& neighbors1 = vertices_around_vertex(v1);
std::set_intersection(neighbors0.begin(), neighbors0.end(),
neighbors1.begin(), neighbors1.end(), std::inserter(result, result.end()));
}
void vertices_around_vertices(MVertex* v0, MVertex* v1, MVertex* v2, VertexSet& result)
{
VertexSet tmp;
vertices_around_vertices(v0, v1, tmp);
const VertexSet& neighbors2 = vertices_around_vertex(v2);
std::set_intersection(neighbors2.begin(), neighbors2.end(),
tmp.begin(), tmp.end(), std::inserter(result, result.end()));
}
void tets_around_vertices(MVertex* v0, MVertex* v1, TetSet& result)
{
const TetSet& elements0 = tets_around_vertex(v0);
const TetSet& elements1 = tets_around_vertex(v1);
std::set_intersection(elements0.begin(), elements0.end(),
elements1.begin(), elements1.end(), std::inserter(result, result.end()));
}
void tets_around_vertices(MVertex* v0, MVertex* v1, MVertex* v2, TetSet& result)
{
TetSet tmp;
tets_around_vertices(v0, v1, tmp);
const TetSet& elements2 = tets_around_vertex(v2);
std::set_intersection(tmp.begin(), tmp.end(),
elements2.begin(), elements2.end(), std::inserter(result, result.end()));
}
private:
// TODO Change this costly implementation
// Replace maps by vectors and store adjacent vertices whose
// index is bigger
void initialize_vertex_to_vertices(GRegion* region)
{
int nbtets = region->getNumMeshElements();
for (int i = 0; i < nbtets; i++) {
MElement* tet = region->getMeshElement(i);
for (int j = 0; j < 4; j++) {
MVertex* a = tet->getVertex(j);
MVertex* b = tet->getVertex((j + 1) % 4);
MVertex* c = tet->getVertex((j + 2) % 4);
MVertex* d = tet->getVertex((j + 3) % 4);
std::map<MVertex*, std::set<MVertex*> >::iterator it = vertex_to_vertices_.find(a);
if (it != vertex_to_vertices_.end()) {
it->second.insert(b);
it->second.insert(c);
it->second.insert(d);
}
else {
std::set<MVertex*> bin;
bin.insert(b);
bin.insert(c);
bin.insert(d);
vertex_to_vertices_.insert(std::pair<MVertex*, std::set<MVertex*> >(a, bin));
}
}
}
}
void initialize_vertex_to_elements(GRegion* region)
{
int nbtets = region->getNumMeshElements();
for (int i = 0; i < nbtets; i++) {
MElement* tet = region->getMeshElement(i);
for (unsigned int j = 0; j < 4; j++) {
MVertex* getVertex = tet->getVertex(j);
std::map<MVertex*, std::set<MElement*> >::iterator it = vertex_to_elements_.find(getVertex);
if (it != vertex_to_elements_.end()) {
it->second.insert(tet);
}
else {
std::set<MElement*> bin;
bin.insert(tet);
vertex_to_elements_.insert(std::pair<MVertex*, std::set<MElement*> >(getVertex, bin));
}
}
}
}
private:
std::map<MVertex*, std::set<MVertex*> > vertex_to_vertices_;
std::map<MVertex*, std::set<MElement*> > vertex_to_elements_;
};
class Recombinator{
public:
typedef std::set<MVertex*>::iterator vertex_set_itr;
typedef std::set<MElement*>::iterator element_set_itr;
typedef std::map<MVertex*, std::set<MVertex*> > Vertex2Vertices;
typedef std::map<MVertex*, std::set<MElement*> > Vertex2Elements;
Recombinator() :current_region(NULL), hex_threshold_quality(0.6) {};
virtual ~Recombinator();
virtual void execute();
virtual void execute(GRegion*);
protected:
// ---- Initialization of the structures
virtual void initialize_structures(GRegion* region) {
set_current_region(region);
tet_mesh.initialize(current_region);
build_tuples();
init_markings();
// What happens when the mesh of the region is not only constituted of tets? JP
}
void init_markings();
void build_tuples();
void set_current_region(GRegion* region) { current_region = region; }
// ---- Create the final mesh -------
virtual void merge();
virtual void merge(GRegion*){}
void delete_marked_tets_in_region() const;
// Check if the hex is valid and compatible with the
// previously built hexes and add it to the region
bool add_hex_to_region_if_valid(const Hex& hex);
// ---- Computation of potential hexes
virtual void clear_potential_hex_info() {
potential.clear();
}
void compute_potential_hexes() {
clear_potential_hex_info();
pattern1();
pattern2();
pattern3();
Msg::Info("Number of potential hexes %d", potential.size());
}
void pattern1();
void pattern2();
void pattern3();
virtual void add_or_free_potential_hex(Hex* candidate);
// ----- Helpers to debug -------
void print_all_potential_hex() const;
void print_hash_tableA();
void print_segment(const SPoint3&, const SPoint3&, std::ofstream&);
// ----- Conformity stuff -------
bool is_potential_hex_conform(const Hex& hex);
bool conformityA(const Hex&);
bool conformityB(const Hex&);
bool conformityC(const Hex&);
bool faces_statuquo(const Hex&);
bool faces_statuquo(MVertex*, MVertex*, MVertex*, MVertex*);
bool are_all_tets_free(const std::set<MElement*>& tets) const;
void mark_tets(const std::set<MElement*>& tets);
void clear_hash_tables() {
hash_tableA.clear();
hash_tableB.clear();
hash_tableC.clear();
}
void build_hash_tableA(const Hex& hex);
void build_hash_tableB(const Hex& hex);
void build_hash_tableC(const Hex& hex);
// ----- Post-processing -------
void improve_final_mesh() {
set_region_elements_positive();
create_quads_on_boundary();
}
// Reverse of of built elements with a negative volume
void set_region_elements_positive();
void create_quads_on_boundary();
void create_quads_on_boundary(MVertex*, MVertex*, MVertex*, MVertex*);
void delete_quad_triangles_in_boundary() const;
// ---- Functions that should not be part of the class
double scaled_jacobian(MVertex*, MVertex*, MVertex*, MVertex*);
double max_scaled_jacobian(MElement*, int&);
double min_scaled_jacobian(Hex&);
void print_statistics();
protected:
// Object in charge of answering connectivity request
// in the initial region tetrahedral mesh
TetMeshConnectivity tet_mesh;
GRegion* current_region;
double hex_threshold_quality;
std::vector<Hex*> potential;
std::map<MElement*,bool> markings;
// Already chosen facet triangles (4 per hex facet)
std::multiset<Facet> hash_tableA;
// Already chosen hex facet diagonals
std::multiset<Diagonal> hash_tableB;
// Already chosen hex edges
std::multiset<Diagonal> hash_tableC;
std::multiset<Tuple> tuples;
std::set<MElement*> triangles;
};
class PEEntity {
protected:
vector<MVertex*> vertices;
size_t hash;
void compute_hash();
public:
PEEntity(const vector<MVertex*> &_v);
virtual ~PEEntity();
virtual size_t get_max_nb_vertices() const = 0;
MVertex* getVertex(size_t n) const;
bool hasVertex(MVertex *v)const;
size_t get_hash() const;
bool same_vertices(const PEEntity *t)const;
bool operator<(const PEEntity&) const;
};
class PELine : public PEEntity {
public:
PELine(const vector<MVertex*> &_v);
virtual ~PELine();
size_t get_max_nb_vertices() const;
};
class PETriangle : public PEEntity {
public:
PETriangle(const vector<MVertex*> &_v);
//PETriangle(size_t l);
virtual ~PETriangle();
size_t get_max_nb_vertices() const;
};
class PEQuadrangle : public PEEntity {
public:
PEQuadrangle(const vector<MVertex*> &_v);
//PEQuadrangle(size_t l);
virtual ~PEQuadrangle();
size_t get_max_nb_vertices() const;
};
// Why are the following classes templates???
// Used with only with Hex*, implemented in the cpp file (bad idea) and does not seem robust. JP.
// Very very complicated way to answer one question
// Do we have all the tets of the input mesh for a given combination of hex?
// Slivers are tricky since they can be in shared by 2 hex.
template<class T>
class clique_stop_criteria {
public:
typedef std::set<T> graph_data_no_hash;
clique_stop_criteria(map<T, std::set<MElement*> > &_m, int _i);
~clique_stop_criteria();
bool stop(const graph_data_no_hash &clique)const;
void export_corresponding_mesh(const graph_data_no_hash &clique)const;
private:
const map<T, std::set<MElement*> > &hex_to_tet;
const unsigned int total_number_tet;
};
// Why is this class template?
// This complicates everything and is useless as the class
// cannot be used outside the .cpp file where it is implemented.
// TODO - Rewrite this without multimaps or unnecessary abstractions.
template<class T>
class cliques_compatibility_graph {
public:
typedef unsigned long long hash_key;
typedef std::set<T> graph_data_no_hash;
typedef std::multimap<hash_key, T> graph_data;
typedef std::multimap<hash_key, pair<T, graph_data > > graph;
typedef std::map<int, T> ranking_data;
typedef void(*ptrfunction_export)(cliques_compatibility_graph<T>&, int, string);
cliques_compatibility_graph(
graph &_g,
const map<T, std::vector<double> > &_hex_ranks,
unsigned int _max_nb_cliques,
unsigned int _nb_hex_potentiels,
clique_stop_criteria<T> *csc,
ptrfunction_export fct);
virtual ~cliques_compatibility_graph();
void find_cliques();
void export_cliques();
virtual typename graph::const_iterator begin_graph() { return G.begin(); };
virtual typename graph::const_iterator end_graph() { return G.end(); };
public:
bool found_the_ultimate_max_clique;
// The stored maximal cliques.
// The maximum number of stored cliques can be limited with the
// max_nb_of_stored_cliques attribute
// Cliques are ordered by size (number of nodes in the clique)
multimap<int, set<T> > allQ;
protected:
void erase_entry(graph_data &subgraph, T &u, hash_key &key);
void find_cliques(graph_data &subgraph, int n);
void split_set_BW(const T &u, const hash_key &u_key, const graph_data &subgraph, graph_data &white, graph_data &black);
void fill_black_set(const T &u, const hash_key &u_key, const graph_data &subgraph, graph_data &black);
void choose_u(const graph_data &subgraph, T &u, hash_key &u_key);
double function_to_maximize_for_u(const T &u, const hash_key &u_key, const graph_data &subgraph);
void store_clique(int n);
// Returns true if two nodes are connected in the graph
virtual bool compatibility(const T &u, const hash_key &u_key, const T &v, const hash_key &v_key);
ptrfunction_export export_clique_graph;
protected:
const bool debug;
unsigned int max_nb_cliques;
unsigned int nb_hex_potentiels;
unsigned int max_clique_size;
unsigned int position;
unsigned int total_nodes_number;
unsigned int total_nb_of_cliques_searched;
unsigned int max_nb_of_stored_cliques;// to reduce memory footprint (set to zero if no limit)
clique_stop_criteria<T>* criteria;
bool cancel_search;
// Not used in anyway
const map<T, std::vector<double> > &hex_ranks;
graph &G;
graph_data_no_hash Q;// the current clique
};
// Non necessary derivation
template<class T>
class cliques_losses_graph : public cliques_compatibility_graph<T> {
public:
typedef unsigned long long hash_key;
typedef multimap<hash_key, T> graph_data;
typedef multimap<hash_key, pair<T, graph_data > > graph;
typedef void(*ptrfunction_export)(cliques_compatibility_graph<T>&, int, string);
cliques_losses_graph(
graph &_g,
const map<T, std::vector<double> > &_hex_ranks,
unsigned int _max_nb_cliques,
unsigned int _nb_hex_potentiels,
clique_stop_criteria<T> *csc,
ptrfunction_export fct);
virtual ~cliques_losses_graph();
protected:
// Returns true if the two nodes are compatible
// (connected in compatiblity graph - not connected in losses graph)
virtual bool compatibility(const T &u, const hash_key &u_key, const T &v, const hash_key &v_key);
};
class Recombinator_Graph : public Recombinator{
public:
typedef size_t my_hash_key;
typedef multimap<my_hash_key,PETriangle*> trimap;
typedef map<PETriangle*, PETriangle*> tripair;
typedef multimap<my_hash_key, PELine*> linemap;
//typedef tr1::unordered_multimap<my_hash_key,PETriangle*> trimap;
typedef trimap::iterator iter;
typedef trimap::const_iterator citer;
typedef unsigned long long hash_key;
typedef multimap<hash_key, Hex*> graph_data;
typedef multimap<hash_key, pair<Hex*, graph_data > > graph;
protected:
bool debug;
bool debug_graph;
int max_nb_cliques;
string graphfilename;
// Topological information to navigate in the input tet mesh
// to navigate between the potential hexes and the input tet mesh
std::map<Hex*, std::set<MElement*> > hex_to_tet;
std::map<MElement*, std::set<Hex*> >tet_to_hex;
std::map<Hex*, std::set<PELine*> > hex_to_edges;
std::map<PELine*, std::set<Hex*> > edges_to_hex;
std::map<Hex*, std::set<PETriangle*> > hex_to_faces;
std::map<PETriangle*, std::set<Hex*> > faces_to_hex;
// Number of tets containing a tet - Is the facet on the boundary (1 tet) or not (2 tets)?
std::map<PETriangle*, unsigned int > faces_connectivity;
std::map<Hex*, std::vector<double> > hex_ranks;
graph incompatibility_graph;
std::set<Hex*> set_of_all_hex_in_graph;
std::multimap<unsigned long long, Hex*> created_potential_hex;
std::multimap<double, Hex*> degree; // degree = the final ranking of hexahedra
std::multimap<int, Hex*> idegree; // idegree = number of connected hex in indirect neighbors graph
std::multimap<int, Hex*> ndegree; // ndegree = number of direct neighbors !!! not chosen yet !!!
std::map<Hex*, int> reverse_idegree;
std::map<Hex*, int> reverse_ndegree;
// each tet has at least one neighbor, at most four. For all not chosen hex, check this data to find how many direct neighbors...
// std::map<MElement*,set<PETriangle*> > tet_to_triangle;
std::map<PETriangle*, set<MElement*> > triangle_to_tet;
std::map<MElement*, int> tet_degree;
tripair blossom_info;
trimap triangular_faces;
linemap edges_and_diagonals;
map<PETriangle*, GFace*> tri_to_gface_info;
vector<Hex*> chosen_hex;
vector<MElement*> chosen_tet;
bool post_check_validation(Hex* current_hex);
protected:
void create_faces_connectivity();
void add_face_connectivity(MElement *tet, int i, int j, int k);
void add_edges(Hex *hex);
void fill_edges_table(const std::vector<MVertex*>&, Hex *hex);
void add_face(MVertex *a,MVertex* b,MVertex *c,Hex *hex);
void add_face(MVertex *a,MVertex* b,MVertex *c,std::multimap<unsigned long long, pair<PETriangle*,int> > &f);
// All the blossom related stuff is out of date - or not working
// Cannot be called. To remove?
bool find_face_in_blossom_info(MVertex *a, MVertex *b, MVertex *c, MVertex *d);
void compute_hex_ranks_blossom();
PETriangle* get_triangle(MVertex*a, MVertex* b, MVertex *c);
bool is_blossom_pair(PETriangle *t1, PETriangle *t2);
citer find_the_triangle(PETriangle *t, const trimap &list);
linemap::const_iterator find_the_line(PELine *t, const linemap &list);
std::multimap<unsigned long long, pair<PETriangle*,int> >::iterator
find_the_triangle(PETriangle *t, std::multimap<unsigned long long, pair<PETriangle*, int> > &list);
std::multimap<unsigned long long, Hex* >::const_iterator
find_the_created_potential_hex(Hex *t, const std::multimap<unsigned long long, Hex*> &list);
PETriangle* get_triangle(MElement *element, int i, int j, int k);
void compute_hex_ranks();
// check if the hex is good enough to be put into the graph. If not in the graph, it cannot be chosen...
bool is_not_good_enough(Hex* hex);
// fills incompatibility_graph if two hex share a common (non-sliver!) tet
void create_indirect_neighbors_graph();
graph::iterator find_hex_in_graph(Hex* hex);
graph_data::iterator find_hex_in_graphrow(Hex* hex, graph_data &row);
bool find_hex_couple_in_graph(Hex* hex, Hex* other_hex);
void add_graph_entry(Hex* hex, Hex* other_hex);
// fills incompatibility_graph if two hex are incompatible direct neighbors,
// i.e. they have one (or more) common face or common edge and are not compatible
void create_direct_neighbors_incompatibility_graph();
void evaluate_hex_couple(Hex* hex, Hex* other_hex);
// if two hex are not connected in the incompatibility_graph, they are compatible
void create_losses_graph(GRegion *gr);
void merge_clique(GRegion* gr, cliques_losses_graph<Hex*> &cl,int clique_number=0);
/*
* Tries to merge tetrahedra into one hexahedron. Returns false if the hex
* that would be created does not pass some conformity checks.
*/
bool merge_hex(GRegion *gr, Hex *hex);
void fill_tet_to_hex_table(Hex *hex);
// Reimplementation
virtual void add_or_free_potential_hex(Hex* candidate) {
fill_tet_to_hex_table(candidate);
}
virtual void clear_potential_hex_info() {
hex_to_tet.clear();
tet_to_hex.clear();
created_potential_hex.clear();
}
virtual void initialize_structures(GRegion* region) {
set_current_region(region);
tet_mesh.initialize(current_region);
build_tuples();
}
void clear_and_build_hash_tables(const Hex& hex) {
hash_tableA.clear();
hash_tableB.clear();
hash_tableC.clear();
build_hash_tableA(hex);
build_hash_tableB(hex);
build_hash_tableC(hex);
}
// Throw an assertion
using Recombinator::merge;
void merge(GRegion*);
// ------- exports --------
// ---- seems that it won't export nothing since the
// ---- data structures from which info is read seem to never be filled
void export_tets(set<MElement*> &tetset, Hex* hex, string s);
void export_single_hex_all(Hex* hex,string s);
void export_single_hex(Hex* hex,string s);
void export_single_hex_faces(Hex* hex,string s);
void export_single_hex_tet(Hex* hex,string s);
void export_all_hex(int &file,GRegion *gr);
void export_hexmesh_so_far(int &file);
void export_direct_neighbor_table(int max);
void export_hex_init_degree(GRegion *gr, const std::map<Hex*,int> &init_degree, const vector<Hex*> &chosen_hex);
public:
Recombinator_Graph(unsigned int max_nb_cliques, string filename=string());
virtual ~Recombinator_Graph();
using Recombinator::execute;
virtual void execute(GRegion*);
virtual void buildGraphOnly(unsigned int max_nb_cliques, string filename=string());
virtual void buildGraphOnly(GRegion*, unsigned int max_nb_cliques, string filename=string());
virtual void execute_blossom(unsigned int max_nb_cliques, string filename=string());
// What is this function supposed to do?
// Right now it throws at the first line. JP
virtual void execute_blossom(GRegion*, unsigned int max_nb_cliques, string filename=string());
virtual void createBlossomInfo();
void createBlossomInfo(GRegion *gr);
const std::set<Hex*>& getHexInGraph() const { return set_of_all_hex_in_graph; };
bool found_the_ultimate_max_clique;
};
class Prism{
private:
double quality;
MVertex *a,*b,*c,*d,*e,*f;
public:
typedef std::set<MVertex*>::iterator vertex_set_itr;
typedef std::set<MElement*>::iterator element_set_itr;
Prism();
Prism(MVertex*,MVertex*,MVertex*,MVertex*,MVertex*,MVertex*);
~Prism();
double get_quality() const;
void set_quality(double);
MVertex* get_a();
MVertex* get_b();
MVertex* get_c();
MVertex* get_d();
MVertex* get_e();
MVertex* get_f();
void set_vertices(MVertex*,MVertex*,MVertex*,MVertex*,MVertex*,MVertex*);
bool operator<(const Prism&) const;
};
// Une ENORME partie de ce code est du copie-colle depuis Recombinator
class Supplementary{
private:
std::vector<Prism> potential;
std::map<MElement*,bool> markings;
std::map<MVertex*,std::set<MVertex*> > vertex_to_vertices;
std::map<MVertex*,std::set<MElement*> > vertex_to_tetrahedra;
std::multiset<Facet> hash_tableA;
std::multiset<Diagonal> hash_tableB;
std::multiset<Diagonal> hash_tableC;
std::multiset<Tuple> tuples;
std::set<MElement*> triangles;
//std::fstream file; //fordebug
public:
typedef std::set<MVertex*>::iterator vertex_set_itr;
typedef std::set<MElement*>::iterator element_set_itr;
typedef std::map<MVertex*, std::set<MVertex*> > Vertex2Vertices;
typedef std::map<MVertex*, std::set<MElement*> > Vertex2Elements;
Supplementary();
~Supplementary();
void execute();
void execute(GRegion*);
void init_markings(GRegion*);
void pattern(GRegion*);
void merge(GRegion*);
void rearrange(GRegion*);
void statistics(GRegion*);
void build_tuples(GRegion*);
void create_quads_on_boundary(GRegion*);
void create_quads_on_boundary(MVertex*,MVertex*,MVertex*,MVertex*);
bool four(MElement*);
bool five(MElement*);
bool six(MElement*);
bool eight(MElement*);
bool sliver(MElement*,Prism);
bool valid(Prism,const std::set<MElement*>&);
bool valid(Prism);
double eta(MVertex*,MVertex*,MVertex*,MVertex*);
bool linked(MVertex*,MVertex*);
void find(MVertex*,MVertex*,const std::vector<MVertex*>&,std::set<MVertex*>&);
void find(MVertex*,Prism,std::set<MElement*>&);
void intersection(const std::set<MVertex*>&,const std::set<MVertex*>&,const std::vector<MVertex*>&,std::set<MVertex*>&);
bool inclusion(MVertex*,Prism);
bool inclusion(MVertex*,MVertex*,MVertex*,MVertex*,MVertex*);
bool inclusion(MVertex*,MVertex*,MVertex*,const std::set<MElement*>&);
bool inclusion(Facet);
bool inclusion(Diagonal);
bool duplicate(Diagonal);
bool conformityA(Prism);
bool conformityA(MVertex*,MVertex*,MVertex*,MVertex*);
bool conformityB(Prism);
bool conformityC(Prism);
bool faces_statuquo(Prism);
bool faces_statuquo(MVertex*,MVertex*,MVertex*,MVertex*);
void build_vertex_to_vertices(GRegion*);
void build_vertex_to_tetrahedra(GRegion*);
void build_hash_tableA(Prism);
void build_hash_tableA(MVertex*,MVertex*,MVertex*,MVertex*);
void build_hash_tableA(Facet);
void build_hash_tableB(Prism);
void build_hash_tableB(MVertex*,MVertex*,MVertex*,MVertex*);
void build_hash_tableB(Diagonal);
void build_hash_tableC(Prism);
void build_hash_tableC(Diagonal);
double scaled_jacobian(MVertex*,MVertex*,MVertex*,MVertex*);
double min_scaled_jacobian(Prism);
};
class PostOp{
private:
int nbr,nbr8,nbr6,nbr5,nbr4,nbr4Trih;
double vol,vol8,vol6,vol5,vol4;
int estimate1;
int estimate2;
int iterations;
std::map<MElement*,bool> markings;
std::map<MVertex*,std::set<MElement*> > vertex_to_tetrahedra;
std::map<MVertex*,std::set<MElement*> > vertex_to_pyramids;
std::map<MVertex*,std::set<MElement*> > vertex_to_hexPrism;
std::multiset<Tuple> tuples;
std::set<MElement*> triangles;
public:
typedef std::set<MVertex*>::iterator vertex_set_itr;
typedef std::set<MElement*>::iterator element_set_itr;
typedef std::map<MVertex*, std::set<MVertex*> > Vertex2Vertices;
typedef std::map<MVertex*, std::set<MElement*> > Vertex2Elements;
PostOp();
~PostOp();
void execute(int, int);
//level - 0: hex, 1: hex+prisms, 2: hex+prism+pyramids
//conformity - 0: nonconforming, 1: trihedra, 2: pyramids+trihedra, 3:pyramids+hexPrismSplit+trihedra, 4:hexPrismSplit+trihedra
void execute(GRegion*,int level, int conformity);
void executeNew(GRegion*);
inline int get_nb_hexahedra()const{return nbr8;};
inline double get_vol_hexahedra()const{return vol8;};
inline int get_nb_elements()const{return nbr;};
inline double get_vol_elements()const{return vol;};
void init_markings(GRegion*);
void init_markings_hex(GRegion*);
void init_markings_pri(GRegion*);
void init_markings_pyr(GRegion*);
void pyramids1(GRegion*);
void pyramids2(GRegion*, bool allowNonConforming=false);
void trihedra(GRegion*);
void split_hexahedra(GRegion*);
void split_prisms(GRegion*);
void split_pyramids(GRegion*);
int nonConformDiag(MVertex* a,MVertex* b,MVertex* c,MVertex* d,GRegion* gr);
void pyramids1(MVertex*,MVertex*,MVertex*,MVertex*,GRegion*);
void pyramids2(MVertex*,MVertex*,MVertex*,MVertex*,GRegion*, bool allowNonConforming);
void trihedra(MVertex*,MVertex*,MVertex*,MVertex*,GRegion*);
void rearrange(GRegion*);
void statistics(GRegion*);
void build_tuples(GRegion*);
void create_quads_on_boundary(GRegion*);
void create_quads_on_boundary(MVertex*,MVertex*,MVertex*,MVertex*);
//returns the geometrical validity of the pyramid
bool valid(MPyramid *pyr);
bool four(MElement*);
bool fourTrih(MElement*);
bool five(MElement*);
bool six(MElement*);
bool eight(MElement*);
bool equal(MVertex*,MVertex*,MVertex*,MVertex*);
bool equal(MVertex*,MVertex*,MVertex*,MVertex*,MVertex*,MVertex*,MVertex*,MVertex*);
bool different(MVertex*,MVertex*,MVertex*,MVertex*);
MVertex* other(MElement*,MVertex*,MVertex*);
MVertex* other(MElement*,MVertex*,MVertex*,MVertex*);
void mean(const std::set<MVertex*>&,MVertex*,const std::vector<MElement*>&);
double workaround(MElement*);
MVertex* find(MVertex*,MVertex*,MVertex*,MVertex*,MElement*);
MVertex* findInTriFace(MVertex* in0,MVertex* in1,MVertex* out0,MVertex* out1,MElement* element);
void find_tetrahedra(MVertex*,MVertex*,std::set<MElement*>&);
void find_tetrahedra(MVertex*,MVertex*,MVertex*,std::set<MElement*>&);
void find_pyramids_from_tri(MVertex*,MVertex*,MVertex*,std::set<MElement*>&);
void find_pyramids_from_quad(MVertex*,MVertex*,MVertex*,MVertex*,std::set<MElement*>&);
void find_pyramids(MVertex*,MVertex*,std::set<MElement*>&);
void intersection(const std::set<MElement*>&,const std::set<MElement*>&,std::set<MElement*>&);
void build_vertex_to_tetrahedra(GRegion*);
void build_vertex_to_tetrahedra(MElement*);
void erase_vertex_to_tetrahedra(MElement*);
void build_vertex_to_pyramids(GRegion*);
void build_vertex_to_pyramids(MElement*);
void erase_vertex_to_pyramids(MElement*);
void build_vertex_to_hexPrism(GRegion*);
void build_vertex_to_hexPrism(MElement*);
void erase_vertex_to_hexPrism(MElement*);
void removeElseAdd(std::set<Facet>&, MVertex*, MVertex*, MVertex*);
void writeMSH(const char *filename, std::vector<MElement*>&);
MFace find_quadFace(MVertex*, MVertex*, MVertex*);
MVertex* otherVertexQuadFace(MFace&, MVertex*, MVertex*, MVertex*);
void matchQuadFace(MFace&, MVertex*, MVertex*, MVertex*);
};
#endif
|