This file is indexed.

/usr/include/GeographicLib/PolarStereographic.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/**
 * \file PolarStereographic.hpp
 * \brief Header for GeographicLib::PolarStereographic class
 *
 * Copyright (c) Charles Karney (2008-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP)
#define GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP 1

#include <GeographicLib/Constants.hpp>

namespace GeographicLib {

  /**
   * \brief Polar stereographic projection
   *
   * Implementation taken from the report,
   * - J. P. Snyder,
   *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
   *   Working Manual</a>, USGS Professional Paper 1395 (1987),
   *   pp. 160--163.
   *
   * This is a straightforward implementation of the equations in Snyder except
   * that Newton's method is used to invert the projection.
   *
   * This class also returns the meridian convergence \e gamma and scale \e k.
   * The meridian convergence is the bearing of grid north (the \e y axis)
   * measured clockwise from true north.
   *
   * Example of use:
   * \include example-PolarStereographic.cpp
   **********************************************************************/
  class GEOGRAPHICLIB_EXPORT PolarStereographic {
  private:
    typedef Math::real real;
    real _a, _f, _e2, _es, _e2m, _c;
    real _k0;
  public:

    /**
     * Constructor for a ellipsoid with
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
     *   Negative \e f gives a prolate ellipsoid.
     * @param[in] k0 central scale factor.
     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
     *   not positive.
     **********************************************************************/
    PolarStereographic(real a, real f, real k0);

    /**
     * Set the scale for the projection.
     *
     * @param[in] lat (degrees) assuming \e northp = true.
     * @param[in] k scale at latitude \e lat (default 1).
     * @exception GeographicErr \e k is not positive.
     * @exception GeographicErr if \e lat is not in (&minus;90&deg;,
     *   90&deg;].
     **********************************************************************/
    void SetScale(real lat, real k = real(1));

    /**
     * Forward projection, from geographic to polar stereographic.
     *
     * @param[in] northp the pole which is the center of projection (true means
     *   north, false means south).
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[out] x easting of point (meters).
     * @param[out] y northing of point (meters).
     * @param[out] gamma meridian convergence at point (degrees).
     * @param[out] k scale of projection at point.
     *
     * No false easting or northing is added.  \e lat should be in the range
     * (&minus;90&deg;, 90&deg;] for \e northp = true and in the range
     * [&minus;90&deg;, 90&deg;) for \e northp = false.
     **********************************************************************/
    void Forward(bool northp, real lat, real lon,
                 real& x, real& y, real& gamma, real& k) const;

    /**
     * Reverse projection, from polar stereographic to geographic.
     *
     * @param[in] northp the pole which is the center of projection (true means
     *   north, false means south).
     * @param[in] x easting of point (meters).
     * @param[in] y northing of point (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] gamma meridian convergence at point (degrees).
     * @param[out] k scale of projection at point.
     *
     * No false easting or northing is added.  The value of \e lon returned is
     * in the range [&minus;180&deg;, 180&deg;].
     **********************************************************************/
    void Reverse(bool northp, real x, real y,
                 real& lat, real& lon, real& gamma, real& k) const;

    /**
     * PolarStereographic::Forward without returning the convergence and scale.
     **********************************************************************/
    void Forward(bool northp, real lat, real lon,
                 real& x, real& y) const {
      real gamma, k;
      Forward(northp, lat, lon, x, y, gamma, k);
    }

    /**
     * PolarStereographic::Reverse without returning the convergence and scale.
     **********************************************************************/
    void Reverse(bool northp, real x, real y,
                 real& lat, real& lon) const {
      real gamma, k;
      Reverse(northp, x, y, lat, lon, gamma, k);
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const { return _a; }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value used in
     *   the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _f; }

    /**
     * The central scale for the projection.  This is the value of \e k0 used
     * in the constructor and is the scale at the pole unless overridden by
     * PolarStereographic::SetScale.
     **********************************************************************/
    Math::real CentralScale() const { return _k0; }
    ///@}

    /**
     * A global instantiation of PolarStereographic with the WGS84 ellipsoid
     * and the UPS scale factor.  However, unlike UPS, no false easting or
     * northing is added.
     **********************************************************************/
    static const PolarStereographic& UPS();
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP