/usr/include/GeographicLib/LocalCartesian.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | /**
* \file LocalCartesian.hpp
* \brief Header for GeographicLib::LocalCartesian class
*
* Copyright (c) Charles Karney (2008-2016) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_LOCALCARTESIAN_HPP)
#define GEOGRAPHICLIB_LOCALCARTESIAN_HPP 1
#include <GeographicLib/Geocentric.hpp>
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief Local cartesian coordinates
*
* Convert between geodetic coordinates latitude = \e lat, longitude = \e
* lon, height = \e h (measured vertically from the surface of the ellipsoid)
* to local cartesian coordinates (\e x, \e y, \e z). The origin of local
* cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
* = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
* due north. The plane \e z = - \e h0 is tangent to the ellipsoid.
*
* The conversions all take place via geocentric coordinates using a
* Geocentric object (by default Geocentric::WGS84()).
*
* Example of use:
* \include example-LocalCartesian.cpp
*
* <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
* providing access to the functionality of Geocentric and LocalCartesian.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT LocalCartesian {
private:
typedef Math::real real;
static const size_t dim_ = 3;
static const size_t dim2_ = dim_ * dim_;
Geocentric _earth;
real _lat0, _lon0, _h0;
real _x0, _y0, _z0, _r[dim2_];
void IntForward(real lat, real lon, real h, real& x, real& y, real& z,
real M[dim2_]) const;
void IntReverse(real x, real y, real z, real& lat, real& lon, real& h,
real M[dim2_]) const;
void MatrixMultiply(real M[dim2_]) const;
public:
/**
* Constructor setting the origin.
*
* @param[in] lat0 latitude at origin (degrees).
* @param[in] lon0 longitude at origin (degrees).
* @param[in] h0 height above ellipsoid at origin (meters); default 0.
* @param[in] earth Geocentric object for the transformation; default
* Geocentric::WGS84().
*
* \e lat0 should be in the range [−90°, 90°].
**********************************************************************/
LocalCartesian(real lat0, real lon0, real h0 = 0,
const Geocentric& earth = Geocentric::WGS84())
: _earth(earth)
{ Reset(lat0, lon0, h0); }
/**
* Default constructor.
*
* @param[in] earth Geocentric object for the transformation; default
* Geocentric::WGS84().
*
* Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
**********************************************************************/
explicit LocalCartesian(const Geocentric& earth = Geocentric::WGS84())
: _earth(earth)
{ Reset(real(0), real(0), real(0)); }
/**
* Reset the origin.
*
* @param[in] lat0 latitude at origin (degrees).
* @param[in] lon0 longitude at origin (degrees).
* @param[in] h0 height above ellipsoid at origin (meters); default 0.
*
* \e lat0 should be in the range [−90°, 90°].
**********************************************************************/
void Reset(real lat0, real lon0, real h0 = 0);
/**
* Convert from geodetic to local cartesian coordinates.
*
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[in] h height of point above the ellipsoid (meters).
* @param[out] x local cartesian coordinate (meters).
* @param[out] y local cartesian coordinate (meters).
* @param[out] z local cartesian coordinate (meters).
*
* \e lat should be in the range [−90°, 90°].
**********************************************************************/
void Forward(real lat, real lon, real h, real& x, real& y, real& z)
const {
IntForward(lat, lon, h, x, y, z, NULL);
}
/**
* Convert from geodetic to local cartesian coordinates and return rotation
* matrix.
*
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[in] h height of point above the ellipsoid (meters).
* @param[out] x local cartesian coordinate (meters).
* @param[out] y local cartesian coordinate (meters).
* @param[out] z local cartesian coordinate (meters).
* @param[out] M if the length of the vector is 9, fill with the rotation
* matrix in row-major order.
*
* \e lat should be in the range [−90°, 90°].
*
* Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
* express \e v as \e column vectors in one of two ways
* - in east, north, up coordinates (where the components are relative to a
* local coordinate system at (\e lat, \e lon, \e h)); call this
* representation \e v1.
* - in \e x, \e y, \e z coordinates (where the components are relative to
* the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
* representation \e v0.
* .
* Then we have \e v0 = \e M ⋅ \e v1.
**********************************************************************/
void Forward(real lat, real lon, real h, real& x, real& y, real& z,
std::vector<real>& M)
const {
if (M.end() == M.begin() + dim2_) {
real t[dim2_];
IntForward(lat, lon, h, x, y, z, t);
std::copy(t, t + dim2_, M.begin());
} else
IntForward(lat, lon, h, x, y, z, NULL);
}
/**
* Convert from local cartesian to geodetic coordinates.
*
* @param[in] x local cartesian coordinate (meters).
* @param[in] y local cartesian coordinate (meters).
* @param[in] z local cartesian coordinate (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] h height of point above the ellipsoid (meters).
*
* The value of \e lon returned is in the range [−180°,
* 180°].
**********************************************************************/
void Reverse(real x, real y, real z, real& lat, real& lon, real& h)
const {
IntReverse(x, y, z, lat, lon, h, NULL);
}
/**
* Convert from local cartesian to geodetic coordinates and return rotation
* matrix.
*
* @param[in] x local cartesian coordinate (meters).
* @param[in] y local cartesian coordinate (meters).
* @param[in] z local cartesian coordinate (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] h height of point above the ellipsoid (meters).
* @param[out] M if the length of the vector is 9, fill with the rotation
* matrix in row-major order.
*
* Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
* express \e v as \e column vectors in one of two ways
* - in east, north, up coordinates (where the components are relative to a
* local coordinate system at (\e lat, \e lon, \e h)); call this
* representation \e v1.
* - in \e x, \e y, \e z coordinates (where the components are relative to
* the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
* representation \e v0.
* .
* Then we have \e v1 = <i>M</i><sup>T</sup> ⋅ \e v0, where
* <i>M</i><sup>T</sup> is the transpose of \e M.
**********************************************************************/
void Reverse(real x, real y, real z, real& lat, real& lon, real& h,
std::vector<real>& M)
const {
if (M.end() == M.begin() + dim2_) {
real t[dim2_];
IntReverse(x, y, z, lat, lon, h, t);
std::copy(t, t + dim2_, M.begin());
} else
IntReverse(x, y, z, lat, lon, h, NULL);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return latitude of the origin (degrees).
**********************************************************************/
Math::real LatitudeOrigin() const { return _lat0; }
/**
* @return longitude of the origin (degrees).
**********************************************************************/
Math::real LongitudeOrigin() const { return _lon0; }
/**
* @return height of the origin (meters).
**********************************************************************/
Math::real HeightOrigin() const { return _h0; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value of \e a inherited from the Geocentric object used in the
* constructor.
**********************************************************************/
Math::real MajorRadius() const { return _earth.MajorRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geocentric object used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
///@}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_LOCALCARTESIAN_HPP
|