/usr/include/GeographicLib/NearestNeighbor.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 | /**
* \file NearestNeighbor.hpp
* \brief Header for GeographicLib::NearestNeighbor class
*
* Copyright (c) Charles Karney (2016-2017) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP)
#define GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP 1
#include <algorithm> // for nth_element, max_element, etc.
#include <vector>
#include <queue> // for priority_queue
#include <utility> // for swap + pair
#include <cstring>
#include <limits>
#include <cmath>
#include <iostream>
#include <sstream>
// Only for GEOGRAPHICLIB_STATIC_ASSERT and GeographicLib::GeographicErr
#include <GeographicLib/Constants.hpp>
#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/split_member.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/vector.hpp>
#endif
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
# pragma warning (push)
# pragma warning (disable: 4127)
#endif
namespace GeographicLib {
/**
* \brief Nearest-neighbor calculations
*
* This class solves the nearest-neighbor problm using a vantage-point tree
* as described in \ref nearest.
*
* This class is templated so that it can handle arbitrary metric spaces as
* follows:
*
* @tparam dist_t the type used for measuring distances; it can be a real or
* signed integer type; in typical geodetic applications, \e dist_t might
* be <code>double</code>.
* @tparam pos_t the type for specifying the positions of points; geodetic
* application might bundled the latitude and longitude into a
* <code>std::pair<dist_t, dist_t></code>.
* @tparam distfun_t the type of a function object which takes takes two
* positions (of type \e pos_t) and returns the distance (of type \e
* dist_t); in geodetic applications, this might be a class which is
* constructed with a Geodesic object and which implements a member
* function with a signature <code>dist_t operator() (const pos_t&, const
* pos_t&) const</code>, which returns the geodesic distance between two
* points.
*
* \note The distance measure must satisfy the triangle inequality, \f$
* d(a,c) \le d(a,b) + d(b,c) \f$ for all points \e a, \e b, \e c. The
* geodesic distance (given by Geodesic::Inverse) does, while the great
* ellipse distance and the rhumb line distance <i>do not</i>. If you use
* the ordinary Euclidean distance, i.e., \f$ \sqrt{(x_a-x_b)^2 +
* (y_a-y_b)^2} \f$ for two dimensions, don't be tempted to leave out the
* square root in the interests of "efficiency"; the squared distance does
* not satisfy the triangle inequality!
*
* This is a "header-only" implementation and, as such, depends in a minimal
* way on the rest of GeographicLib (the only dependency is through the use
* of GEOGRAPHICLIB_STATIC_ASSERT and GeographicLib::GeographicErr for
* handling run-time and compile-time exceptions). Therefore, it is easy to
* extract this class from the rest of GeographicLib and use it as a
* stand-alone facility.
*
* The \e dist_t type must support numeric_limits queries (specifically:
* is_signed, is_integer, max(), digits).
*
* The NearestNeighbor object is constructed with a vector of points (type \e
* pos_t) and a distance function (type \e distfun_t). However the object
* does \e not store the points. When querying the object with Search(),
* it's necessary to supply the same vector of points and the same distance
* function.
*
* There's no capability in this implementation to add or remove points from
* the set. Instead Initialize() should be called to re-initialize the
* object with the modified vector of points.
*
* Because of the overhead in constructing a NearestNeighbor object for a
* large set of points, functions Save() and Load() are provided to save the
* object to an external file. operator<<(), operator>>() and <a
* href="http://www.boost.org/libs/serialization/doc"> Boost
* serialization</a> can also be used to save and restore a NearestNeighbor
* object. This is illustrated in the example.
*
* Example of use:
* \include example-NearestNeighbor.cpp
**********************************************************************/
template <typename dist_t, typename pos_t, class distfun_t>
class NearestNeighbor {
// For tracking changes to the I/O format
static const int version = 1;
// This is what we get "free"; but if sizeof(dist_t) = 1 (unlikely), allow
// 4 slots (and this accommodates the default value bucket = 4).
static const int maxbucket =
(2 + ((4 * sizeof(dist_t)) / sizeof(int) >= 2 ?
(4 * sizeof(dist_t)) / sizeof(int) : 2));
public:
/**
* Default constructor for NearestNeighbor.
*
* This is equivalent to specifying an empty set of points.
**********************************************************************/
NearestNeighbor() : _numpoints(0), _bucket(0), _cost(0) {}
/**
* Constructor for NearestNeighbor.
*
* @param[in] pts a vector of points to include in the set.
* @param[in] dist the distance function object.
* @param[in] bucket the size of the buckets at the leaf nodes; this must
* lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
* @exception GeographicErr if the value of \e bucket is out of bounds or
* the size of \e pts is too big for an int.
* @exception std::bad_alloc if memory for the tree can't be allocated.
*
* \e pts may contain coincident points (i.e., the distance between them
* vanishes); these are treated as distinct.
*
* The choice of \e bucket is a tradeoff between space and efficiency. A
* larger \e bucket decreases the size of the NearestNeighbor object which
* scales as pts.size() / max(1, bucket) and reduces the number of distance
* calculations to construct the object by log2(bucket) * pts.size().
* However each search then requires about bucket additional distance
* calculations.
*
* \warning The distances computed by \e dist must satisfy the standard
* metric conditions. If not, the results are undefined. Neither the data
* in \e pts nor the query points should contain NaNs or infinities because
* such data violates the metric conditions.
*
* \warning The same arguments \e pts and \e dist must be provided
* to the Search() function.
**********************************************************************/
NearestNeighbor(const std::vector<pos_t>& pts, const distfun_t& dist,
int bucket = 4) {
Initialize(pts, dist, bucket);
}
/**
* Initialize or re-initialize NearestNeighbor.
*
* @param[in] pts a vector of points to include in the tree.
* @param[in] dist the distance function object.
* @param[in] bucket the size of the buckets at the leaf nodes; this must
* lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
* @exception GeographicErr if the value of \e bucket is out of bounds or
* the size of \e pts is too big for an int.
* @exception std::bad_alloc if memory for the tree can't be allocated.
*
* See also the documentation on the constructor.
*
* If an exception is thrown, the state of the NearestNeighbor is
* unchanged.
**********************************************************************/
void Initialize(const std::vector<pos_t>& pts, const distfun_t& dist,
int bucket = 4) {
GEOGRAPHICLIB_STATIC_ASSERT(std::numeric_limits<dist_t>::is_signed,
"dist_t must be a signed type");
if (!( 0 <= bucket && bucket <= maxbucket ))
throw GeographicLib::GeographicErr
("bucket must lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)]");
if (pts.size() > size_t(std::numeric_limits<int>::max()))
throw GeographicLib::GeographicErr("pts array too big");
// the pair contains distance+id
std::vector<item> ids(pts.size());
for (int k = int(ids.size()); k--;)
ids[k] = std::make_pair(dist_t(0), k);
int cost = 0;
std::vector<Node> tree;
init(pts, dist, bucket, tree, ids, cost,
0, int(ids.size()), int(ids.size()/2));
_tree.swap(tree);
_numpoints = int(pts.size());
_bucket = bucket;
_mc = _sc = 0;
_cost = cost; _c1 = _k = _cmax = 0;
_cmin = std::numeric_limits<int>::max();
}
/**
* Search the NearestNeighbor.
*
* @param[in] pts the vector of points used for initialization.
* @param[in] dist the distance function object used for initialization.
* @param[in] query the query point.
* @param[out] ind a vector of indices to the closest points found.
* @param[in] k the number of points to search for (default = 1).
* @param[in] maxdist only return points with distances of \e maxdist or
* less from \e query (default is the maximum \e dist_t).
* @param[in] mindist only return points with distances of more than
* \e mindist from \e query (default = −1).
* @param[in] exhaustive whether to do an exhaustive search (default true).
* @param[in] tol the tolerance on the results (default 0).
* @return the distance to the closest point found (−1 if no points
* are found).
* @exception GeographicErr if \e pts has a different size from that used
* to construct the object.
*
* The indices returned in \e ind are sorted by distance from \e query
* (closest first).
*
* The simplest invocation is with just the 4 non-optional arguments. This
* returns the closest distance and the index to the closest point in
* <i>ind</i><sub>0</sub>. If there are several points equally close, then
* <i>ind</i><sub>0</sub> gives the index of an arbirary one of them. If
* there's no closest point (because the set of points is empty), then \e
* ind is empty and −1 is returned.
*
* With \e exhaustive = true and \e tol = 0 (their default values), this
* finds the indices of \e k closest neighbors to \e query whose distances
* to \e query are in (\e mindist, \e maxdist]. If \e mindist and \e
* maxdist have their default values, then these bounds have no effect. If
* \e query is one of the points in the tree, then set \e mindist = 0 to
* prevent this point (and other coincident points) from being returned.
*
* If \e exhaustive = false, exit as soon as \e k results satisfying the
* distance criteria are found. If less than \e k results are returned
* then the search was exhaustive even if \e exhaustive = false.
*
* If \e tol is positive, do an approximate search; in this case the
* results are to be interpreted as follows: if the <i>k</i>'th distance is
* \e dk, then all results with distances less than or equal \e dk −
* \e tol are correct; all others are suspect — there may be other
* closer results with distances greater or equal to \e dk − \e tol.
* If less than \e k results are found, then the search is exact.
*
* \e mindist should be used to exclude a "small" neighborhood of the query
* point (relative to the average spacing of the data). If \e mindist is
* large, the efficiency of the search deteriorates.
*
* \note Only the shortest distance is returned (as as the function value).
* The distances to other points (indexed by <i>ind</i><sub><i>j</i></sub>
* for \e j > 0) can be found by invoking \e dist again.
*
* \warning The arguments \e pts and \e dist must be identical to those
* used to initialize the NearestNeighbor; if not, this function will
* return some meaningless result (however, if the size of \e pts is wrong,
* this function throw an exception).
*
* \warning The query point cannot be a NaN or infinite because then the
* metric conditions are violated.
**********************************************************************/
dist_t Search(const std::vector<pos_t>& pts, const distfun_t& dist,
const pos_t& query,
std::vector<int>& ind,
int k = 1,
dist_t maxdist = std::numeric_limits<dist_t>::max(),
dist_t mindist = -1,
bool exhaustive = true,
dist_t tol = 0) const {
if (_numpoints != int(pts.size()))
throw GeographicLib::GeographicErr("pts array has wrong size");
std::priority_queue<item> results;
if (_numpoints > 0 && k > 0 && maxdist > mindist) {
// distance to the kth closest point so far
dist_t tau = maxdist;
// first is negative of how far query is outside boundary of node
// +1 if on boundary or inside
// second is node index
std::priority_queue<item> todo;
todo.push(std::make_pair(dist_t(1), int(_tree.size()) - 1));
int c = 0;
while (!todo.empty()) {
int n = todo.top().second;
dist_t d = -todo.top().first;
todo.pop();
dist_t tau1 = tau - tol;
// compare tau and d again since tau may have become smaller.
if (!( n >= 0 && tau1 >= d )) continue;
const Node& current = _tree[n];
dist_t dst = 0; // to suppress warning about uninitialized variable
bool exitflag = false, leaf = current.index < 0;
for (int i = 0; i < (leaf ? _bucket : 1); ++i) {
int index = leaf ? current.leaves[i] : current.index;
if (index < 0) break;
dst = dist(pts[index], query);
++c;
if (dst > mindist && dst <= tau) {
if (int(results.size()) == k) results.pop();
results.push(std::make_pair(dst, index));
if (int(results.size()) == k) {
if (exhaustive)
tau = results.top().first;
else {
exitflag = true;
break;
}
if (tau <= tol) {
exitflag = true;
break;
}
}
}
}
if (exitflag) break;
if (current.index < 0) continue;
tau1 = tau - tol;
for (int l = 0; l < 2; ++l) {
if (current.data.child[l] >= 0 &&
dst + current.data.upper[l] >= mindist) {
if (dst < current.data.lower[l]) {
d = current.data.lower[l] - dst;
if (tau1 >= d)
todo.push(std::make_pair(-d, current.data.child[l]));
} else if (dst > current.data.upper[l]) {
d = dst - current.data.upper[l];
if (tau1 >= d)
todo.push(std::make_pair(-d, current.data.child[l]));
} else
todo.push(std::make_pair(dist_t(1), current.data.child[l]));
}
}
}
++_k;
_c1 += c;
double omc = _mc;
_mc += (c - omc) / _k;
_sc += (c - omc) * (c - _mc);
if (c > _cmax) _cmax = c;
if (c < _cmin) _cmin = c;
}
dist_t d = -1;
ind.resize(results.size());
for (int i = int(ind.size()); i--;) {
ind[i] = int(results.top().second);
if (i == 0) d = results.top().first;
results.pop();
}
return d;
}
/**
* @return the total number of points in the set.
**********************************************************************/
int NumPoints() const { return _numpoints; }
/**
* Write the object to an I/O stream.
*
* @param[in,out] os the stream to write to.
* @param[in] bin if true (the default) save in binary mode.
* @exception std::bad_alloc if memory for the string representation of the
* object can't be allocated.
*
* The counters tracking the statistics of searches are not saved; however
* the initializtion cost is saved. The format of the binary saves is \e
* not portable.
*
* \note <a href="http://www.boost.org/libs/serialization/doc">
* Boost serialization</a> can also be used to save and restore a
* NearestNeighbor object. This requires that the
* GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
**********************************************************************/
void Save(std::ostream& os, bool bin = true) const {
int realspec = std::numeric_limits<dist_t>::digits *
(std::numeric_limits<dist_t>::is_integer ? -1 : 1);
if (bin) {
char id[] = "NearestNeighbor_";
os.write(id, 16);
int buf[6];
buf[0] = version;
buf[1] = realspec;
buf[2] = _bucket;
buf[3] = _numpoints;
buf[4] = int(_tree.size());
buf[5] = _cost;
os.write(reinterpret_cast<const char *>(buf), 6 * sizeof(int));
for (int i = 0; i < int(_tree.size()); ++i) {
const Node& node = _tree[i];
os.write(reinterpret_cast<const char *>(&node.index), sizeof(int));
if (node.index >= 0) {
os.write(reinterpret_cast<const char *>(node.data.lower),
2 * sizeof(dist_t));
os.write(reinterpret_cast<const char *>(node.data.upper),
2 * sizeof(dist_t));
os.write(reinterpret_cast<const char *>(node.data.child),
2 * sizeof(int));
} else {
os.write(reinterpret_cast<const char *>(node.leaves),
_bucket * sizeof(int));
}
}
} else {
std::stringstream ostring;
// Ensure enough precision for type dist_t. With C++11, max_digits10
// can be used instead.
if (!std::numeric_limits<dist_t>::is_integer) {
static const int prec
= int(std::ceil(std::numeric_limits<dist_t>::digits *
std::log10(2.0) + 1));
ostring.precision(prec);
}
ostring << version << " " << realspec << " " << _bucket << " "
<< _numpoints << " " << _tree.size() << " " << _cost;
for (int i = 0; i < int(_tree.size()); ++i) {
const Node& node = _tree[i];
ostring << "\n" << node.index;
if (node.index >= 0) {
for (int l = 0; l < 2; ++l)
ostring << " " << node.data.lower[l] << " " << node.data.upper[l]
<< " " << node.data.child[l];
} else {
for (int l = 0; l < _bucket; ++l)
ostring << " " << node.leaves[l];
}
}
os << ostring.str();
}
}
/**
* Read the object from an I/O stream.
*
* @param[in,out] is the stream to read from
* @param[in] bin if true (the default) load in binary mode.
* @exception GeographicErr if the state read from \e is is illegal.
* @exception std::bad_alloc if memory for the tree can't be allocated.
*
* The counters tracking the statistics of searches are reset by this
* operation. Binary data must have been saved on a machine with the same
* architecture. If an exception is thrown, the state of the
* NearestNeighbor is unchanged.
*
* \note <a href="http://www.boost.org/libs/serialization/doc">
* Boost serialization</a> can also be used to save and restore a
* NearestNeighbor object. This requires that the
* GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
*
* \warning The same arguments \e pts and \e dist used for
* initialization must be provided to the Search() function.
**********************************************************************/
void Load(std::istream& is, bool bin = true) {
int version1, realspec, bucket, numpoints, treesize, cost;
if (bin) {
char id[17];
is.read(id, 16);
id[16] = '\0';
if (!(std::strcmp(id, "NearestNeighbor_") == 0))
throw GeographicLib::GeographicErr("Bad ID");
is.read(reinterpret_cast<char *>(&version1), sizeof(int));
is.read(reinterpret_cast<char *>(&realspec), sizeof(int));
is.read(reinterpret_cast<char *>(&bucket), sizeof(int));
is.read(reinterpret_cast<char *>(&numpoints), sizeof(int));
is.read(reinterpret_cast<char *>(&treesize), sizeof(int));
is.read(reinterpret_cast<char *>(&cost), sizeof(int));
} else {
if (!( is >> version1 >> realspec >> bucket >> numpoints >> treesize
>> cost ))
throw GeographicLib::GeographicErr("Bad header");
}
if (!( version1 == version ))
throw GeographicLib::GeographicErr("Incompatible version");
if (!( realspec == std::numeric_limits<dist_t>::digits *
(std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
throw GeographicLib::GeographicErr("Different dist_t types");
if (!( 0 <= bucket && bucket <= maxbucket ))
throw GeographicLib::GeographicErr("Bad bucket size");
if (!( 0 <= treesize && treesize <= numpoints ))
throw
GeographicLib::GeographicErr("Bad number of points or tree size");
if (!( 0 <= cost ))
throw GeographicLib::GeographicErr("Bad value for cost");
std::vector<Node> tree;
tree.reserve(treesize);
for (int i = 0; i < treesize; ++i) {
Node node;
if (bin) {
is.read(reinterpret_cast<char *>(&node.index), sizeof(int));
if (node.index >= 0) {
is.read(reinterpret_cast<char *>(node.data.lower),
2 * sizeof(dist_t));
is.read(reinterpret_cast<char *>(node.data.upper),
2 * sizeof(dist_t));
is.read(reinterpret_cast<char *>(node.data.child),
2 * sizeof(int));
} else {
is.read(reinterpret_cast<char *>(node.leaves),
bucket * sizeof(int));
for (int l = bucket; l < maxbucket; ++l)
node.leaves[l] = 0;
}
} else {
if (!( is >> node.index ))
throw GeographicLib::GeographicErr("Bad index");
if (node.index >= 0) {
for (int l = 0; l < 2; ++l) {
if (!( is >> node.data.lower[l] >> node.data.upper[l]
>> node.data.child[l] ))
throw GeographicLib::GeographicErr("Bad node data");
}
} else {
// Must be at least one valid leaf followed by a sequence end
// markers (-1).
for (int l = 0; l < bucket; ++l) {
if (!( is >> node.leaves[l] ))
throw GeographicLib::GeographicErr("Bad leaf data");
}
for (int l = bucket; l < maxbucket; ++l)
node.leaves[l] = 0;
}
}
node.Check(numpoints, treesize, bucket);
tree.push_back(node);
}
_tree.swap(tree);
_numpoints = numpoints;
_bucket = bucket;
_mc = _sc = 0;
_cost = cost; _c1 = _k = _cmax = 0;
_cmin = std::numeric_limits<int>::max();
}
/**
* Write the object to stream \e os as text.
*
* @param[in,out] os the output stream.
* @param[in] t the NearestNeighbor object to be saved.
* @exception std::bad_alloc if memory for the string representation of the
* object can't be allocated.
**********************************************************************/
friend std::ostream& operator<<(std::ostream& os, const NearestNeighbor& t)
{ t.Save(os, false); return os; }
/**
* Read the object from stream \e is as text.
*
* @param[in,out] is the input stream.
* @param[out] t the NearestNeighbor object to be loaded.
* @exception GeographicErr if the state read from \e is is illegal.
* @exception std::bad_alloc if memory for the tree can't be allocated.
**********************************************************************/
friend std::istream& operator>>(std::istream& is, NearestNeighbor& t)
{ t.Load(is, false); return is; }
/**
* Swap with another NearestNeighbor object.
*
* @param[in,out] t the NearestNeighbor object to swap with.
**********************************************************************/
void swap(NearestNeighbor& t) {
std::swap(_numpoints, t._numpoints);
std::swap(_bucket, t._bucket);
std::swap(_cost, t._cost);
_tree.swap(t._tree);
std::swap(_mc, t._mc);
std::swap(_sc, t._sc);
std::swap(_c1, t._c1);
std::swap(_k, t._k);
std::swap(_cmin, t._cmin);
std::swap(_cmax, t._cmax);
}
/**
* The accumulated statistics on the searches so far.
*
* @param[out] setupcost the cost of initializing the NearestNeighbor.
* @param[out] numsearches the number of calls to Search().
* @param[out] searchcost the total cost of the calls to Search().
* @param[out] mincost the minimum cost of a Search().
* @param[out] maxcost the maximum cost of a Search().
* @param[out] mean the mean cost of a Search().
* @param[out] sd the standard deviation in the cost of a Search().
*
* Here "cost" measures the number of distance calculations needed. Note
* that the accumulation of statistics is \e not thread safe.
**********************************************************************/
void Statistics(int& setupcost, int& numsearches, int& searchcost,
int& mincost, int& maxcost,
double& mean, double& sd) const {
setupcost = _cost; numsearches = _k; searchcost = _c1;
mincost = _cmin; maxcost = _cmax;
mean = _mc; sd = std::sqrt(_sc / (_k - 1));
}
/**
* Reset the counters for the accumulated statistics on the searches so
* far.
**********************************************************************/
void ResetStatistics() const {
_mc = _sc = 0;
_c1 = _k = _cmax = 0;
_cmin = std::numeric_limits<int>::max();
}
private:
// Package up a dist_t and an int. We will want to sort on the dist_t so
// put it first.
typedef std::pair<dist_t, int> item;
// \cond SKIP
class Node {
public:
struct bounds {
dist_t lower[2], upper[2]; // bounds on inner/outer distances
int child[2];
};
union {
bounds data;
int leaves[maxbucket];
};
int index;
Node()
: index(-1)
{
for (int i = 0; i < 2; ++i) {
data.lower[i] = data.upper[i] = 0;
data.child[i] = -1;
}
}
// Sanity check on a Node
void Check(int numpoints, int treesize, int bucket) const {
if (!( -1 <= index && index < numpoints ))
throw GeographicLib::GeographicErr("Bad index");
if (index >= 0) {
if (!( -1 <= data.child[0] && data.child[0] < treesize &&
-1 <= data.child[1] && data.child[1] < treesize ))
throw GeographicLib::GeographicErr("Bad child pointers");
if (!( 0 <= data.lower[0] && data.lower[0] <= data.upper[0] &&
data.upper[0] <= data.lower[1] &&
data.lower[1] <= data.upper[1] ))
throw GeographicLib::GeographicErr("Bad bounds");
} else {
// Must be at least one valid leaf followed by a sequence end markers
// (-1).
bool start = true;
for (int l = 0; l < bucket; ++l) {
if (!( (start ?
((l == 0 ? 0 : -1) <= leaves[l] && leaves[l] < numpoints) :
leaves[l] == -1) ))
throw GeographicLib::GeographicErr("Bad leaf data");
start = leaves[l] >= 0;
}
for (int l = bucket; l < maxbucket; ++l) {
if (leaves[l] != 0)
throw GeographicLib::GeographicErr("Bad leaf data");
}
}
}
#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
friend class boost::serialization::access;
template<class Archive>
void save(Archive& ar, const unsigned int) const {
ar & boost::serialization::make_nvp("index", index);
if (index < 0)
ar & boost::serialization::make_nvp("leaves", leaves);
else
ar & boost::serialization::make_nvp("lower", data.lower)
& boost::serialization::make_nvp("upper", data.upper)
& boost::serialization::make_nvp("child", data.child);
}
template<class Archive>
void load(Archive& ar, const unsigned int) {
ar & boost::serialization::make_nvp("index", index);
if (index < 0)
ar & boost::serialization::make_nvp("leaves", leaves);
else
ar & boost::serialization::make_nvp("lower", data.lower)
& boost::serialization::make_nvp("upper", data.upper)
& boost::serialization::make_nvp("child", data.child);
}
template<class Archive>
void serialize(Archive& ar, const unsigned int file_version)
{ boost::serialization::split_member(ar, *this, file_version); }
#endif
};
// \endcond
#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
friend class boost::serialization::access;
template<class Archive> void save(Archive& ar, const unsigned) const {
int realspec = std::numeric_limits<dist_t>::digits *
(std::numeric_limits<dist_t>::is_integer ? -1 : 1);
// Need to use version1, otherwise load error in debug mode on Linux:
// undefined reference to GeographicLib::NearestNeighbor<...>::version.
int version1 = version;
ar & boost::serialization::make_nvp("version", version1)
& boost::serialization::make_nvp("realspec", realspec)
& boost::serialization::make_nvp("bucket", _bucket)
& boost::serialization::make_nvp("numpoints", _numpoints)
& boost::serialization::make_nvp("cost", _cost)
& boost::serialization::make_nvp("tree", _tree);
}
template<class Archive> void load(Archive& ar, const unsigned) {
int version1, realspec, bucket, numpoints, cost;
ar & boost::serialization::make_nvp("version", version1);
if (version1 != version)
throw GeographicLib::GeographicErr("Incompatible version");
std::vector<Node> tree;
ar & boost::serialization::make_nvp("realspec", realspec);
if (!( realspec == std::numeric_limits<dist_t>::digits *
(std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
throw GeographicLib::GeographicErr("Different dist_t types");
ar & boost::serialization::make_nvp("bucket", bucket);
if (!( 0 <= bucket && bucket <= maxbucket ))
throw GeographicLib::GeographicErr("Bad bucket size");
ar & boost::serialization::make_nvp("numpoints", numpoints)
& boost::serialization::make_nvp("cost", cost)
& boost::serialization::make_nvp("tree", tree);
if (!( 0 <= int(tree.size()) && int(tree.size()) <= numpoints ))
throw
GeographicLib::GeographicErr("Bad number of points or tree size");
for (int i = 0; i < int(tree.size()); ++i)
tree[i].Check(numpoints, int(tree.size()), bucket);
_tree.swap(tree);
_numpoints = numpoints;
_bucket = bucket;
_mc = _sc = 0;
_cost = cost; _c1 = _k = _cmax = 0;
_cmin = std::numeric_limits<int>::max();
}
template<class Archive>
void serialize(Archive& ar, const unsigned int file_version)
{ boost::serialization::split_member(ar, *this, file_version); }
#endif
int _numpoints, _bucket, _cost;
std::vector<Node> _tree;
// Counters to track stastistics on the cost of searches
mutable double _mc, _sc;
mutable int _c1, _k, _cmin, _cmax;
int init(const std::vector<pos_t>& pts, const distfun_t& dist, int bucket,
std::vector<Node>& tree, std::vector<item>& ids, int& cost,
int l, int u, int vp) {
if (u == l)
return -1;
Node node;
if (u - l > (bucket == 0 ? 1 : bucket)) {
// choose a vantage point and move it to the start
int i = vp;
std::swap(ids[l], ids[i]);
int m = (u + l + 1) / 2;
for (int k = l + 1; k < u; ++k) {
ids[k].first = dist(pts[ids[l].second], pts[ids[k].second]);
++cost;
}
// partition around the median distance
std::nth_element(ids.begin() + l + 1,
ids.begin() + m,
ids.begin() + u);
node.index = ids[l].second;
if (m > l + 1) { // node.child[0] is possibly empty
typename std::vector<item>::iterator
t = std::min_element(ids.begin() + l + 1, ids.begin() + m);
node.data.lower[0] = t->first;
t = std::max_element(ids.begin() + l + 1, ids.begin() + m);
node.data.upper[0] = t->first;
// Use point with max distance as vantage point; this point act as a
// "corner" point and leads to a good partition.
node.data.child[0] = init(pts, dist, bucket, tree, ids, cost,
l + 1, m, int(t - ids.begin()));
}
typename std::vector<item>::iterator
t = std::max_element(ids.begin() + m, ids.begin() + u);
node.data.lower[1] = ids[m].first;
node.data.upper[1] = t->first;
// Use point with max distance as vantage point here too
node.data.child[1] = init(pts, dist, bucket, tree, ids, cost,
m, u, int(t - ids.begin()));
} else {
if (bucket == 0)
node.index = ids[l].second;
else {
node.index = -1;
// Sort the bucket entries so that the tree is independent of the
// implementation of nth_element.
std::sort(ids.begin() + l, ids.begin() + u);
for (int i = l; i < u; ++i)
node.leaves[i-l] = ids[i].second;
for (int i = u - l; i < bucket; ++i)
node.leaves[i] = -1;
for (int i = bucket; i < maxbucket; ++i)
node.leaves[i] = 0;
}
}
tree.push_back(node);
return int(tree.size()) - 1;
}
};
} // namespace GeographicLib
namespace std {
/**
* Swap two GeographicLib::NearestNeighbor objects.
*
* @tparam dist_t the type used for measuring distances.
* @tparam pos_t the type for specifying the positions of points.
* @tparam distfun_t the type for a function object which calculates
* distances between points.
* @param[in,out] a the first GeographicLib::NearestNeighbor to swap.
* @param[in,out] b the second GeographicLib::NearestNeighbor to swap.
**********************************************************************/
template <typename dist_t, typename pos_t, class distfun_t>
void swap(GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& a,
GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& b) {
a.swap(b);
}
} // namespace std
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP
|