/usr/include/GeographicLib/NormalGravity.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | /**
* \file NormalGravity.hpp
* \brief Header for GeographicLib::NormalGravity class
*
* Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_NORMALGRAVITY_HPP)
#define GEOGRAPHICLIB_NORMALGRAVITY_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/Geocentric.hpp>
namespace GeographicLib {
/**
* \brief The normal gravity of the earth
*
* "Normal" gravity refers to an idealization of the earth which is modeled
* as an rotating ellipsoid. The eccentricity of the ellipsoid, the rotation
* speed, and the distribution of mass within the ellipsoid are such that the
* ellipsoid is a "level ellipoid", a surface of constant potential
* (gravitational plus centrifugal). The acceleration due to gravity is
* therefore perpendicular to the surface of the ellipsoid.
*
* Because the distribution of mass within the ellipsoid is unspecified, only
* the potential exterior to the ellipsoid is well defined. In this class,
* the mass is assumed to be to concentrated on a "focal disc" of radius,
* (<i>a</i><sup>2</sup> − <i>b</i><sup>2</sup>)<sup>1/2</sup>, where
* \e a is the equatorial radius of the ellipsoid and \e b is its polar
* semi-axis. In the case of an oblate ellipsoid, the mass is concentrated
* on a "focal rod" of length 2(<i>b</i><sup>2</sup> −
* <i>a</i><sup>2</sup>)<sup>1/2</sup>. As a result the potential is well
* defined everywhere.
*
* There is a closed solution to this problem which is implemented here.
* Series "approximations" are only used to evaluate certain combinations of
* elementary functions where use of the closed expression results in a loss
* of accuracy for small arguments due to cancellation of the leading terms.
* However these series include sufficient terms to give full machine
* precision.
*
* Although the formulation used in this class applies to ellipsoids with
* arbitrary flattening, in practice, its use should be limited to about
* <i>b</i>/\e a ∈ [0.01, 100] or \e f ∈ [−99, 0.99].
*
* Definitions:
* - <i>V</i><sub>0</sub>, the gravitational contribution to the normal
* potential;
* - Φ, the rotational contribution to the normal potential;
* - \e U = <i>V</i><sub>0</sub> + Φ, the total potential;
* - <b>Γ</b> = ∇<i>V</i><sub>0</sub>, the acceleration due to
* mass of the earth;
* - <b>f</b> = ∇Φ, the centrifugal acceleration;
* - <b>γ</b> = ∇\e U = <b>Γ</b> + <b>f</b>, the normal
* acceleration;
* - \e X, \e Y, \e Z, geocentric coordinates;
* - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
* north and up directions.
*
* References:
* - C. Somigliana, Teoria generale del campo gravitazionale dell'ellissoide
* di rotazione, Mem. Soc. Astron. Ital, <b>4</b>, 541--599 (1929).
* - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
* Francisco, 1967), Secs. 1-19, 2-7, 2-8 (2-9, 2-10), 6-2 (6-3).
* - B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Second edition,
* Springer, 2006) https://doi.org/10.1007/978-3-211-33545-1
* - H. Moritz, Geodetic Reference System 1980, J. Geodesy 54(3), 395-405
* (1980) https://doi.org/10.1007/BF02521480
*
* For more information on normal gravity see \ref normalgravity.
*
* Example of use:
* \include example-NormalGravity.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT NormalGravity {
private:
static const int maxit_ = 20;
typedef Math::real real;
friend class GravityModel;
real _a, _GM, _omega, _f, _J2, _omega2, _aomega2;
real _e2, _ep2, _b, _E, _U0, _gammae, _gammap, _Q0, _k, _fstar;
Geocentric _earth;
static real atanzz(real x, bool alt) {
// This routine obeys the identity
// atanzz(x, alt) = atanzz(-x/(1+x), !alt)
//
// Require x >= -1. Best to call with alt, s.t. x >= 0; this results in
// a call to atan, instead of asin, or to asinh, instead of atanh.
using std::sqrt; using std::abs; using std::atan; using std::asin;
real z = sqrt(abs(x));
return x == 0 ? 1 :
(alt ?
(!(x < 0) ? Math::asinh(z) : asin(z)) / sqrt(abs(x) / (1 + x)) :
(!(x < 0) ? atan(z) : Math::atanh(z)) / z);
}
static real atan7series(real x);
static real atan5series(real x);
static real Qf(real x, bool alt);
static real Hf(real x, bool alt);
static real QH3f(real x, bool alt);
real Jn(int n) const;
void Initialize(real a, real GM, real omega, real f_J2, bool geometricp);
public:
/** \name Setting up the normal gravity
**********************************************************************/
///@{
/**
* Constructor for the normal gravity.
*
* @param[in] a equatorial radius (meters).
* @param[in] GM mass constant of the ellipsoid
* (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
* the gravitational constant and \e M the mass of the earth (usually
* including the mass of the earth's atmosphere).
* @param[in] omega the angular velocity (rad s<sup>−1</sup>).
* @param[in] f_J2 either the flattening of the ellipsoid \e f or the
* the dynamical form factor \e J2.
* @param[out] geometricp if true (the default), then \e f_J2 denotes the
* flattening, else it denotes the dynamical form factor \e J2.
* @exception if \e a is not positive or if the other parameters do not
* obey the restrictions given below.
*
* The shape of the ellipsoid can be given in one of two ways:
* - geometrically (\e geomtricp = true), the ellipsoid is defined by the
* flattening \e f = (\e a − \e b) / \e a, where \e a and \e b are
* the equatorial radius and the polar semi-axis. The parameters should
* obey \e a > 0, \e f < 1. There are no restrictions on \e GM or
* \e omega, in particular, \e GM need not be positive.
* - physically (\e geometricp = false), the ellipsoid is defined by the
* dynamical form factor <i>J</i><sub>2</sub> = (\e C − \e A) /
* <i>Ma</i><sup>2</sup>, where \e A and \e C are the equatorial and
* polar moments of inertia and \e M is the mass of the earth. The
* parameters should obey \e a > 0, \e GM > 0 and \e J2 < 1/3
* − (<i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i>)
* 8/(45π). There is no restriction on \e omega.
**********************************************************************/
NormalGravity(real a, real GM, real omega, real f_J2,
bool geometricp = true);
/**
* \deprecated Old constructor for the normal gravity.
*
* @param[in] a equatorial radius (meters).
* @param[in] GM mass constant of the ellipsoid
* (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
* the gravitational constant and \e M the mass of the earth (usually
* including the mass of the earth's atmosphere).
* @param[in] omega the angular velocity (rad s<sup>−1</sup>).
* @param[in] f the flattening of the ellipsoid.
* @param[in] J2 the dynamical form factor.
* @exception if \e a is not positive or the other constants are
* inconsistent (see below).
*
* If \e omega is non-zero, then exactly one of \e f and \e J2 should be
* positive and this will be used to define the ellipsoid. The shape of
* the ellipsoid can be given in one of two ways:
* - geometrically, the ellipsoid is defined by the flattening \e f = (\e a
* − \e b) / \e a, where \e a and \e b are the equatorial radius
* and the polar semi-axis.
* - physically, the ellipsoid is defined by the dynamical form factor
* <i>J</i><sub>2</sub> = (\e C − \e A) / <i>Ma</i><sup>2</sup>,
* where \e A and \e C are the equatorial and polar moments of inertia
* and \e M is the mass of the earth.
* .
* If \e omega, \e f, and \e J2 are all zero, then the ellipsoid becomes a
* sphere.
**********************************************************************/
GEOGRAPHICLIB_DEPRECATED("Use new NormalGravity constructor")
NormalGravity(real a, real GM, real omega, real f, real J2);
/**
* A default constructor for the normal gravity. This sets up an
* uninitialized object and is used by GravityModel which constructs this
* object before it has read in the parameters for the reference ellipsoid.
**********************************************************************/
NormalGravity() : _a(-1) {}
///@}
/** \name Compute the gravity
**********************************************************************/
///@{
/**
* Evaluate the gravity on the surface of the ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @return γ the acceleration due to gravity, positive downwards
* (m s<sup>−2</sup>).
*
* Due to the axial symmetry of the ellipsoid, the result is independent of
* the value of the longitude. This acceleration is perpendicular to the
* surface of the ellipsoid. It includes the effects of the earth's
* rotation.
**********************************************************************/
Math::real SurfaceGravity(real lat) const;
/**
* Evaluate the gravity at an arbitrary point above (or below) the
* ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] gammay the northerly component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gammaz the upward component of the acceleration
* (m s<sup>−2</sup>); this is usually negative.
* @return \e U the corresponding normal potential
* (m<sup>2</sup> s<sup>−2</sup>).
*
* Due to the axial symmetry of the ellipsoid, the result is independent of
* the value of the longitude and the easterly component of the
* acceleration vanishes, \e gammax = 0. The function includes the effects
* of the earth's rotation. When \e h = 0, this function gives \e gammay =
* 0 and the returned value matches that of NormalGravity::SurfaceGravity.
**********************************************************************/
Math::real Gravity(real lat, real h, real& gammay, real& gammaz)
const;
/**
* Evaluate the components of the acceleration due to gravity and the
* centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] gammaX the \e X component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gammaY the \e Y component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gammaZ the \e Z component of the acceleration
* (m s<sup>−2</sup>).
* @return \e U = <i>V</i><sub>0</sub> + Φ the sum of the
* gravitational and centrifugal potentials
* (m<sup>2</sup> s<sup>−2</sup>).
*
* The acceleration given by <b>γ</b> = ∇\e U =
* ∇<i>V</i><sub>0</sub> + ∇Φ = <b>Γ</b> + <b>f</b>.
**********************************************************************/
Math::real U(real X, real Y, real Z,
real& gammaX, real& gammaY, real& gammaZ) const;
/**
* Evaluate the components of the acceleration due to the gravitational
* force in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] GammaX the \e X component of the acceleration due to the
* gravitational force (m s<sup>−2</sup>).
* @param[out] GammaY the \e Y component of the acceleration due to the
* @param[out] GammaZ the \e Z component of the acceleration due to the
* gravitational force (m s<sup>−2</sup>).
* @return <i>V</i><sub>0</sub> the gravitational potential
* (m<sup>2</sup> s<sup>−2</sup>).
*
* This function excludes the centrifugal acceleration and is appropriate
* to use for space applications. In terrestrial applications, the
* function NormalGravity::U (which includes this effect) should usually be
* used.
**********************************************************************/
Math::real V0(real X, real Y, real Z,
real& GammaX, real& GammaY, real& GammaZ) const;
/**
* Evaluate the centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[out] fX the \e X component of the centrifugal acceleration
* (m s<sup>−2</sup>).
* @param[out] fY the \e Y component of the centrifugal acceleration
* (m s<sup>−2</sup>).
* @return Φ the centrifugal potential (m<sup>2</sup>
* s<sup>−2</sup>).
*
* Φ is independent of \e Z, thus \e fZ = 0. This function
* NormalGravity::U sums the results of NormalGravity::V0 and
* NormalGravity::Phi.
**********************************************************************/
Math::real Phi(real X, real Y, real& fX, real& fY) const;
///@}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return true if the object has been initialized.
**********************************************************************/
bool Init() const { return _a > 0; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const
{ return Init() ? _a : Math::NaN(); }
/**
* @return \e GM the mass constant of the ellipsoid
* (m<sup>3</sup> s<sup>−2</sup>). This is the value used in the
* constructor.
**********************************************************************/
Math::real MassConstant() const
{ return Init() ? _GM : Math::NaN(); }
/**
* @return <i>J</i><sub><i>n</i></sub> the dynamical form factors of the
* ellipsoid.
*
* If \e n = 2 (the default), this is the value of <i>J</i><sub>2</sub>
* used in the constructor. Otherwise it is the zonal coefficient of the
* Legendre harmonic sum of the normal gravitational potential. Note that
* <i>J</i><sub><i>n</i></sub> = 0 if \e n is odd. In most gravity
* applications, fully normalized Legendre functions are used and the
* corresponding coefficient is <i>C</i><sub><i>n</i>0</sub> =
* −<i>J</i><sub><i>n</i></sub> / sqrt(2 \e n + 1).
**********************************************************************/
Math::real DynamicalFormFactor(int n = 2) const
{ return Init() ? ( n == 2 ? _J2 : Jn(n)) : Math::NaN(); }
/**
* @return ω the angular velocity of the ellipsoid (rad
* s<sup>−1</sup>). This is the value used in the constructor.
**********************************************************************/
Math::real AngularVelocity() const
{ return Init() ? _omega : Math::NaN(); }
/**
* @return <i>f</i> the flattening of the ellipsoid (\e a − \e b)/\e
* a.
**********************************************************************/
Math::real Flattening() const
{ return Init() ? _f : Math::NaN(); }
/**
* @return γ<sub>e</sub> the normal gravity at equator (m
* s<sup>−2</sup>).
**********************************************************************/
Math::real EquatorialGravity() const
{ return Init() ? _gammae : Math::NaN(); }
/**
* @return γ<sub>p</sub> the normal gravity at poles (m
* s<sup>−2</sup>).
**********************************************************************/
Math::real PolarGravity() const
{ return Init() ? _gammap : Math::NaN(); }
/**
* @return <i>f*</i> the gravity flattening (γ<sub>p</sub> −
* γ<sub>e</sub>) / γ<sub>e</sub>.
**********************************************************************/
Math::real GravityFlattening() const
{ return Init() ? _fstar : Math::NaN(); }
/**
* @return <i>U</i><sub>0</sub> the constant normal potential for the
* surface of the ellipsoid (m<sup>2</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real SurfacePotential() const
{ return Init() ? _U0 : Math::NaN(); }
/**
* @return the Geocentric object used by this instance.
**********************************************************************/
const Geocentric& Earth() const { return _earth; }
///@}
/**
* A global instantiation of NormalGravity for the WGS84 ellipsoid.
**********************************************************************/
static const NormalGravity& WGS84();
/**
* A global instantiation of NormalGravity for the GRS80 ellipsoid.
**********************************************************************/
static const NormalGravity& GRS80();
/**
* Compute the flattening from the dynamical form factor.
*
* @param[in] a equatorial radius (meters).
* @param[in] GM mass constant of the ellipsoid
* (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
* the gravitational constant and \e M the mass of the earth (usually
* including the mass of the earth's atmosphere).
* @param[in] omega the angular velocity (rad s<sup>−1</sup>).
* @param[in] J2 the dynamical form factor.
* @return \e f the flattening of the ellipsoid.
*
* This routine requires \e a > 0, \e GM > 0, \e J2 < 1/3 −
* <i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i> 8/(45π). A
* NaN is returned if these conditions do not hold. The restriction to
* positive \e GM is made because for negative \e GM two solutions are
* possible.
**********************************************************************/
static Math::real J2ToFlattening(real a, real GM, real omega, real J2);
/**
* Compute the dynamical form factor from the flattening.
*
* @param[in] a equatorial radius (meters).
* @param[in] GM mass constant of the ellipsoid
* (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
* the gravitational constant and \e M the mass of the earth (usually
* including the mass of the earth's atmosphere).
* @param[in] omega the angular velocity (rad s<sup>−1</sup>).
* @param[in] f the flattening of the ellipsoid.
* @return \e J2 the dynamical form factor.
*
* This routine requires \e a > 0, \e GM ≠ 0, \e f < 1. The
* values of these parameters are not checked.
**********************************************************************/
static Math::real FlatteningToJ2(real a, real GM, real omega, real f);
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_NORMALGRAVITY_HPP
|