This file is indexed.

/usr/include/GeographicLib/Math.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
/**
 * \file Math.hpp
 * \brief Header for GeographicLib::Math class
 *
 * Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

// Constants.hpp includes Math.hpp.  Place this include outside Math.hpp's
// include guard to enforce this ordering.
#include <GeographicLib/Constants.hpp>

#if !defined(GEOGRAPHICLIB_MATH_HPP)
#define GEOGRAPHICLIB_MATH_HPP 1

/**
 * Are C++11 math functions available?
 **********************************************************************/
#if !defined(GEOGRAPHICLIB_CXX11_MATH)
// Recent versions of g++ -std=c++11 (4.7 and later?) set __cplusplus to 201103
// and support the new C++11 mathematical functions, std::atanh, etc.  However
// the Android toolchain, which uses g++ -std=c++11 (4.8 as of 2014-03-11,
// according to Pullan Lu), does not support std::atanh.  Android toolchains
// might define __ANDROID__ or ANDROID; so need to check both.  With OSX the
// version is GNUC version 4.2 and __cplusplus is set to 201103, so remove the
// version check on GNUC.
#  if defined(__GNUC__) && __cplusplus >= 201103 && \
  !(defined(__ANDROID__) || defined(ANDROID) || defined(__CYGWIN__))
#    define GEOGRAPHICLIB_CXX11_MATH 1
// Visual C++ 12 supports these functions
#  elif defined(_MSC_VER) && _MSC_VER >= 1800
#    define GEOGRAPHICLIB_CXX11_MATH 1
#  else
#    define GEOGRAPHICLIB_CXX11_MATH 0
#  endif
#endif

#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
#  define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
#endif

#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
#  define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
#endif

#if !defined(GEOGRAPHICLIB_PRECISION)
/**
 * The precision of floating point numbers used in %GeographicLib.  1 means
 * float (single precision); 2 (the default) means double; 3 means long double;
 * 4 is reserved for quadruple precision.  Nearly all the testing has been
 * carried out with doubles and that's the recommended configuration.  In order
 * for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
 * defined.  Note that with Microsoft Visual Studio, long double is the same as
 * double.
 **********************************************************************/
#  define GEOGRAPHICLIB_PRECISION 2
#endif

#include <cmath>
#include <algorithm>
#include <limits>

#if GEOGRAPHICLIB_PRECISION == 4
#include <boost/version.hpp>
#if BOOST_VERSION >= 105600
#include <boost/cstdfloat.hpp>
#endif
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions.hpp>
__float128 fmaq(__float128, __float128, __float128);
#elif GEOGRAPHICLIB_PRECISION == 5
#include <mpreal.h>
#endif

#if GEOGRAPHICLIB_PRECISION > 3
// volatile keyword makes no sense for multiprec types
#define GEOGRAPHICLIB_VOLATILE
// Signal a convergence failure with multiprec types by throwing an exception
// at loop exit.
#define GEOGRAPHICLIB_PANIC \
  (throw GeographicLib::GeographicErr("Convergence failure"), false)
#else
#define GEOGRAPHICLIB_VOLATILE volatile
// Ignore convergence failures with standard floating points types by allowing
// loop to exit cleanly.
#define GEOGRAPHICLIB_PANIC false
#endif

namespace GeographicLib {

  /**
   * \brief Mathematical functions needed by %GeographicLib
   *
   * Define mathematical functions in order to localize system dependencies and
   * to provide generic versions of the functions.  In addition define a real
   * type to be used by %GeographicLib.
   *
   * Example of use:
   * \include example-Math.cpp
   **********************************************************************/
  class GEOGRAPHICLIB_EXPORT Math {
  private:
    void dummy() {
      GEOGRAPHICLIB_STATIC_ASSERT(GEOGRAPHICLIB_PRECISION >= 1 &&
                                  GEOGRAPHICLIB_PRECISION <= 5,
                                  "Bad value of precision");
    }
    Math();                     // Disable constructor
  public:

#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
    /**
     * The extended precision type for real numbers, used for some testing.
     * This is long double on computers with this type; otherwise it is double.
     **********************************************************************/
    typedef long double extended;
#else
    typedef double extended;
#endif

#if GEOGRAPHICLIB_PRECISION == 2
    /**
     * The real type for %GeographicLib. Nearly all the testing has been done
     * with \e real = double.  However, the algorithms should also work with
     * float and long double (where available).  (<b>CAUTION</b>: reasonable
     * accuracy typically cannot be obtained using floats.)
     **********************************************************************/
    typedef double real;
#elif GEOGRAPHICLIB_PRECISION == 1
    typedef float real;
#elif GEOGRAPHICLIB_PRECISION == 3
    typedef extended real;
#elif GEOGRAPHICLIB_PRECISION == 4
    typedef boost::multiprecision::float128 real;
#elif GEOGRAPHICLIB_PRECISION == 5
    typedef mpfr::mpreal real;
#else
    typedef double real;
#endif

    /**
     * @return the number of bits of precision in a real number.
     **********************************************************************/
    static int digits() {
#if GEOGRAPHICLIB_PRECISION != 5
      return std::numeric_limits<real>::digits;
#else
      return std::numeric_limits<real>::digits();
#endif
    }

    /**
     * Set the binary precision of a real number.
     *
     * @param[in] ndigits the number of bits of precision.
     * @return the resulting number of bits of precision.
     *
     * This only has an effect when GEOGRAPHICLIB_PRECISION = 5.  See also
     * Utility::set_digits for caveats about when this routine should be
     * called.
     **********************************************************************/
    static int set_digits(int ndigits) {
#if GEOGRAPHICLIB_PRECISION != 5
      (void)ndigits;
#else
      mpfr::mpreal::set_default_prec(ndigits >= 2 ? ndigits : 2);
#endif
      return digits();
    }

    /**
     * @return the number of decimal digits of precision in a real number.
     **********************************************************************/
    static int digits10() {
#if GEOGRAPHICLIB_PRECISION != 5
      return std::numeric_limits<real>::digits10;
#else
      return std::numeric_limits<real>::digits10();
#endif
    }

    /**
     * Number of additional decimal digits of precision for real relative to
     * double (0 for float).
     **********************************************************************/
    static int extra_digits() {
      return
        digits10() > std::numeric_limits<double>::digits10 ?
        digits10() - std::numeric_limits<double>::digits10 : 0;
    }

    /**
     * true if the machine is big-endian.
     **********************************************************************/
    static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;

    /**
     * @tparam T the type of the returned value.
     * @return &pi;.
     **********************************************************************/
    template<typename T> static T pi() {
      using std::atan2;
      static const T pi = atan2(T(0), T(-1));
      return pi;
    }
    /**
     * A synonym for pi<real>().
     **********************************************************************/
    static real pi() { return pi<real>(); }

    /**
     * @tparam T the type of the returned value.
     * @return the number of radians in a degree.
     **********************************************************************/
    template<typename T> static T degree() {
      static const T degree = pi<T>() / 180;
      return degree;
    }
    /**
     * A synonym for degree<real>().
     **********************************************************************/
    static real degree() { return degree<real>(); }

    /**
     * Square a number.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return <i>x</i><sup>2</sup>.
     **********************************************************************/
    template<typename T> static T sq(T x)
    { return x * x; }

    /**
     * The hypotenuse function avoiding underflow and overflow.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @return sqrt(<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>).
     **********************************************************************/
    template<typename T> static T hypot(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::hypot; return hypot(x, y);
#else
      using std::abs; using std::sqrt;
      x = abs(x); y = abs(y);
      if (x < y) std::swap(x, y); // Now x >= y >= 0
      y /= (x ? x : 1);
      return x * sqrt(1 + y * y);
      // For an alternative (square-root free) method see
      // C. Moler and D. Morrision (1983) https://doi.org/10.1147/rd.276.0577
      // and A. A. Dubrulle (1983) https://doi.org/10.1147/rd.276.0582
#endif
    }

    /**
     * exp(\e x) &minus; 1 accurate near \e x = 0.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return exp(\e x) &minus; 1.
     **********************************************************************/
    template<typename T> static T expm1(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::expm1; return expm1(x);
#else
      using std::exp; using std::abs; using std::log;
      GEOGRAPHICLIB_VOLATILE T
        y = exp(x),
        z = y - 1;
      // The reasoning here is similar to that for log1p.  The expression
      // mathematically reduces to exp(x) - 1, and the factor z/log(y) = (y -
      // 1)/log(y) is a slowly varying quantity near y = 1 and is accurately
      // computed.
      return abs(x) > 1 ? z : (z == 0 ? x : x * z / log(y));
#endif
    }

    /**
     * log(1 + \e x) accurate near \e x = 0.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return log(1 + \e x).
     **********************************************************************/
    template<typename T> static T log1p(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::log1p; return log1p(x);
#else
      using std::log;
      GEOGRAPHICLIB_VOLATILE T
        y = 1 + x,
        z = y - 1;
      // Here's the explanation for this magic: y = 1 + z, exactly, and z
      // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
      // a good approximation to the true log(1 + x)/x.  The multiplication x *
      // (log(y)/z) introduces little additional error.
      return z == 0 ? x : x * log(y) / z;
#endif
    }

    /**
     * The inverse hyperbolic sine function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return asinh(\e x).
     **********************************************************************/
    template<typename T> static T asinh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::asinh; return asinh(x);
#else
      using std::abs; T y = abs(x); // Enforce odd parity
      y = log1p(y * (1 + y/(hypot(T(1), y) + 1)));
      return x < 0 ? -y : y;
#endif
    }

    /**
     * The inverse hyperbolic tangent function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return atanh(\e x).
     **********************************************************************/
    template<typename T> static T atanh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::atanh; return atanh(x);
#else
      using std::abs; T y = abs(x); // Enforce odd parity
      y = log1p(2 * y/(1 - y))/2;
      return x < 0 ? -y : y;
#endif
    }

    /**
     * The cube root function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return the real cube root of \e x.
     **********************************************************************/
    template<typename T> static T cbrt(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::cbrt; return cbrt(x);
#else
      using std::abs; using std::pow;
      T y = pow(abs(x), 1/T(3)); // Return the real cube root
      return x < 0 ? -y : y;
#endif
    }

    /**
     * Fused multiply and add.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @param[in] z
     * @return <i>xy</i> + <i>z</i>, correctly rounded (on those platforms with
     *   support for the <code>fma</code> instruction).
     *
     * On platforms without the <code>fma</code> instruction, no attempt is
     * made to improve on the result of a rounded multiplication followed by a
     * rounded addition.
     **********************************************************************/
    template<typename T> static T fma(T x, T y, T z) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::fma; return fma(x, y, z);
#else
      return x * y + z;
#endif
    }

    /**
     * Normalize a two-vector.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
     * @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
     **********************************************************************/
    template<typename T> static void norm(T& x, T& y)
    { T h = hypot(x, y); x /= h; y /= h; }

    /**
     * The error-free sum of two numbers.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] u
     * @param[in] v
     * @param[out] t the exact error given by (\e u + \e v) - \e s.
     * @return \e s = round(\e u + \e v).
     *
     * See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B.  (Note that \e t can be
     * the same as one of the first two arguments.)
     **********************************************************************/
    template<typename T> static T sum(T u, T v, T& t) {
      GEOGRAPHICLIB_VOLATILE T s = u + v;
      GEOGRAPHICLIB_VOLATILE T up = s - v;
      GEOGRAPHICLIB_VOLATILE T vpp = s - up;
      up -= u;
      vpp -= v;
      t = -(up + vpp);
      // u + v =       s      + t
      //       = round(u + v) + t
      return s;
    }

    /**
     * Evaluate a polynomial.
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] N the order of the polynomial.
     * @param[in] p the coefficient array (of size \e N + 1).
     * @param[in] x the variable.
     * @return the value of the polynomial.
     *
     * Evaluate <i>y</i> = &sum;<sub><i>n</i>=0..<i>N</i></sub>
     * <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>&minus;<i>n</i></sup>.
     * Return 0 if \e N &lt; 0.  Return <i>p</i><sub>0</sub>, if \e N = 0 (even
     * if \e x is infinite or a nan).  The evaluation uses Horner's method.
     **********************************************************************/
    template<typename T> static T polyval(int N, const T p[], T x)
    // This used to employ Math::fma; but that's too slow and it seemed not to
    // improve the accuracy noticeably.  This might change when there's direct
    // hardware support for fma.
    { T y = N < 0 ? 0 : *p++; while (--N >= 0) y = y * x + *p++; return y; }

    /**
     * Normalize an angle.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x the angle in degrees.
     * @return the angle reduced to the range([&minus;180&deg;, 180&deg;].
     *
     * The range of \e x is unrestricted.
     **********************************************************************/
    template<typename T> static T AngNormalize(T x) {
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
      using std::remainder;
      x = remainder(x, T(360)); return x != -180 ? x : 180;
#else
      using std::fmod;
      T y = fmod(x, T(360));
#if defined(_MSC_VER) && _MSC_VER < 1900
      // Before version 14 (2015), Visual Studio had problems dealing
      // with -0.0.  Specifically
      //   VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
      // sincosd has a similar fix.
      // python 2.7 on Windows 32-bit machines has the same problem.
      if (x == 0) y = x;
#endif
      return y <= -180 ? y + 360 : (y <= 180 ? y : y - 360);
#endif
    }

    /**
     * Normalize a latitude.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x the angle in degrees.
     * @return x if it is in the range [&minus;90&deg;, 90&deg;], otherwise
     *   return NaN.
     **********************************************************************/
    template<typename T> static T LatFix(T x)
    { using std::abs; return abs(x) > 90 ? NaN<T>() : x; }

    /**
     * The exact difference of two angles reduced to
     * (&minus;180&deg;, 180&deg;].
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] x the first angle in degrees.
     * @param[in] y the second angle in degrees.
     * @param[out] e the error term in degrees.
     * @return \e d, the truncated value of \e y &minus; \e x.
     *
     * This computes \e z = \e y &minus; \e x exactly, reduced to
     * (&minus;180&deg;, 180&deg;]; and then sets \e z = \e d + \e e where \e d
     * is the nearest representable number to \e z and \e e is the truncation
     * error.  If \e d = &minus;180, then \e e &gt; 0; If \e d = 180, then \e e
     * &le; 0.
     **********************************************************************/
    template<typename T> static T AngDiff(T x, T y, T& e) {
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
      using std::remainder;
      T t, d = AngNormalize(sum(remainder(-x, T(360)),
                                remainder( y, T(360)), t));
#else
      T t, d = AngNormalize(sum(AngNormalize(-x), AngNormalize(y), t));
#endif
      // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
      // abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
      // addition of t takes the result outside the range (-180,180] is d = 180
      // and t > 0.  The case, d = -180 + eps, t = -eps, can't happen, since
      // sum would have returned the exact result in such a case (i.e., given t
      // = 0).
      return sum(d == 180 && t > 0 ? -180 : d, t, e);
    }

    /**
     * Difference of two angles reduced to [&minus;180&deg;, 180&deg;]
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] x the first angle in degrees.
     * @param[in] y the second angle in degrees.
     * @return \e y &minus; \e x, reduced to the range [&minus;180&deg;,
     *   180&deg;].
     *
     * The result is equivalent to computing the difference exactly, reducing
     * it to (&minus;180&deg;, 180&deg;] and rounding the result.  Note that
     * this prescription allows &minus;180&deg; to be returned (e.g., if \e x
     * is tiny and negative and \e y = 180&deg;).
     **********************************************************************/
    template<typename T> static T AngDiff(T x, T y)
    { T e; return AngDiff(x, y, e); }

    /**
     * Coarsen a value close to zero.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x
     * @return the coarsened value.
     *
     * The makes the smallest gap in \e x = 1/16 - nextafter(1/16, 0) =
     * 1/2<sup>57</sup> for reals = 0.7 pm on the earth if \e x is an angle in
     * degrees.  (This is about 1000 times more resolution than we get with
     * angles around 90&deg;.)  We use this to avoid having to deal with near
     * singular cases when \e x is non-zero but tiny (e.g.,
     * 10<sup>&minus;200</sup>).  This converts -0 to +0; however tiny negative
     * numbers get converted to -0.
     **********************************************************************/
    template<typename T> static T AngRound(T x) {
      using std::abs;
      static const T z = 1/T(16);
      if (x == 0) return 0;
      GEOGRAPHICLIB_VOLATILE T y = abs(x);
      // The compiler mustn't "simplify" z - (z - y) to y
      y = y < z ? z - (z - y) : y;
      return x < 0 ? -y : y;
    }

    /**
     * Evaluate the sine and cosine function with the argument in degrees
     *
     * @tparam T the type of the arguments.
     * @param[in] x in degrees.
     * @param[out] sinx sin(<i>x</i>).
     * @param[out] cosx cos(<i>x</i>).
     *
     * The results obey exactly the elementary properties of the trigonometric
     * functions, e.g., sin 9&deg; = cos 81&deg; = &minus; sin 123456789&deg;.
     * If x = &minus;0, then \e sinx = &minus;0; this is the only case where
     * &minus;0 is returned.
     **********************************************************************/
    template<typename T> static void sincosd(T x, T& sinx, T& cosx) {
      // In order to minimize round-off errors, this function exactly reduces
      // the argument to the range [-45, 45] before converting it to radians.
      using std::sin; using std::cos;
      T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
  !defined(__GNUC__)
      // Disable for gcc because of bug in glibc version < 2.22, see
      //   https://sourceware.org/bugzilla/show_bug.cgi?id=17569
      // Once this fix is widely deployed, should insert a runtime test for the
      // glibc version number.  For example
      //   #include <gnu/libc-version.h>
      //   std::string version(gnu_get_libc_version()); => "2.22"
      using std::remquo;
      r = remquo(x, T(90), &q);
#else
      using std::fmod; using std::floor;
      r = fmod(x, T(360));
      q = int(floor(r / 90 + T(0.5)));
      r -= 90 * q;
#endif
      // now abs(r) <= 45
      r *= degree();
      // Possibly could call the gnu extension sincos
      T s = sin(r), c = cos(r);
#if defined(_MSC_VER) && _MSC_VER < 1900
      // Before version 14 (2015), Visual Studio had problems dealing
      // with -0.0.  Specifically
      //   VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
      //   VC 12       and 64-bit compile:  sin(-0.0)        -> +0.0
      // AngNormalize has a similar fix.
      // python 2.7 on Windows 32-bit machines has the same problem.
      if (x == 0) s = x;
#endif
      switch (unsigned(q) & 3U) {
      case 0U: sinx =  s; cosx =  c; break;
      case 1U: sinx =  c; cosx = -s; break;
      case 2U: sinx = -s; cosx = -c; break;
      default: sinx = -c; cosx =  s; break; // case 3U
      }
      // Set sign of 0 results.  -0 only produced for sin(-0)
      if (x != 0) { sinx += T(0); cosx += T(0); }
    }

    /**
     * Evaluate the sine function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return sin(<i>x</i>).
     **********************************************************************/
    template<typename T> static T sind(T x) {
      // See sincosd
      using std::sin; using std::cos;
      T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
  !defined(__GNUC__)
      using std::remquo;
      r = remquo(x, T(90), &q);
#else
      using std::fmod; using std::floor;
      r = fmod(x, T(360));
      q = int(floor(r / 90 + T(0.5)));
      r -= 90 * q;
#endif
      // now abs(r) <= 45
      r *= degree();
      unsigned p = unsigned(q);
      r = p & 1U ? cos(r) : sin(r);
      if (p & 2U) r = -r;
      if (x != 0) r += T(0);
      return r;
    }

    /**
     * Evaluate the cosine function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return cos(<i>x</i>).
     **********************************************************************/
    template<typename T> static T cosd(T x) {
      // See sincosd
      using std::sin; using std::cos;
      T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
  !defined(__GNUC__)
      using std::remquo;
      r = remquo(x, T(90), &q);
#else
      using std::fmod; using std::floor;
      r = fmod(x, T(360));
      q = int(floor(r / 90 + T(0.5)));
      r -= 90 * q;
#endif
      // now abs(r) <= 45
      r *= degree();
      unsigned p = unsigned(q + 1);
      r = p & 1U ? cos(r) : sin(r);
      if (p & 2U) r = -r;
      return T(0) + r;
    }

    /**
     * Evaluate the tangent function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return tan(<i>x</i>).
     *
     * If \e x = &plusmn;90&deg;, then a suitably large (but finite) value is
     * returned.
     **********************************************************************/
    template<typename T> static T tand(T x) {
      static const T overflow = 1 / sq(std::numeric_limits<T>::epsilon());
      T s, c;
      sincosd(x, s, c);
      return c != 0 ? s / c : (s < 0 ? -overflow : overflow);
    }

    /**
     * Evaluate the atan2 function with the result in degrees
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] y
     * @param[in] x
     * @return atan2(<i>y</i>, <i>x</i>) in degrees.
     *
     * The result is in the range (&minus;180&deg; 180&deg;].  N.B.,
     * atan2d(&plusmn;0, &minus;1) = +180&deg;; atan2d(&minus;&epsilon;,
     * &minus;1) = &minus;180&deg;, for &epsilon; positive and tiny;
     * atan2d(&plusmn;0, +1) = &plusmn;0&deg;.
     **********************************************************************/
    template<typename T> static T atan2d(T y, T x) {
      // In order to minimize round-off errors, this function rearranges the
      // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
      // converting it to degrees and mapping the result to the correct
      // quadrant.
      using std::atan2; using std::abs;
      int q = 0;
      if (abs(y) > abs(x)) { std::swap(x, y); q = 2; }
      if (x < 0) { x = -x; ++q; }
      // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
      T ang = atan2(y, x) / degree();
      switch (q) {
        // Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
        // atan2d will not be called with y = -0.  If need be, include
        //
        //   case 0: ang = 0 + ang; break;
        //
        // and handle mpfr as in AngRound.
      case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
      case 2: ang =  90 - ang; break;
      case 3: ang = -90 + ang; break;
      }
      return ang;
    }

    /**
     * Evaluate the atan function with the result in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return atan(<i>x</i>) in degrees.
     **********************************************************************/
    template<typename T> static T atand(T x)
    { return atan2d(x, T(1)); }

    /**
     * Evaluate <i>e</i> atanh(<i>e x</i>)
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @param[in] es the signed eccentricity =  sign(<i>e</i><sup>2</sup>)
     *    sqrt(|<i>e</i><sup>2</sup>|)
     * @return <i>e</i> atanh(<i>e x</i>)
     *
     * If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
     * expression is evaluated in terms of atan.
     **********************************************************************/
    template<typename T> static T eatanhe(T x, T es);

    /**
     * Copy the sign.
     *
     * @tparam T the type of the argument.
     * @param[in] x gives the magitude of the result.
     * @param[in] y gives the sign of the result.
     * @return value with the magnitude of \e x and with the sign of \e y.
     *
     * This routine correctly handles the case \e y = &minus;0, returning
     * &minus|<i>x</i>|.
     **********************************************************************/
    template<typename T> static T copysign(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::copysign; return copysign(x, y);
#else
      using std::abs;
      // NaN counts as positive
      return abs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
#endif
    }

    /**
     * tan&chi; in terms of tan&phi;
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] tau &tau; = tan&phi;
     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
     *   sqrt(|<i>e</i><sup>2</sup>|)
     * @return &tau;&prime; = tan&chi;
     *
     * See Eqs. (7--9) of
     * C. F. F. Karney,
     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
     * Transverse Mercator with an accuracy of a few nanometers,</a>
     * J. Geodesy 85(8), 475--485 (Aug. 2011)
     * (preprint
     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
     **********************************************************************/
    template<typename T> static T taupf(T tau, T es);

    /**
     * tan&phi; in terms of tan&chi;
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] taup &tau;&prime; = tan&chi;
     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
     *   sqrt(|<i>e</i><sup>2</sup>|)
     * @return &tau; = tan&phi;
     *
     * See Eqs. (19--21) of
     * C. F. F. Karney,
     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
     * Transverse Mercator with an accuracy of a few nanometers,</a>
     * J. Geodesy 85(8), 475--485 (Aug. 2011)
     * (preprint
     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
     **********************************************************************/
    template<typename T> static T tauf(T taup, T es);

    /**
     * Test for finiteness.
     *
     * @tparam T the type of the argument.
     * @param[in] x
     * @return true if number is finite, false if NaN or infinite.
     **********************************************************************/
    template<typename T> static bool isfinite(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::isfinite; return isfinite(x);
#else
      using std::abs;
#if defined(_MSC_VER)
      return abs(x) <= (std::numeric_limits<T>::max)();
#else
      // There's a problem using MPFR C++ 3.6.3 and g++ -std=c++14 (reported on
      // 2015-05-04) with the parens around std::numeric_limits<T>::max.  Of
      // course, these parens are only needed to deal with Windows stupidly
      // defining max as a macro.  So don't insert the parens on non-Windows
      // platforms.
      return abs(x) <= std::numeric_limits<T>::max();
#endif
#endif
    }

    /**
     * The NaN (not a number)
     *
     * @tparam T the type of the returned value.
     * @return NaN if available, otherwise return the max real of type T.
     **********************************************************************/
    template<typename T> static T NaN() {
#if defined(_MSC_VER)
      return std::numeric_limits<T>::has_quiet_NaN ?
        std::numeric_limits<T>::quiet_NaN() :
        (std::numeric_limits<T>::max)();
#else
      return std::numeric_limits<T>::has_quiet_NaN ?
        std::numeric_limits<T>::quiet_NaN() :
        std::numeric_limits<T>::max();
#endif
    }
    /**
     * A synonym for NaN<real>().
     **********************************************************************/
    static real NaN() { return NaN<real>(); }

    /**
     * Test for NaN.
     *
     * @tparam T the type of the argument.
     * @param[in] x
     * @return true if argument is a NaN.
     **********************************************************************/
    template<typename T> static bool isnan(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
      using std::isnan; return isnan(x);
#else
      return x != x;
#endif
    }

    /**
     * Infinity
     *
     * @tparam T the type of the returned value.
     * @return infinity if available, otherwise return the max real.
     **********************************************************************/
    template<typename T> static T infinity() {
#if defined(_MSC_VER)
      return std::numeric_limits<T>::has_infinity ?
        std::numeric_limits<T>::infinity() :
        (std::numeric_limits<T>::max)();
#else
      return std::numeric_limits<T>::has_infinity ?
        std::numeric_limits<T>::infinity() :
        std::numeric_limits<T>::max();
#endif
    }
    /**
     * A synonym for infinity<real>().
     **********************************************************************/
    static real infinity() { return infinity<real>(); }

    /**
     * Swap the bytes of a quantity
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return x with its bytes swapped.
     **********************************************************************/
    template<typename T> static T swab(T x) {
      union {
        T r;
        unsigned char c[sizeof(T)];
      } b;
      b.r = x;
      for (int i = sizeof(T)/2; i--; )
        std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
      return b.r;
    }

#if GEOGRAPHICLIB_PRECISION == 4
    typedef boost::math::policies::policy
      < boost::math::policies::domain_error
        <boost::math::policies::errno_on_error>,
        boost::math::policies::pole_error
        <boost::math::policies::errno_on_error>,
        boost::math::policies::overflow_error
        <boost::math::policies::errno_on_error>,
        boost::math::policies::evaluation_error
        <boost::math::policies::errno_on_error> >
      boost_special_functions_policy;

    static real hypot(real x, real y)
    { return boost::math::hypot(x, y, boost_special_functions_policy()); }

    static real expm1(real x)
    { return boost::math::expm1(x, boost_special_functions_policy()); }

    static real log1p(real x)
    { return boost::math::log1p(x, boost_special_functions_policy()); }

    static real asinh(real x)
    { return boost::math::asinh(x, boost_special_functions_policy()); }

    static real atanh(real x)
    { return boost::math::atanh(x, boost_special_functions_policy()); }

    static real cbrt(real x)
    { return boost::math::cbrt(x, boost_special_functions_policy()); }

    static real fma(real x, real y, real z)
    { return fmaq(__float128(x), __float128(y), __float128(z)); }

    static real copysign(real x, real y)
    { return boost::math::copysign(x, y); }

    static bool isnan(real x) { return boost::math::isnan(x); }

    static bool isfinite(real x) { return boost::math::isfinite(x); }
#endif
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_MATH_HPP