This file is indexed.

/usr/include/GeographicLib/NearestNeighbor.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/**
 * \file NearestNeighbor.hpp
 * \brief Header for GeographicLib::NearestNeighbor class
 *
 * Copyright (c) Charles Karney (2016-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP)
#define GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP 1

#include <algorithm>            // for nth_element, max_element, etc.
#include <vector>
#include <queue>                // for priority_queue
#include <utility>              // for swap + pair
#include <cstring>
#include <limits>
#include <cmath>
#include <iostream>
#include <sstream>
// Only for GEOGRAPHICLIB_STATIC_ASSERT and GeographicLib::GeographicErr
#include <GeographicLib/Constants.hpp>

#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/split_member.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/vector.hpp>
#endif

#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
#  pragma warning (push)
#  pragma warning (disable: 4127)
#endif

namespace GeographicLib {

  /**
   * \brief Nearest-neighbor calculations
   *
   * This class solves the nearest-neighbor problm using a vantage-point tree
   * as described in \ref nearest.
   *
   * This class is templated so that it can handle arbitrary metric spaces as
   * follows:
   *
   * @tparam dist_t the type used for measuring distances; it can be a real or
   *   signed integer type; in typical geodetic applications, \e dist_t might
   *   be <code>double</code>.
   * @tparam pos_t the type for specifying the positions of points; geodetic
   *   application might bundled the latitude and longitude into a
   *   <code>std::pair<dist_t, dist_t></code>.
   * @tparam distfun_t the type of a function object which takes takes two
   *   positions (of type \e pos_t) and returns the distance (of type \e
   *   dist_t); in geodetic applications, this might be a class which is
   *   constructed with a Geodesic object and which implements a member
   *   function with a signature <code>dist_t operator() (const pos_t&, const
   *   pos_t&) const</code>, which returns the geodesic distance between two
   *   points.
   *
   * \note The distance measure must satisfy the triangle inequality, \f$
   * d(a,c) \le d(a,b) + d(b,c) \f$ for all points \e a, \e b, \e c.  The
   * geodesic distance (given by Geodesic::Inverse) does, while the great
   * ellipse distance and the rhumb line distance <i>do not</i>.  If you use
   * the ordinary Euclidean distance, i.e., \f$ \sqrt{(x_a-x_b)^2 +
   * (y_a-y_b)^2} \f$ for two dimensions, don't be tempted to leave out the
   * square root in the interests of "efficiency"; the squared distance does
   * not satisfy the triangle inequality!
   *
   * This is a "header-only" implementation and, as such, depends in a minimal
   * way on the rest of GeographicLib (the only dependency is through the use
   * of GEOGRAPHICLIB_STATIC_ASSERT and GeographicLib::GeographicErr for
   * handling run-time and compile-time exceptions).  Therefore, it is easy to
   * extract this class from the rest of GeographicLib and use it as a
   * stand-alone facility.
   *
   * The \e dist_t type must support numeric_limits queries (specifically:
   * is_signed, is_integer, max(), digits).
   *
   * The NearestNeighbor object is constructed with a vector of points (type \e
   * pos_t) and a distance function (type \e distfun_t).  However the object
   * does \e not store the points.  When querying the object with Search(),
   * it's necessary to supply the same vector of points and the same distance
   * function.
   *
   * There's no capability in this implementation to add or remove points from
   * the set.  Instead Initialize() should be called to re-initialize the
   * object with the modified vector of points.
   *
   * Because of the overhead in constructing a NearestNeighbor object for a
   * large set of points, functions Save() and Load() are provided to save the
   * object to an external file.  operator<<(), operator>>() and <a
   * href="http://www.boost.org/libs/serialization/doc"> Boost
   * serialization</a> can also be used to save and restore a NearestNeighbor
   * object.  This is illustrated in the example.
   *
   * Example of use:
   * \include example-NearestNeighbor.cpp
   **********************************************************************/
  template <typename dist_t, typename pos_t, class distfun_t>
  class NearestNeighbor {
    // For tracking changes to the I/O format
    static const int version = 1;
    // This is what we get "free"; but if sizeof(dist_t) = 1 (unlikely), allow
    // 4 slots (and this accommodates the default value bucket = 4).
    static const int maxbucket =
      (2 + ((4 * sizeof(dist_t)) / sizeof(int) >= 2 ?
            (4 * sizeof(dist_t)) / sizeof(int) : 2));
  public:

    /**
     * Default constructor for NearestNeighbor.
     *
     * This is equivalent to specifying an empty set of points.
     **********************************************************************/
    NearestNeighbor() : _numpoints(0), _bucket(0), _cost(0) {}

    /**
     * Constructor for NearestNeighbor.
     *
     * @param[in] pts a vector of points to include in the set.
     * @param[in] dist the distance function object.
     * @param[in] bucket the size of the buckets at the leaf nodes; this must
     *   lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
     * @exception GeographicErr if the value of \e bucket is out of bounds or
     *   the size of \e pts is too big for an int.
     * @exception std::bad_alloc if memory for the tree can't be allocated.
     *
     * \e pts may contain coincident points (i.e., the distance between them
     * vanishes); these are treated as distinct.
     *
     * The choice of \e bucket is a tradeoff between space and efficiency.  A
     * larger \e bucket decreases the size of the NearestNeighbor object which
     * scales as pts.size() / max(1, bucket) and reduces the number of distance
     * calculations to construct the object by log2(bucket) * pts.size().
     * However each search then requires about bucket additional distance
     * calculations.
     *
     * \warning The distances computed by \e dist must satisfy the standard
     * metric conditions.  If not, the results are undefined.  Neither the data
     * in \e pts nor the query points should contain NaNs or infinities because
     * such data violates the metric conditions.
     *
     * \warning The same arguments \e pts and \e dist must be provided
     * to the Search() function.
     **********************************************************************/
    NearestNeighbor(const std::vector<pos_t>& pts, const distfun_t& dist,
                    int bucket = 4) {
      Initialize(pts, dist, bucket);
    }

    /**
     * Initialize or re-initialize NearestNeighbor.
     *
     * @param[in] pts a vector of points to include in the tree.
     * @param[in] dist the distance function object.
     * @param[in] bucket the size of the buckets at the leaf nodes; this must
     *   lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
     * @exception GeographicErr if the value of \e bucket is out of bounds or
     *   the size of \e pts is too big for an int.
     * @exception std::bad_alloc if memory for the tree can't be allocated.
     *
     * See also the documentation on the constructor.
     *
     * If an exception is thrown, the state of the NearestNeighbor is
     * unchanged.
     **********************************************************************/
    void Initialize(const std::vector<pos_t>& pts, const distfun_t& dist,
                    int bucket = 4) {
      GEOGRAPHICLIB_STATIC_ASSERT(std::numeric_limits<dist_t>::is_signed,
                                  "dist_t must be a signed type");
      if (!( 0 <= bucket && bucket <= maxbucket ))
        throw GeographicLib::GeographicErr
          ("bucket must lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)]");
      if (pts.size() > size_t(std::numeric_limits<int>::max()))
        throw GeographicLib::GeographicErr("pts array too big");
      // the pair contains distance+id
      std::vector<item> ids(pts.size());
      for (int k = int(ids.size()); k--;)
        ids[k] = std::make_pair(dist_t(0), k);
      int cost = 0;
      std::vector<Node> tree;
      init(pts, dist, bucket, tree, ids, cost,
           0, int(ids.size()), int(ids.size()/2));
      _tree.swap(tree);
      _numpoints = int(pts.size());
      _bucket = bucket;
      _mc = _sc = 0;
      _cost = cost; _c1 = _k = _cmax = 0;
      _cmin = std::numeric_limits<int>::max();
    }

    /**
     * Search the NearestNeighbor.
     *
     * @param[in] pts the vector of points used for initialization.
     * @param[in] dist the distance function object used for initialization.
     * @param[in] query the query point.
     * @param[out] ind a vector of indices to the closest points found.
     * @param[in] k the number of points to search for (default = 1).
     * @param[in] maxdist only return points with distances of \e maxdist or
     *   less from \e query (default is the maximum \e dist_t).
     * @param[in] mindist only return points with distances of more than
     *   \e mindist from \e query (default = &minus;1).
     * @param[in] exhaustive whether to do an exhaustive search (default true).
     * @param[in] tol the tolerance on the results (default 0).
     * @return the distance to the closest point found (&minus;1 if no points
     *   are found).
     * @exception GeographicErr if \e pts has a different size from that used
     *   to construct the object.
     *
     * The indices returned in \e ind are sorted by distance from \e query
     * (closest first).
     *
     * The simplest invocation is with just the 4 non-optional arguments.  This
     * returns the closest distance and the index to the closest point in
     * <i>ind</i><sub>0</sub>.  If there are several points equally close, then
     * <i>ind</i><sub>0</sub> gives the index of an arbirary one of them.  If
     * there's no closest point (because the set of points is empty), then \e
     * ind is empty and &minus;1 is returned.
     *
     * With \e exhaustive = true and \e tol = 0 (their default values), this
     * finds the indices of \e k closest neighbors to \e query whose distances
     * to \e query are in (\e mindist, \e maxdist].  If \e mindist and \e
     * maxdist have their default values, then these bounds have no effect.  If
     * \e query is one of the points in the tree, then set \e mindist = 0 to
     * prevent this point (and other coincident points) from being returned.
     *
     * If \e exhaustive = false, exit as soon as \e k results satisfying the
     * distance criteria are found.  If less than \e k results are returned
     * then the search was exhaustive even if \e exhaustive = false.
     *
     * If \e tol is positive, do an approximate search; in this case the
     * results are to be interpreted as follows: if the <i>k</i>'th distance is
     * \e dk, then all results with distances less than or equal \e dk &minus;
     * \e tol are correct; all others are suspect &mdash; there may be other
     * closer results with distances greater or equal to \e dk &minus; \e tol.
     * If less than \e k results are found, then the search is exact.
     *
     * \e mindist should be used to exclude a "small" neighborhood of the query
     * point (relative to the average spacing of the data).  If \e mindist is
     * large, the efficiency of the search deteriorates.
     *
     * \note Only the shortest distance is returned (as as the function value).
     * The distances to other points (indexed by <i>ind</i><sub><i>j</i></sub>
     * for \e j > 0) can be found by invoking \e dist again.
     *
     * \warning The arguments \e pts and \e dist must be identical to those
     * used to initialize the NearestNeighbor; if not, this function will
     * return some meaningless result (however, if the size of \e pts is wrong,
     * this function throw an exception).
     *
     * \warning The query point cannot be a NaN or infinite because then the
     * metric conditions are violated.
     **********************************************************************/
    dist_t Search(const std::vector<pos_t>& pts, const distfun_t& dist,
                  const pos_t& query,
                  std::vector<int>& ind,
                  int k = 1,
                  dist_t maxdist = std::numeric_limits<dist_t>::max(),
                  dist_t mindist = -1,
                  bool exhaustive = true,
                  dist_t tol = 0) const {
      if (_numpoints != int(pts.size()))
          throw GeographicLib::GeographicErr("pts array has wrong size");
      std::priority_queue<item> results;
      if (_numpoints > 0 && k > 0 && maxdist > mindist) {
        // distance to the kth closest point so far
        dist_t tau = maxdist;
        // first is negative of how far query is outside boundary of node
        // +1 if on boundary or inside
        // second is node index
        std::priority_queue<item> todo;
        todo.push(std::make_pair(dist_t(1), int(_tree.size()) - 1));
        int c = 0;
        while (!todo.empty()) {
          int n = todo.top().second;
          dist_t d = -todo.top().first;
          todo.pop();
          dist_t tau1 = tau - tol;
          // compare tau and d again since tau may have become smaller.
          if (!( n >= 0 && tau1 >= d )) continue;
          const Node& current = _tree[n];
          dist_t dst = 0;   // to suppress warning about uninitialized variable
          bool exitflag = false, leaf = current.index < 0;
          for (int i = 0; i < (leaf ? _bucket : 1); ++i) {
            int index = leaf ? current.leaves[i] : current.index;
            if (index < 0) break;
            dst = dist(pts[index], query);
            ++c;

            if (dst > mindist && dst <= tau) {
              if (int(results.size()) == k) results.pop();
              results.push(std::make_pair(dst, index));
              if (int(results.size()) == k) {
                if (exhaustive)
                  tau = results.top().first;
                else {
                  exitflag = true;
                  break;
                }
                if (tau <= tol) {
                  exitflag = true;
                  break;
                }
              }
            }
          }
          if (exitflag) break;

          if (current.index < 0) continue;
          tau1 = tau - tol;
          for (int l = 0; l < 2; ++l) {
            if (current.data.child[l] >= 0 &&
                dst + current.data.upper[l] >= mindist) {
              if (dst < current.data.lower[l]) {
                d = current.data.lower[l] - dst;
                if (tau1 >= d)
                  todo.push(std::make_pair(-d, current.data.child[l]));
              } else if (dst > current.data.upper[l]) {
                d = dst - current.data.upper[l];
                if (tau1 >= d)
                  todo.push(std::make_pair(-d, current.data.child[l]));
              } else
                todo.push(std::make_pair(dist_t(1), current.data.child[l]));
            }
          }
        }
        ++_k;
        _c1 += c;
        double omc = _mc;
        _mc += (c - omc) / _k;
        _sc += (c - omc) * (c - _mc);
        if (c > _cmax) _cmax = c;
        if (c < _cmin) _cmin = c;
      }

      dist_t d = -1;
      ind.resize(results.size());

      for (int i = int(ind.size()); i--;) {
        ind[i] = int(results.top().second);
        if (i == 0) d = results.top().first;
        results.pop();
      }
      return d;

    }

    /**
     * @return the total number of points in the set.
     **********************************************************************/
    int NumPoints() const { return _numpoints; }

    /**
     * Write the object to an I/O stream.
     *
     * @param[in,out] os the stream to write to.
     * @param[in] bin if true (the default) save in binary mode.
     * @exception std::bad_alloc if memory for the string representation of the
     *   object can't be allocated.
     *
     * The counters tracking the statistics of searches are not saved; however
     * the initializtion cost is saved.  The format of the binary saves is \e
     * not portable.
     *
     * \note <a href="http://www.boost.org/libs/serialization/doc">
     * Boost serialization</a> can also be used to save and restore a
     * NearestNeighbor object.  This requires that the
     * GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
     **********************************************************************/
    void Save(std::ostream& os, bool bin = true) const {
      int realspec = std::numeric_limits<dist_t>::digits *
        (std::numeric_limits<dist_t>::is_integer ? -1 : 1);
      if (bin) {
        char id[] = "NearestNeighbor_";
        os.write(id, 16);
        int buf[6];
        buf[0] = version;
        buf[1] = realspec;
        buf[2] = _bucket;
        buf[3] = _numpoints;
        buf[4] = int(_tree.size());
        buf[5] = _cost;
        os.write(reinterpret_cast<const char *>(buf), 6 * sizeof(int));
        for (int i = 0; i < int(_tree.size()); ++i) {
          const Node& node = _tree[i];
          os.write(reinterpret_cast<const char *>(&node.index), sizeof(int));
          if (node.index >= 0) {
            os.write(reinterpret_cast<const char *>(node.data.lower),
                     2 * sizeof(dist_t));
            os.write(reinterpret_cast<const char *>(node.data.upper),
                     2 * sizeof(dist_t));
            os.write(reinterpret_cast<const char *>(node.data.child),
                     2 * sizeof(int));
          } else {
            os.write(reinterpret_cast<const char *>(node.leaves),
                     _bucket * sizeof(int));
          }
        }
      } else {
        std::stringstream ostring;
          // Ensure enough precision for type dist_t.  With C++11, max_digits10
          // can be used instead.
        if (!std::numeric_limits<dist_t>::is_integer) {
          static const int prec
            = int(std::ceil(std::numeric_limits<dist_t>::digits *
                            std::log10(2.0) + 1));
          ostring.precision(prec);
        }
        ostring << version << " " << realspec << " " << _bucket << " "
                << _numpoints << " " << _tree.size() << " " << _cost;
        for (int i = 0; i < int(_tree.size()); ++i) {
          const Node& node = _tree[i];
          ostring << "\n" << node.index;
          if (node.index >= 0) {
            for (int l = 0; l < 2; ++l)
              ostring << " " << node.data.lower[l] << " " << node.data.upper[l]
                      << " " << node.data.child[l];
          } else {
            for (int l = 0; l < _bucket; ++l)
              ostring << " " << node.leaves[l];
          }
        }
        os << ostring.str();
      }
    }

    /**
     * Read the object from an I/O stream.
     *
     * @param[in,out] is the stream to read from
     * @param[in] bin if true (the default) load in binary mode.
     * @exception GeographicErr if the state read from \e is is illegal.
     * @exception std::bad_alloc if memory for the tree can't be allocated.
     *
     * The counters tracking the statistics of searches are reset by this
     * operation.  Binary data must have been saved on a machine with the same
     * architecture.  If an exception is thrown, the state of the
     * NearestNeighbor is unchanged.
     *
     * \note <a href="http://www.boost.org/libs/serialization/doc">
     * Boost serialization</a> can also be used to save and restore a
     * NearestNeighbor object.  This requires that the
     * GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
     *
     * \warning The same arguments \e pts and \e dist used for
     * initialization must be provided to the Search() function.
     **********************************************************************/
    void Load(std::istream& is, bool bin = true) {
      int version1, realspec, bucket, numpoints, treesize, cost;
      if (bin) {
        char id[17];
        is.read(id, 16);
        id[16] = '\0';
        if (!(std::strcmp(id, "NearestNeighbor_") == 0))
          throw GeographicLib::GeographicErr("Bad ID");
        is.read(reinterpret_cast<char *>(&version1), sizeof(int));
        is.read(reinterpret_cast<char *>(&realspec), sizeof(int));
        is.read(reinterpret_cast<char *>(&bucket), sizeof(int));
        is.read(reinterpret_cast<char *>(&numpoints), sizeof(int));
        is.read(reinterpret_cast<char *>(&treesize), sizeof(int));
        is.read(reinterpret_cast<char *>(&cost), sizeof(int));
      } else {
        if (!( is >> version1 >> realspec >> bucket >> numpoints >> treesize
               >> cost ))
          throw GeographicLib::GeographicErr("Bad header");
      }
      if (!( version1 == version ))
        throw GeographicLib::GeographicErr("Incompatible version");
      if (!( realspec == std::numeric_limits<dist_t>::digits *
             (std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
        throw GeographicLib::GeographicErr("Different dist_t types");
      if (!( 0 <= bucket && bucket <= maxbucket ))
        throw GeographicLib::GeographicErr("Bad bucket size");
      if (!( 0 <= treesize && treesize <= numpoints ))
        throw
          GeographicLib::GeographicErr("Bad number of points or tree size");
      if (!( 0 <= cost ))
        throw GeographicLib::GeographicErr("Bad value for cost");
      std::vector<Node> tree;
      tree.reserve(treesize);
      for (int i = 0; i < treesize; ++i) {
        Node node;
        if (bin) {
          is.read(reinterpret_cast<char *>(&node.index), sizeof(int));
          if (node.index >= 0) {
            is.read(reinterpret_cast<char *>(node.data.lower),
                    2 * sizeof(dist_t));
            is.read(reinterpret_cast<char *>(node.data.upper),
                    2 * sizeof(dist_t));
            is.read(reinterpret_cast<char *>(node.data.child),
                    2 * sizeof(int));
          } else {
            is.read(reinterpret_cast<char *>(node.leaves),
                    bucket * sizeof(int));
            for (int l = bucket; l < maxbucket; ++l)
              node.leaves[l] = 0;
          }
        } else {
          if (!( is >> node.index ))
            throw GeographicLib::GeographicErr("Bad index");
          if (node.index >= 0) {
            for (int l = 0; l < 2; ++l) {
              if (!( is >> node.data.lower[l] >> node.data.upper[l]
                     >> node.data.child[l] ))
                throw GeographicLib::GeographicErr("Bad node data");
            }
          } else {
            // Must be at least one valid leaf followed by a sequence end
            // markers (-1).
            for (int l = 0; l < bucket; ++l) {
              if (!( is >> node.leaves[l] ))
                throw GeographicLib::GeographicErr("Bad leaf data");
            }
            for (int l = bucket; l < maxbucket; ++l)
              node.leaves[l] = 0;
          }
        }
        node.Check(numpoints, treesize, bucket);
        tree.push_back(node);
      }
      _tree.swap(tree);
      _numpoints = numpoints;
      _bucket = bucket;
      _mc = _sc = 0;
      _cost = cost; _c1 = _k = _cmax = 0;
      _cmin = std::numeric_limits<int>::max();
    }

    /**
     * Write the object to stream \e os as text.
     *
     * @param[in,out] os the output stream.
     * @param[in] t the NearestNeighbor object to be saved.
     * @exception std::bad_alloc if memory for the string representation of the
     *   object can't be allocated.
     **********************************************************************/
    friend std::ostream& operator<<(std::ostream& os, const NearestNeighbor& t)
    { t.Save(os, false); return os; }

    /**
     * Read the object from stream \e is as text.
     *
     * @param[in,out] is the input stream.
     * @param[out] t the NearestNeighbor object to be loaded.
     * @exception GeographicErr if the state read from \e is is illegal.
     * @exception std::bad_alloc if memory for the tree can't be allocated.
     **********************************************************************/
    friend std::istream& operator>>(std::istream& is, NearestNeighbor& t)
    { t.Load(is, false); return is; }

    /**
     * Swap with another NearestNeighbor object.
     *
     * @param[in,out] t the NearestNeighbor object to swap with.
     **********************************************************************/
    void swap(NearestNeighbor& t) {
      std::swap(_numpoints, t._numpoints);
      std::swap(_bucket, t._bucket);
      std::swap(_cost, t._cost);
      _tree.swap(t._tree);
      std::swap(_mc, t._mc);
      std::swap(_sc, t._sc);
      std::swap(_c1, t._c1);
      std::swap(_k, t._k);
      std::swap(_cmin, t._cmin);
      std::swap(_cmax, t._cmax);
    }

    /**
     * The accumulated statistics on the searches so far.
     *
     * @param[out] setupcost the cost of initializing the NearestNeighbor.
     * @param[out] numsearches the number of calls to Search().
     * @param[out] searchcost the total cost of the calls to Search().
     * @param[out] mincost the minimum cost of a Search().
     * @param[out] maxcost the maximum cost of a Search().
     * @param[out] mean the mean cost of a Search().
     * @param[out] sd the standard deviation in the cost of a Search().
     *
     * Here "cost" measures the number of distance calculations needed.  Note
     * that the accumulation of statistics is \e not thread safe.
     **********************************************************************/
    void Statistics(int& setupcost, int& numsearches, int& searchcost,
                    int& mincost, int& maxcost,
                    double& mean, double& sd) const {
      setupcost = _cost; numsearches = _k; searchcost = _c1;
      mincost = _cmin; maxcost = _cmax;
      mean = _mc; sd = std::sqrt(_sc / (_k - 1));
    }

    /**
     * Reset the counters for the accumulated statistics on the searches so
     * far.
     **********************************************************************/
    void ResetStatistics() const {
      _mc = _sc = 0;
      _c1 = _k = _cmax = 0;
      _cmin = std::numeric_limits<int>::max();
    }

  private:
    // Package up a dist_t and an int.  We will want to sort on the dist_t so
    // put it first.
    typedef std::pair<dist_t, int> item;
    // \cond SKIP
    class Node {
    public:
      struct bounds {
        dist_t lower[2], upper[2]; // bounds on inner/outer distances
        int child[2];
      };
      union {
        bounds data;
        int leaves[maxbucket];
      };
      int index;

      Node()
        : index(-1)
      {
        for (int i = 0; i < 2; ++i) {
          data.lower[i] = data.upper[i] = 0;
          data.child[i] = -1;
        }
      }

      // Sanity check on a Node
      void Check(int numpoints, int treesize, int bucket) const {
        if (!( -1 <= index && index < numpoints ))
          throw GeographicLib::GeographicErr("Bad index");
        if (index >= 0) {
          if (!( -1 <= data.child[0] && data.child[0] < treesize &&
                 -1 <= data.child[1] && data.child[1] < treesize ))
            throw GeographicLib::GeographicErr("Bad child pointers");
          if (!( 0 <= data.lower[0] && data.lower[0] <= data.upper[0] &&
                 data.upper[0] <= data.lower[1] &&
                 data.lower[1] <= data.upper[1] ))
            throw GeographicLib::GeographicErr("Bad bounds");
        } else {
          // Must be at least one valid leaf followed by a sequence end markers
          // (-1).
          bool start = true;
          for (int l = 0; l < bucket; ++l) {
            if (!( (start ?
                    ((l == 0 ? 0 : -1) <= leaves[l] && leaves[l] < numpoints) :
                    leaves[l] == -1) ))
              throw GeographicLib::GeographicErr("Bad leaf data");
            start = leaves[l] >= 0;
          }
          for (int l = bucket; l < maxbucket; ++l) {
            if (leaves[l] != 0)
              throw GeographicLib::GeographicErr("Bad leaf data");
          }
        }
      }

#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
      friend class boost::serialization::access;
      template<class Archive>
      void save(Archive& ar, const unsigned int) const {
        ar & boost::serialization::make_nvp("index", index);
        if (index < 0)
          ar & boost::serialization::make_nvp("leaves", leaves);
        else
          ar & boost::serialization::make_nvp("lower", data.lower)
            & boost::serialization::make_nvp("upper", data.upper)
            & boost::serialization::make_nvp("child", data.child);
      }
      template<class Archive>
      void load(Archive& ar, const unsigned int) {
        ar & boost::serialization::make_nvp("index", index);
        if (index < 0)
          ar & boost::serialization::make_nvp("leaves", leaves);
        else
          ar & boost::serialization::make_nvp("lower", data.lower)
            & boost::serialization::make_nvp("upper", data.upper)
            & boost::serialization::make_nvp("child", data.child);
      }
      template<class Archive>
      void serialize(Archive& ar, const unsigned int file_version)
      { boost::serialization::split_member(ar, *this, file_version); }
#endif
    };
    // \endcond
#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
    friend class boost::serialization::access;
    template<class Archive> void save(Archive& ar, const unsigned) const {
      int realspec = std::numeric_limits<dist_t>::digits *
        (std::numeric_limits<dist_t>::is_integer ? -1 : 1);
      // Need to use version1, otherwise load error in debug mode on Linux:
      // undefined reference to GeographicLib::NearestNeighbor<...>::version.
      int version1 = version;
      ar & boost::serialization::make_nvp("version", version1)
        & boost::serialization::make_nvp("realspec", realspec)
        & boost::serialization::make_nvp("bucket", _bucket)
        & boost::serialization::make_nvp("numpoints", _numpoints)
        & boost::serialization::make_nvp("cost", _cost)
        & boost::serialization::make_nvp("tree", _tree);
    }
    template<class Archive> void load(Archive& ar, const unsigned) {
      int version1, realspec, bucket, numpoints, cost;
      ar & boost::serialization::make_nvp("version", version1);
      if (version1 != version)
        throw GeographicLib::GeographicErr("Incompatible version");
      std::vector<Node> tree;
      ar & boost::serialization::make_nvp("realspec", realspec);
      if (!( realspec == std::numeric_limits<dist_t>::digits *
             (std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
        throw GeographicLib::GeographicErr("Different dist_t types");
      ar & boost::serialization::make_nvp("bucket", bucket);
      if (!( 0 <= bucket && bucket <= maxbucket ))
        throw GeographicLib::GeographicErr("Bad bucket size");
      ar & boost::serialization::make_nvp("numpoints", numpoints)
        & boost::serialization::make_nvp("cost", cost)
        & boost::serialization::make_nvp("tree", tree);
      if (!( 0 <= int(tree.size()) && int(tree.size()) <= numpoints ))
        throw
          GeographicLib::GeographicErr("Bad number of points or tree size");
      for (int i = 0; i < int(tree.size()); ++i)
        tree[i].Check(numpoints, int(tree.size()), bucket);
      _tree.swap(tree);
      _numpoints = numpoints;
      _bucket = bucket;
      _mc = _sc = 0;
      _cost = cost; _c1 = _k = _cmax = 0;
      _cmin = std::numeric_limits<int>::max();
    }
    template<class Archive>
    void serialize(Archive& ar, const unsigned int file_version)
    { boost::serialization::split_member(ar, *this, file_version); }
#endif

    int _numpoints, _bucket, _cost;
    std::vector<Node> _tree;
    // Counters to track stastistics on the cost of searches
    mutable double _mc, _sc;
    mutable int _c1, _k, _cmin, _cmax;

    int init(const std::vector<pos_t>& pts, const distfun_t& dist, int bucket,
             std::vector<Node>& tree, std::vector<item>& ids, int& cost,
             int l, int u, int vp) {

      if (u == l)
        return -1;
      Node node;

      if (u - l > (bucket == 0 ? 1 : bucket)) {

        // choose a vantage point and move it to the start
        int i = vp;
        std::swap(ids[l], ids[i]);

        int m = (u + l + 1) / 2;

        for (int k = l + 1; k < u; ++k) {
          ids[k].first = dist(pts[ids[l].second], pts[ids[k].second]);
          ++cost;
        }
        // partition around the median distance
        std::nth_element(ids.begin() + l + 1,
                         ids.begin() + m,
                         ids.begin() + u);
        node.index = ids[l].second;
        if (m > l + 1) {        // node.child[0] is possibly empty
          typename std::vector<item>::iterator
            t = std::min_element(ids.begin() + l + 1, ids.begin() + m);
          node.data.lower[0] = t->first;
          t = std::max_element(ids.begin() + l + 1, ids.begin() + m);
          node.data.upper[0] = t->first;
          // Use point with max distance as vantage point; this point act as a
          // "corner" point and leads to a good partition.
          node.data.child[0] = init(pts, dist, bucket, tree, ids, cost,
                                    l + 1, m, int(t - ids.begin()));
        }
        typename std::vector<item>::iterator
          t = std::max_element(ids.begin() + m, ids.begin() + u);
        node.data.lower[1] = ids[m].first;
        node.data.upper[1] = t->first;
        // Use point with max distance as vantage point here too
        node.data.child[1] = init(pts, dist, bucket, tree, ids, cost,
                                  m, u, int(t - ids.begin()));
      } else {
        if (bucket == 0)
          node.index = ids[l].second;
        else {
          node.index = -1;
          // Sort the bucket entries so that the tree is independent of the
          // implementation of nth_element.
          std::sort(ids.begin() + l, ids.begin() + u);
          for (int i = l; i < u; ++i)
            node.leaves[i-l] = ids[i].second;
          for (int i = u - l; i < bucket; ++i)
            node.leaves[i] = -1;
          for (int i = bucket; i < maxbucket; ++i)
            node.leaves[i] = 0;
        }
      }

      tree.push_back(node);
      return int(tree.size()) - 1;
    }

  };

} // namespace GeographicLib

namespace std {

  /**
   * Swap two GeographicLib::NearestNeighbor objects.
   *
   * @tparam dist_t the type used for measuring distances.
   * @tparam pos_t the type for specifying the positions of points.
   * @tparam distfun_t the type for a function object which calculates
   *   distances between points.
   * @param[in,out] a the first GeographicLib::NearestNeighbor to swap.
   * @param[in,out] b the second GeographicLib::NearestNeighbor to swap.
   **********************************************************************/
  template <typename dist_t, typename pos_t, class distfun_t>
  void swap(GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& a,
            GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& b) {
    a.swap(b);
  }

} // namespace std

#if defined(_MSC_VER)
#  pragma warning (pop)
#endif

#endif  // GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP