/usr/include/GeographicLib/GravityModel.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | /**
* \file GravityModel.hpp
* \brief Header for GeographicLib::GravityModel class
*
* Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GRAVITYMODEL_HPP)
#define GEOGRAPHICLIB_GRAVITYMODEL_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/NormalGravity.hpp>
#include <GeographicLib/SphericalHarmonic.hpp>
#include <GeographicLib/SphericalHarmonic1.hpp>
#if defined(_MSC_VER)
// Squelch warnings about dll vs vector
# pragma warning (push)
# pragma warning (disable: 4251)
#endif
namespace GeographicLib {
class GravityCircle;
/**
* \brief Model of the earth's gravity field
*
* Evaluate the earth's gravity field according to a model. The supported
* models treat only the gravitational field exterior to the mass of the
* earth. When computing the field at points near (but above) the surface of
* the earth a small correction can be applied to account for the mass of the
* atmosphere above the point in question; see \ref gravityatmos.
* Determining the height of the geoid above the ellipsoid entails correcting
* for the mass of the earth above the geoid. The egm96 and egm2008 include
* separate correction terms to account for this mass.
*
* Definitions and terminology (from Heiskanen and Moritz, Sec 2-13):
* - \e V = gravitational potential;
* - Φ = rotational potential;
* - \e W = \e V + Φ = \e T + \e U = total potential;
* - <i>V</i><sub>0</sub> = normal gravitation potential;
* - \e U = <i>V</i><sub>0</sub> + Φ = total normal potential;
* - \e T = \e W − \e U = \e V − <i>V</i><sub>0</sub> = anomalous
* or disturbing potential;
* - <b>g</b> = ∇\e W = <b>γ</b> + <b>δ</b>;
* - <b>f</b> = ∇Φ;
* - <b>Γ</b> = ∇<i>V</i><sub>0</sub>;
* - <b>γ</b> = ∇\e U;
* - <b>δ</b> = ∇\e T = gravity disturbance vector
* = <b>g</b><sub><i>P</i></sub> − <b>γ</b><sub><i>P</i></sub>;
* - δ\e g = gravity disturbance = <i>g</i><sub><i>P</i></sub> −
* γ<sub><i>P</i></sub>;
* - Δ<b>g</b> = gravity anomaly vector = <b>g</b><sub><i>P</i></sub>
* − <b>γ</b><sub><i>Q</i></sub>; here the line \e PQ is
* perpendicular to ellipsoid and the potential at \e P equals the normal
* potential at \e Q;
* - Δ\e g = gravity anomaly = <i>g</i><sub><i>P</i></sub> −
* γ<sub><i>Q</i></sub>;
* - (ξ, η) deflection of the vertical, the difference in
* directions of <b>g</b><sub><i>P</i></sub> and
* <b>γ</b><sub><i>Q</i></sub>, ξ = NS, η = EW.
* - \e X, \e Y, \e Z, geocentric coordinates;
* - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
* north and up directions.
*
* See \ref gravity for details of how to install the gravity models and the
* data format.
*
* References:
* - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
* Francisco, 1967).
*
* Example of use:
* \include example-GravityModel.cpp
*
* <a href="Gravity.1.html">Gravity</a> is a command-line utility providing
* access to the functionality of GravityModel and GravityCircle.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT GravityModel {
private:
typedef Math::real real;
friend class GravityCircle;
static const int idlength_ = 8;
std::string _name, _dir, _description, _date, _filename, _id;
real _amodel, _GMmodel, _zeta0, _corrmult;
SphericalHarmonic::normalization _norm;
NormalGravity _earth;
std::vector<real> _Cx, _Sx, _CC, _CS, _zonal;
real _dzonal0; // A left over contribution to _zonal.
SphericalHarmonic _gravitational;
SphericalHarmonic1 _disturbing;
SphericalHarmonic _correction;
void ReadMetadata(const std::string& name);
Math::real InternalT(real X, real Y, real Z,
real& deltaX, real& deltaY, real& deltaZ,
bool gradp, bool correct) const;
GravityModel(const GravityModel&); // copy constructor not allowed
GravityModel& operator=(const GravityModel&); // nor copy assignment
enum captype {
CAP_NONE = 0U,
CAP_G = 1U<<0, // implies potentials W and V
CAP_T = 1U<<1,
CAP_DELTA = 1U<<2 | CAP_T, // delta implies T?
CAP_C = 1U<<3,
CAP_GAMMA0 = 1U<<4,
CAP_GAMMA = 1U<<5,
CAP_ALL = 0x3FU,
};
public:
/**
* Bit masks for the capabilities to be given to the GravityCircle object
* produced by Circle.
**********************************************************************/
enum mask {
/**
* No capabilities.
* @hideinitializer
**********************************************************************/
NONE = 0U,
/**
* Allow calls to GravityCircle::Gravity, GravityCircle::W, and
* GravityCircle::V.
* @hideinitializer
**********************************************************************/
GRAVITY = CAP_G,
/**
* Allow calls to GravityCircle::Disturbance and GravityCircle::T.
* @hideinitializer
**********************************************************************/
DISTURBANCE = CAP_DELTA,
/**
* Allow calls to GravityCircle::T(real lon) (i.e., computing the
* disturbing potential and not the gravity disturbance vector).
* @hideinitializer
**********************************************************************/
DISTURBING_POTENTIAL = CAP_T,
/**
* Allow calls to GravityCircle::SphericalAnomaly.
* @hideinitializer
**********************************************************************/
SPHERICAL_ANOMALY = CAP_DELTA | CAP_GAMMA,
/**
* Allow calls to GravityCircle::GeoidHeight.
* @hideinitializer
**********************************************************************/
GEOID_HEIGHT = CAP_T | CAP_C | CAP_GAMMA0,
/**
* All capabilities.
* @hideinitializer
**********************************************************************/
ALL = CAP_ALL,
};
/** \name Setting up the gravity model
**********************************************************************/
///@{
/**
* Construct a gravity model.
*
* @param[in] name the name of the model.
* @param[in] path (optional) directory for data file.
* @exception GeographicErr if the data file cannot be found, is
* unreadable, or is corrupt.
* @exception std::bad_alloc if the memory necessary for storing the model
* can't be allocated.
*
* A filename is formed by appending ".egm" (World Gravity Model) to the
* name. If \e path is specified (and is non-empty), then the file is
* loaded from directory, \e path. Otherwise the path is given by
* DefaultGravityPath().
*
* This file contains the metadata which specifies the properties of the
* model. The coefficients for the spherical harmonic sums are obtained
* from a file obtained by appending ".cof" to metadata file (so the
* filename ends in ".egm.cof").
**********************************************************************/
explicit GravityModel(const std::string& name,
const std::string& path = "");
///@}
/** \name Compute gravity in geodetic coordinates
**********************************************************************/
///@{
/**
* Evaluate the gravity at an arbitrary point above (or below) the
* ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] gx the easterly component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gy the northerly component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gz the upward component of the acceleration
* (m s<sup>−2</sup>); this is usually negative.
* @return \e W the sum of the gravitational and centrifugal potentials
* (m<sup>2</sup> s<sup>−2</sup>).
*
* The function includes the effects of the earth's rotation.
**********************************************************************/
Math::real Gravity(real lat, real lon, real h,
real& gx, real& gy, real& gz) const;
/**
* Evaluate the gravity disturbance vector at an arbitrary point above (or
* below) the ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] deltax the easterly component of the disturbance vector
* (m s<sup>−2</sup>).
* @param[out] deltay the northerly component of the disturbance vector
* (m s<sup>−2</sup>).
* @param[out] deltaz the upward component of the disturbance vector
* (m s<sup>−2</sup>).
* @return \e T the corresponding disturbing potential
* (m<sup>2</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real Disturbance(real lat, real lon, real h,
real& deltax, real& deltay, real& deltaz)
const;
/**
* Evaluate the geoid height.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @return \e N the height of the geoid above the ReferenceEllipsoid()
* (meters).
*
* This calls NormalGravity::U for ReferenceEllipsoid(). Some
* approximations are made in computing the geoid height so that the
* results of the NGA codes are reproduced accurately. Details are given
* in \ref gravitygeoid.
**********************************************************************/
Math::real GeoidHeight(real lat, real lon) const;
/**
* Evaluate the components of the gravity anomaly vector using the
* spherical approximation.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] Dg01 the gravity anomaly (m s<sup>−2</sup>).
* @param[out] xi the northerly component of the deflection of the vertical
* (degrees).
* @param[out] eta the easterly component of the deflection of the vertical
* (degrees).
*
* The spherical approximation (see Heiskanen and Moritz, Sec 2-14) is used
* so that the results of the NGA codes are reproduced accurately.
* approximations used here. Details are given in \ref gravitygeoid.
**********************************************************************/
void SphericalAnomaly(real lat, real lon, real h,
real& Dg01, real& xi, real& eta) const;
///@}
/** \name Compute gravity in geocentric coordinates
**********************************************************************/
///@{
/**
* Evaluate the components of the acceleration due to gravity and the
* centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] gX the \e X component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gY the \e Y component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] gZ the \e Z component of the acceleration
* (m s<sup>−2</sup>).
* @return \e W = \e V + Φ the sum of the gravitational and
* centrifugal potentials (m<sup>2</sup> s<sup>−2</sup>).
*
* This calls NormalGravity::U for ReferenceEllipsoid().
**********************************************************************/
Math::real W(real X, real Y, real Z,
real& gX, real& gY, real& gZ) const;
/**
* Evaluate the components of the acceleration due to gravity in geocentric
* coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] GX the \e X component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] GY the \e Y component of the acceleration
* (m s<sup>−2</sup>).
* @param[out] GZ the \e Z component of the acceleration
* (m s<sup>−2</sup>).
* @return \e V = \e W - Φ the gravitational potential
* (m<sup>2</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real V(real X, real Y, real Z,
real& GX, real& GY, real& GZ) const;
/**
* Evaluate the components of the gravity disturbance in geocentric
* coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] deltaX the \e X component of the gravity disturbance
* (m s<sup>−2</sup>).
* @param[out] deltaY the \e Y component of the gravity disturbance
* (m s<sup>−2</sup>).
* @param[out] deltaZ the \e Z component of the gravity disturbance
* (m s<sup>−2</sup>).
* @return \e T = \e W - \e U the disturbing potential (also called the
* anomalous potential) (m<sup>2</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real T(real X, real Y, real Z,
real& deltaX, real& deltaY, real& deltaZ) const
{ return InternalT(X, Y, Z, deltaX, deltaY, deltaZ, true, true); }
/**
* Evaluate disturbing potential in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @return \e T = \e W - \e U the disturbing potential (also called the
* anomalous potential) (m<sup>2</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real T(real X, real Y, real Z) const {
real dummy;
return InternalT(X, Y, Z, dummy, dummy, dummy, false, true);
}
/**
* Evaluate the components of the acceleration due to normal gravity and
* the centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] gammaX the \e X component of the normal acceleration
* (m s<sup>−2</sup>).
* @param[out] gammaY the \e Y component of the normal acceleration
* (m s<sup>−2</sup>).
* @param[out] gammaZ the \e Z component of the normal acceleration
* (m s<sup>−2</sup>).
* @return \e U = <i>V</i><sub>0</sub> + Φ the sum of the
* normal gravitational and centrifugal potentials
* (m<sup>2</sup> s<sup>−2</sup>).
*
* This calls NormalGravity::U for ReferenceEllipsoid().
**********************************************************************/
Math::real U(real X, real Y, real Z,
real& gammaX, real& gammaY, real& gammaZ) const
{ return _earth.U(X, Y, Z, gammaX, gammaY, gammaZ); }
/**
* Evaluate the centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[out] fX the \e X component of the centrifugal acceleration
* (m s<sup>−2</sup>).
* @param[out] fY the \e Y component of the centrifugal acceleration
* (m s<sup>−2</sup>).
* @return Φ the centrifugal potential (m<sup>2</sup>
* s<sup>−2</sup>).
*
* This calls NormalGravity::Phi for ReferenceEllipsoid().
**********************************************************************/
Math::real Phi(real X, real Y, real& fX, real& fY) const
{ return _earth.Phi(X, Y, fX, fY); }
///@}
/** \name Compute gravity on a circle of constant latitude
**********************************************************************/
///@{
/**
* Create a GravityCircle object to allow the gravity field at many points
* with constant \e lat and \e h and varying \e lon to be computed
* efficiently.
*
* @param[in] lat latitude of the point (degrees).
* @param[in] h the height of the point above the ellipsoid (meters).
* @param[in] caps bitor'ed combination of GravityModel::mask values
* specifying the capabilities of the resulting GravityCircle object.
* @exception std::bad_alloc if the memory necessary for creating a
* GravityCircle can't be allocated.
* @return a GravityCircle object whose member functions computes the
* gravitational field at a particular values of \e lon.
*
* The GravityModel::mask values are
* - \e caps |= GravityModel::GRAVITY
* - \e caps |= GravityModel::DISTURBANCE
* - \e caps |= GravityModel::DISTURBING_POTENTIAL
* - \e caps |= GravityModel::SPHERICAL_ANOMALY
* - \e caps |= GravityModel::GEOID_HEIGHT
* .
* The default value of \e caps is GravityModel::ALL which turns on all the
* capabilities. If an unsupported function is invoked, it will return
* NaNs. Note that GravityModel::GEOID_HEIGHT will only be honored if \e h
* = 0.
*
* If the field at several points on a circle of latitude need to be
* calculated then creating a GravityCircle object and using its member
* functions will be substantially faster, especially for high-degree
* models. See \ref gravityparallel for an example of using GravityCircle
* (together with OpenMP) to speed up the computation of geoid heights.
**********************************************************************/
GravityCircle Circle(real lat, real h, unsigned caps = ALL) const;
///@}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return the NormalGravity object for the reference ellipsoid.
**********************************************************************/
const NormalGravity& ReferenceEllipsoid() const { return _earth; }
/**
* @return the description of the gravity model, if available, in the data
* file; if absent, return "NONE".
**********************************************************************/
const std::string& Description() const { return _description; }
/**
* @return date of the model; if absent, return "UNKNOWN".
**********************************************************************/
const std::string& DateTime() const { return _date; }
/**
* @return full file name used to load the gravity model.
**********************************************************************/
const std::string& GravityFile() const { return _filename; }
/**
* @return "name" used to load the gravity model (from the first argument
* of the constructor, but this may be overridden by the model file).
**********************************************************************/
const std::string& GravityModelName() const { return _name; }
/**
* @return directory used to load the gravity model.
**********************************************************************/
const std::string& GravityModelDirectory() const { return _dir; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters).
**********************************************************************/
Math::real MajorRadius() const { return _earth.MajorRadius(); }
/**
* @return \e GM the mass constant of the model (m<sup>3</sup>
* s<sup>−2</sup>); this is the product of \e G the gravitational
* constant and \e M the mass of the earth (usually including the mass of
* the earth's atmosphere).
**********************************************************************/
Math::real MassConstant() const { return _GMmodel; }
/**
* @return \e GM the mass constant of the ReferenceEllipsoid()
* (m<sup>3</sup> s<sup>−2</sup>).
**********************************************************************/
Math::real ReferenceMassConstant() const
{ return _earth.MassConstant(); }
/**
* @return ω the angular velocity of the model and the
* ReferenceEllipsoid() (rad s<sup>−1</sup>).
**********************************************************************/
Math::real AngularVelocity() const
{ return _earth.AngularVelocity(); }
/**
* @return \e f the flattening of the ellipsoid.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
///@}
/**
* @return the default path for gravity model data files.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_GRAVITY_PATH, if set; otherwise, it is
* $GEOGRAPHICLIB_DATA/gravity if the environment variable
* GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
* (/usr/local/share/GeographicLib/gravity on non-Windows systems and
* C:/ProgramData/GeographicLib/gravity on Windows systems).
**********************************************************************/
static std::string DefaultGravityPath();
/**
* @return the default name for the gravity model.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_GRAVITY_NAME, if set; otherwise, it is "egm96". The
* GravityModel class does not use this function; it is just provided as a
* convenience for a calling program when constructing a GravityModel
* object.
**********************************************************************/
static std::string DefaultGravityName();
};
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_GRAVITYMODEL_HPP
|