This file is indexed.

/usr/include/GeographicLib/NormalGravity.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/**
 * \file NormalGravity.hpp
 * \brief Header for GeographicLib::NormalGravity class
 *
 * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_NORMALGRAVITY_HPP)
#define GEOGRAPHICLIB_NORMALGRAVITY_HPP 1

#include <GeographicLib/Constants.hpp>
#include <GeographicLib/Geocentric.hpp>

namespace GeographicLib {

  /**
   * \brief The normal gravity of the earth
   *
   * "Normal" gravity refers to an idealization of the earth which is modeled
   * as an rotating ellipsoid.  The eccentricity of the ellipsoid, the rotation
   * speed, and the distribution of mass within the ellipsoid are such that the
   * ellipsoid is a "level ellipoid", a surface of constant potential
   * (gravitational plus centrifugal).  The acceleration due to gravity is
   * therefore perpendicular to the surface of the ellipsoid.
   *
   * Because the distribution of mass within the ellipsoid is unspecified, only
   * the potential exterior to the ellipsoid is well defined.  In this class,
   * the mass is assumed to be to concentrated on a "focal disc" of radius,
   * (<i>a</i><sup>2</sup> &minus; <i>b</i><sup>2</sup>)<sup>1/2</sup>, where
   * \e a is the equatorial radius of the ellipsoid and \e b is its polar
   * semi-axis.  In the case of an oblate ellipsoid, the mass is concentrated
   * on a "focal rod" of length 2(<i>b</i><sup>2</sup> &minus;
   * <i>a</i><sup>2</sup>)<sup>1/2</sup>.  As a result the potential is well
   * defined everywhere.
   *
   * There is a closed solution to this problem which is implemented here.
   * Series "approximations" are only used to evaluate certain combinations of
   * elementary functions where use of the closed expression results in a loss
   * of accuracy for small arguments due to cancellation of the leading terms.
   * However these series include sufficient terms to give full machine
   * precision.
   *
   * Although the formulation used in this class applies to ellipsoids with
   * arbitrary flattening, in practice, its use should be limited to about
   * <i>b</i>/\e a &isin; [0.01, 100] or \e f &isin; [&minus;99, 0.99].
   *
   * Definitions:
   * - <i>V</i><sub>0</sub>, the gravitational contribution to the normal
   *   potential;
   * - &Phi;, the rotational contribution to the normal potential;
   * - \e U = <i>V</i><sub>0</sub> + &Phi;, the total potential;
   * - <b>&Gamma;</b> = &nabla;<i>V</i><sub>0</sub>, the acceleration due to
   *   mass of the earth;
   * - <b>f</b> = &nabla;&Phi;, the centrifugal acceleration;
   * - <b>&gamma;</b> = &nabla;\e U = <b>&Gamma;</b> + <b>f</b>, the normal
   *   acceleration;
   * - \e X, \e Y, \e Z, geocentric coordinates;
   * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
   *   north and up directions.
   *
   * References:
   * - C. Somigliana, Teoria generale del campo gravitazionale dell'ellissoide
   *   di rotazione, Mem. Soc. Astron. Ital, <b>4</b>, 541--599 (1929).
   * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
   *   Francisco, 1967), Secs. 1-19, 2-7, 2-8 (2-9, 2-10), 6-2 (6-3).
   * - B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Second edition,
   *   Springer, 2006) https://doi.org/10.1007/978-3-211-33545-1
   * - H. Moritz, Geodetic Reference System 1980, J. Geodesy 54(3), 395-405
   *   (1980) https://doi.org/10.1007/BF02521480
   *
   * For more information on normal gravity see \ref normalgravity.
   *
   * Example of use:
   * \include example-NormalGravity.cpp
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT NormalGravity {
  private:
    static const int maxit_ = 20;
    typedef Math::real real;
    friend class GravityModel;
    real _a, _GM, _omega, _f, _J2, _omega2, _aomega2;
    real _e2, _ep2, _b, _E, _U0, _gammae, _gammap, _Q0, _k, _fstar;
    Geocentric _earth;
    static real atanzz(real x, bool alt) {
      // This routine obeys the identity
      //   atanzz(x, alt) = atanzz(-x/(1+x), !alt)
      //
      // Require x >= -1.  Best to call with alt, s.t. x >= 0; this results in
      // a call to atan, instead of asin, or to asinh, instead of atanh.
      using std::sqrt; using std::abs; using std::atan; using std::asin;
      real z = sqrt(abs(x));
      return x == 0 ? 1 :
        (alt ?
         (!(x < 0) ? Math::asinh(z) : asin(z)) / sqrt(abs(x) / (1 + x)) :
         (!(x < 0) ? atan(z) : Math::atanh(z)) / z);
    }
    static real atan7series(real x);
    static real atan5series(real x);
    static real Qf(real x, bool alt);
    static real Hf(real x, bool alt);
    static real QH3f(real x, bool alt);
    real Jn(int n) const;
    void Initialize(real a, real GM, real omega, real f_J2, bool geometricp);
  public:

    /** \name Setting up the normal gravity
     **********************************************************************/
    ///@{
    /**
     * Constructor for the normal gravity.
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] GM mass constant of the ellipsoid
     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
     *   the gravitational constant and \e M the mass of the earth (usually
     *   including the mass of the earth's atmosphere).
     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
     * @param[in] f_J2 either the flattening of the ellipsoid \e f or the
     *   the dynamical form factor \e J2.
     * @param[out] geometricp if true (the default), then \e f_J2 denotes the
     *   flattening, else it denotes the dynamical form factor \e J2.
     * @exception if \e a is not positive or if the other parameters do not
     *   obey the restrictions given below.
     *
     * The shape of the ellipsoid can be given in one of two ways:
     * - geometrically (\e geomtricp = true), the ellipsoid is defined by the
     *   flattening \e f = (\e a &minus; \e b) / \e a, where \e a and \e b are
     *   the equatorial radius and the polar semi-axis.  The parameters should
     *   obey \e a &gt; 0, \e f &lt; 1.  There are no restrictions on \e GM or
     *   \e omega, in particular, \e GM need not be positive.
     * - physically (\e geometricp = false), the ellipsoid is defined by the
     *   dynamical form factor <i>J</i><sub>2</sub> = (\e C &minus; \e A) /
     *   <i>Ma</i><sup>2</sup>, where \e A and \e C are the equatorial and
     *   polar moments of inertia and \e M is the mass of the earth.  The
     *   parameters should obey \e a &gt; 0, \e GM &gt; 0 and \e J2 &lt; 1/3
     *   &minus; (<i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i>)
     *   8/(45&pi;).  There is no restriction on \e omega.
     **********************************************************************/
    NormalGravity(real a, real GM, real omega, real f_J2,
                  bool geometricp = true);
    /**
     * \deprecated Old constructor for the normal gravity.
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] GM mass constant of the ellipsoid
     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
     *   the gravitational constant and \e M the mass of the earth (usually
     *   including the mass of the earth's atmosphere).
     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
     * @param[in] f the flattening of the ellipsoid.
     * @param[in] J2 the dynamical form factor.
     * @exception if \e a is not positive or the other constants are
     *   inconsistent (see below).
     *
     * If \e omega is non-zero, then exactly one of \e f and \e J2 should be
     * positive and this will be used to define the ellipsoid.  The shape of
     * the ellipsoid can be given in one of two ways:
     * - geometrically, the ellipsoid is defined by the flattening \e f = (\e a
     *   &minus; \e b) / \e a, where \e a and \e b are the equatorial radius
     *   and the polar semi-axis.
     * - physically, the ellipsoid is defined by the dynamical form factor
     *   <i>J</i><sub>2</sub> = (\e C &minus; \e A) / <i>Ma</i><sup>2</sup>,
     *   where \e A and \e C are the equatorial and polar moments of inertia
     *   and \e M is the mass of the earth.
     * .
     * If \e omega, \e f, and \e J2 are all zero, then the ellipsoid becomes a
     * sphere.
     **********************************************************************/
    GEOGRAPHICLIB_DEPRECATED("Use new NormalGravity constructor")
    NormalGravity(real a, real GM, real omega, real f, real J2);

    /**
     * A default constructor for the normal gravity.  This sets up an
     * uninitialized object and is used by GravityModel which constructs this
     * object before it has read in the parameters for the reference ellipsoid.
     **********************************************************************/
    NormalGravity() : _a(-1) {}
    ///@}

    /** \name Compute the gravity
     **********************************************************************/
    ///@{
    /**
     * Evaluate the gravity on the surface of the ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @return &gamma; the acceleration due to gravity, positive downwards
     *   (m s<sup>&minus;2</sup>).
     *
     * Due to the axial symmetry of the ellipsoid, the result is independent of
     * the value of the longitude.  This acceleration is perpendicular to the
     * surface of the ellipsoid.  It includes the effects of the earth's
     * rotation.
     **********************************************************************/
    Math::real SurfaceGravity(real lat) const;

    /**
     * Evaluate the gravity at an arbitrary point above (or below) the
     * ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] h the height above the ellipsoid (meters).
     * @param[out] gammay the northerly component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gammaz the upward component of the acceleration
     *   (m s<sup>&minus;2</sup>); this is usually negative.
     * @return \e U the corresponding normal potential
     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
     *
     * Due to the axial symmetry of the ellipsoid, the result is independent of
     * the value of the longitude and the easterly component of the
     * acceleration vanishes, \e gammax = 0.  The function includes the effects
     * of the earth's rotation.  When \e h = 0, this function gives \e gammay =
     * 0 and the returned value matches that of NormalGravity::SurfaceGravity.
     **********************************************************************/
    Math::real Gravity(real lat, real h, real& gammay, real& gammaz)
      const;

    /**
     * Evaluate the components of the acceleration due to gravity and the
     * centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] gammaX the \e X component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gammaY the \e Y component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gammaZ the \e Z component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return \e U = <i>V</i><sub>0</sub> + &Phi; the sum of the
     *   gravitational and centrifugal potentials
     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
     *
     * The acceleration given by <b>&gamma;</b> = &nabla;\e U =
     * &nabla;<i>V</i><sub>0</sub> + &nabla;&Phi; = <b>&Gamma;</b> + <b>f</b>.
     **********************************************************************/
    Math::real U(real X, real Y, real Z,
                 real& gammaX, real& gammaY, real& gammaZ) const;

    /**
     * Evaluate the components of the acceleration due to the gravitational
     * force in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] GammaX the \e X component of the acceleration due to the
     *   gravitational force (m s<sup>&minus;2</sup>).
     * @param[out] GammaY the \e Y component of the acceleration due to the
     * @param[out] GammaZ the \e Z component of the acceleration due to the
     *   gravitational force (m s<sup>&minus;2</sup>).
     * @return <i>V</i><sub>0</sub> the gravitational potential
     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
     *
     * This function excludes the centrifugal acceleration and is appropriate
     * to use for space applications.  In terrestrial applications, the
     * function NormalGravity::U (which includes this effect) should usually be
     * used.
     **********************************************************************/
    Math::real V0(real X, real Y, real Z,
                  real& GammaX, real& GammaY, real& GammaZ) const;

    /**
     * Evaluate the centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[out] fX the \e X component of the centrifugal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] fY the \e Y component of the centrifugal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return &Phi; the centrifugal potential (m<sup>2</sup>
     *   s<sup>&minus;2</sup>).
     *
     * &Phi; is independent of \e Z, thus \e fZ = 0.  This function
     * NormalGravity::U sums the results of NormalGravity::V0 and
     * NormalGravity::Phi.
     **********************************************************************/
    Math::real Phi(real X, real Y, real& fX, real& fY) const;
    ///@}

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return true if the object has been initialized.
     **********************************************************************/
    bool Init() const { return _a > 0; }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const
    { return Init() ? _a : Math::NaN(); }

    /**
     * @return \e GM the mass constant of the ellipsoid
     *   (m<sup>3</sup> s<sup>&minus;2</sup>).  This is the value used in the
     *   constructor.
     **********************************************************************/
    Math::real MassConstant() const
    { return Init() ? _GM : Math::NaN(); }

    /**
     * @return <i>J</i><sub><i>n</i></sub> the dynamical form factors of the
     *   ellipsoid.
     *
     * If \e n = 2 (the default), this is the value of <i>J</i><sub>2</sub>
     * used in the constructor.  Otherwise it is the zonal coefficient of the
     * Legendre harmonic sum of the normal gravitational potential.  Note that
     * <i>J</i><sub><i>n</i></sub> = 0 if \e n is odd.  In most gravity
     * applications, fully normalized Legendre functions are used and the
     * corresponding coefficient is <i>C</i><sub><i>n</i>0</sub> =
     * &minus;<i>J</i><sub><i>n</i></sub> / sqrt(2 \e n + 1).
     **********************************************************************/
    Math::real DynamicalFormFactor(int n = 2) const
    { return Init() ? ( n == 2 ? _J2 : Jn(n)) : Math::NaN(); }

    /**
     * @return &omega; the angular velocity of the ellipsoid (rad
     *   s<sup>&minus;1</sup>).  This is the value used in the constructor.
     **********************************************************************/
    Math::real AngularVelocity() const
    { return Init() ? _omega : Math::NaN(); }

    /**
     * @return <i>f</i> the flattening of the ellipsoid (\e a &minus; \e b)/\e
     *   a.
     **********************************************************************/
    Math::real Flattening() const
    { return Init() ? _f : Math::NaN(); }

    /**
     * @return &gamma;<sub>e</sub> the normal gravity at equator (m
     *   s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real EquatorialGravity() const
    { return Init() ? _gammae : Math::NaN(); }

    /**
     * @return &gamma;<sub>p</sub> the normal gravity at poles (m
     *   s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real PolarGravity() const
    { return Init() ? _gammap : Math::NaN(); }

    /**
     * @return <i>f*</i> the gravity flattening (&gamma;<sub>p</sub> &minus;
     *   &gamma;<sub>e</sub>) / &gamma;<sub>e</sub>.
     **********************************************************************/
    Math::real GravityFlattening() const
    { return Init() ? _fstar : Math::NaN(); }

    /**
     * @return <i>U</i><sub>0</sub> the constant normal potential for the
     *   surface of the ellipsoid (m<sup>2</sup> s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real SurfacePotential() const
    { return Init() ? _U0 : Math::NaN(); }

    /**
     * @return the Geocentric object used by this instance.
     **********************************************************************/
    const Geocentric& Earth() const { return _earth; }
    ///@}

    /**
     * A global instantiation of NormalGravity for the WGS84 ellipsoid.
     **********************************************************************/
    static const NormalGravity& WGS84();

    /**
     * A global instantiation of NormalGravity for the GRS80 ellipsoid.
     **********************************************************************/
    static const NormalGravity& GRS80();

    /**
     * Compute the flattening from the dynamical form factor.
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] GM mass constant of the ellipsoid
     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
     *   the gravitational constant and \e M the mass of the earth (usually
     *   including the mass of the earth's atmosphere).
     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
     * @param[in] J2 the dynamical form factor.
     * @return \e f the flattening of the ellipsoid.
     *
     * This routine requires \e a &gt; 0, \e GM &gt; 0, \e J2 &lt; 1/3 &minus;
     * <i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i> 8/(45&pi;).  A
     * NaN is returned if these conditions do not hold.  The restriction to
     * positive \e GM is made because for negative \e GM two solutions are
     * possible.
     **********************************************************************/
    static Math::real J2ToFlattening(real a, real GM, real omega, real J2);

    /**
     * Compute the dynamical form factor from the flattening.
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] GM mass constant of the ellipsoid
     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
     *   the gravitational constant and \e M the mass of the earth (usually
     *   including the mass of the earth's atmosphere).
     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
     * @param[in] f the flattening of the ellipsoid.
     * @return \e J2 the dynamical form factor.
     *
     * This routine requires \e a &gt; 0, \e GM &ne; 0, \e f &lt; 1.  The
     * values of these parameters are not checked.
     **********************************************************************/
    static Math::real FlatteningToJ2(real a, real GM, real omega, real f);
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_NORMALGRAVITY_HPP