/usr/include/GeographicLib/GeodesicExact.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | /**
* \file GeodesicExact.hpp
* \brief Header for GeographicLib::GeodesicExact class
*
* Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GEODESICEXACT_HPP)
#define GEOGRAPHICLIB_GEODESICEXACT_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/EllipticFunction.hpp>
#if !defined(GEOGRAPHICLIB_GEODESICEXACT_ORDER)
/**
* The order of the expansions used by GeodesicExact.
**********************************************************************/
# define GEOGRAPHICLIB_GEODESICEXACT_ORDER 30
#endif
namespace GeographicLib {
class GeodesicLineExact;
/**
* \brief Exact geodesic calculations
*
* The equations for geodesics on an ellipsoid can be expressed in terms of
* incomplete elliptic integrals. The Geodesic class expands these integrals
* in a series in the flattening \e f and this provides an accurate solution
* for \e f ∈ [-0.01, 0.01]. The GeodesicExact class computes the
* ellitpic integrals directly and so provides a solution which is valid for
* all \e f. However, in practice, its use should be limited to about
* <i>b</i>/\e a ∈ [0.01, 100] or \e f ∈ [−99, 0.99].
*
* For the WGS84 ellipsoid, these classes are 2--3 times \e slower than the
* series solution and 2--3 times \e less \e accurate (because it's less easy
* to control round-off errors with the elliptic integral formulation); i.e.,
* the error is about 40 nm (40 nanometers) instead of 15 nm. However the
* error in the series solution scales as <i>f</i><sup>7</sup> while the
* error in the elliptic integral solution depends weakly on \e f. If the
* quarter meridian distance is 10000 km and the ratio <i>b</i>/\e a = 1
* − \e f is varied then the approximate maximum error (expressed as a
* distance) is <pre>
* 1 - f error (nm)
* 1/128 387
* 1/64 345
* 1/32 269
* 1/16 210
* 1/8 115
* 1/4 69
* 1/2 36
* 1 15
* 2 25
* 4 96
* 8 318
* 16 985
* 32 2352
* 64 6008
* 128 19024
* </pre>
*
* The computation of the area in these classes is via a 30th order series.
* This gives accurate results for <i>b</i>/\e a ∈ [1/2, 2]; the
* accuracy is about 8 decimal digits for <i>b</i>/\e a ∈ [1/4, 4].
*
* See \ref geodellip for the formulation. See the documentation on the
* Geodesic class for additional information on the geodesic problems.
*
* Example of use:
* \include example-GeodesicExact.cpp
*
* <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
* providing access to the functionality of GeodesicExact and
* GeodesicLineExact (via the -E option).
**********************************************************************/
class GEOGRAPHICLIB_EXPORT GeodesicExact {
private:
typedef Math::real real;
friend class GeodesicLineExact;
static const int nC4_ = GEOGRAPHICLIB_GEODESICEXACT_ORDER;
static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
static const unsigned maxit1_ = 20;
unsigned maxit2_;
real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
enum captype {
CAP_NONE = 0U,
CAP_E = 1U<<0,
// Skip 1U<<1 for compatibility with Geodesic (not required)
CAP_D = 1U<<2,
CAP_H = 1U<<3,
CAP_C4 = 1U<<4,
CAP_ALL = 0x1FU,
CAP_MASK = CAP_ALL,
OUT_ALL = 0x7F80U,
OUT_MASK = 0xFF80U, // Includes LONG_UNROLL
};
static real CosSeries(real sinx, real cosx, const real c[], int n);
static real Astroid(real x, real y);
real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
real _C4x[nC4x_];
void Lengths(const EllipticFunction& E,
real sig12,
real ssig1, real csig1, real dn1,
real ssig2, real csig2, real dn2,
real cbet1, real cbet2, unsigned outmask,
real& s12s, real& m12a, real& m0,
real& M12, real& M21) const;
real InverseStart(EllipticFunction& E,
real sbet1, real cbet1, real dn1,
real sbet2, real cbet2, real dn2,
real lam12, real slam12, real clam12,
real& salp1, real& calp1,
real& salp2, real& calp2, real& dnm) const;
real Lambda12(real sbet1, real cbet1, real dn1,
real sbet2, real cbet2, real dn2,
real salp1, real calp1, real slam120, real clam120,
real& salp2, real& calp2, real& sig12,
real& ssig1, real& csig1, real& ssig2, real& csig2,
EllipticFunction& E,
real& domg12, bool diffp, real& dlam12) const;
real GenInverse(real lat1, real lon1, real lat2, real lon2,
unsigned outmask, real& s12,
real& salp1, real& calp1, real& salp2, real& calp2,
real& m12, real& M12, real& M21, real& S12) const;
// These are Maxima generated functions to provide series approximations to
// the integrals for the area.
void C4coeff();
void C4f(real k2, real c[]) const;
// Large coefficients are split so that lo contains the low 52 bits and hi
// the rest. This choice avoids double rounding with doubles and higher
// precision types. float coefficients will suffer double rounding;
// however the accuracy is already lousy for floats.
static Math::real reale(long long hi, long long lo) {
using std::ldexp;
return ldexp(real(hi), 52) + lo;
}
public:
/**
* Bit masks for what calculations to do. These masks do double duty.
* They signify to the GeodesicLineExact::GeodesicLineExact constructor and
* to GeodesicExact::Line what capabilities should be included in the
* GeodesicLineExact object. They also specify which results to return in
* the general routines GeodesicExact::GenDirect and
* GeodesicExact::GenInverse routines. GeodesicLineExact::mask is a
* duplication of this enum.
**********************************************************************/
enum mask {
/**
* No capabilities, no output.
* @hideinitializer
**********************************************************************/
NONE = 0U,
/**
* Calculate latitude \e lat2. (It's not necessary to include this as a
* capability to GeodesicLineExact because this is included by default.)
* @hideinitializer
**********************************************************************/
LATITUDE = 1U<<7 | CAP_NONE,
/**
* Calculate longitude \e lon2.
* @hideinitializer
**********************************************************************/
LONGITUDE = 1U<<8 | CAP_H,
/**
* Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
* include this as a capability to GeodesicLineExact because this is
* included by default.)
* @hideinitializer
**********************************************************************/
AZIMUTH = 1U<<9 | CAP_NONE,
/**
* Calculate distance \e s12.
* @hideinitializer
**********************************************************************/
DISTANCE = 1U<<10 | CAP_E,
/**
* Allow distance \e s12 to be used as input in the direct geodesic
* problem.
* @hideinitializer
**********************************************************************/
DISTANCE_IN = 1U<<11 | CAP_E,
/**
* Calculate reduced length \e m12.
* @hideinitializer
**********************************************************************/
REDUCEDLENGTH = 1U<<12 | CAP_D,
/**
* Calculate geodesic scales \e M12 and \e M21.
* @hideinitializer
**********************************************************************/
GEODESICSCALE = 1U<<13 | CAP_D,
/**
* Calculate area \e S12.
* @hideinitializer
**********************************************************************/
AREA = 1U<<14 | CAP_C4,
/**
* Unroll \e lon2 in the direct calculation.
* @hideinitializer
**********************************************************************/
LONG_UNROLL = 1U<<15,
/**
* All capabilities, calculate everything. (LONG_UNROLL is not
* included in this mask.)
* @hideinitializer
**********************************************************************/
ALL = OUT_ALL| CAP_ALL,
};
/** \name Constructor
**********************************************************************/
///@{
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
* positive.
**********************************************************************/
GeodesicExact(real a, real f);
///@}
/** \name Direct geodesic problem specified in terms of distance.
**********************************************************************/
///@{
/**
* Perform the direct geodesic calculation where the length of the geodesic
* is specified in terms of distance.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* signed.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* \e lat1 should be in the range [−90°, 90°]. The values of
* \e lon2 and \e azi2 returned are in the range [−180°,
* 180°].
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+. An arc length greater that
* 180° signifies a geodesic which is not a shortest path. (For a
* prolate ellipsoid, an additional condition is necessary for a shortest
* path: the longitudinal extent must not exceed of 180°.)
*
* The following functions are overloaded versions of GeodesicExact::Direct
* which omit some of the output parameters. Note, however, that the arc
* length is always computed and returned as the function value.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21, real& S12)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, t, m12, M12, M21, S12);
}
/**
* See the documentation for GeodesicExact::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2, real& m12)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
lat2, lon2, azi2, t, m12, t, t, t);
}
/**
* See the documentation for GeodesicExact::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& M12, real& M21)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
lat2, lon2, azi2, t, t, M12, M21, t);
}
/**
* See the documentation for GeodesicExact::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, t, m12, M12, M21, t);
}
///@}
/** \name Direct geodesic problem specified in terms of arc length.
**********************************************************************/
///@{
/**
* Perform the direct geodesic calculation where the length of the geodesic
* is specified in terms of arc length.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
* be signed.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
*
* \e lat1 should be in the range [−90°, 90°]. The values of
* \e lon2 and \e azi2 returned are in the range [−180°,
* 180°].
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+. An arc length greater that
* 180° signifies a geodesic which is not a shortest path. (For a
* prolate ellipsoid, an additional condition is necessary for a shortest
* path: the longitudinal extent must not exceed of 180°.)
*
* The following functions are overloaded versions of GeodesicExact::Direct
* which omit some of the output parameters.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& m12, real& M12, real& M21, real& S12)
const {
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, s12, m12, M12, M21, S12);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12)
const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
lat2, lon2, azi2, s12, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH,
lat2, lon2, azi2, s12, m12, t, t, t);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& M12, real& M21) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
GEODESICSCALE,
lat2, lon2, azi2, s12, t, M12, M21, t);
}
/**
* See the documentation for GeodesicExact::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& m12, real& M12, real& M21) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, s12, m12, M12, M21, t);
}
///@}
/** \name General version of the direct geodesic solution.
**********************************************************************/
///@{
/**
* The general direct geodesic calculation. GeodesicExact::Direct and
* GeodesicExact::ArcDirect are defined in terms of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] arcmode boolean flag determining the meaning of the second
* parameter.
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
* point 1 and point 2 (meters); otherwise it is the arc length between
* point 1 and point 2 (degrees); it can be signed.
* @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
* specifying which of the following parameters should be set.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The GeodesicExact::mask values possible for \e outmask are
* - \e outmask |= GeodesicExact::LATITUDE for the latitude \e lat2;
* - \e outmask |= GeodesicExact::LONGITUDE for the latitude \e lon2;
* - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
* - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
* - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
* m12;
* - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
* M12 and \e M21;
* - \e outmask |= GeodesicExact::AREA for the area \e S12;
* - \e outmask |= GeodesicExact::ALL for all of the above;
* - \e outmask |= GeodesicExact::LONG_UNROLL to unroll \e lon2 instead of
* wrapping it into the range [−180°, 180°].
* .
* The function value \e a12 is always computed and returned and this
* equals \e s12_a12 is \e arcmode is true. If \e outmask includes
* GeodesicExact::DISTANCE and \e arcmode is false, then \e s12 = \e
* s12_a12. It is not necessary to include GeodesicExact::DISTANCE_IN in
* \e outmask; this is automatically included is \e arcmode is false.
*
* With the GeodesicExact::LONG_UNROLL bit set, the quantity \e lon2
* − \e lon1 indicates how many times and in what sense the geodesic
* encircles the ellipsoid.
**********************************************************************/
Math::real GenDirect(real lat1, real lon1, real azi1,
bool arcmode, real s12_a12, unsigned outmask,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12, real& M12, real& M21,
real& S12) const;
///@}
/** \name Inverse geodesic problem.
**********************************************************************/
///@{
/**
* Perform the inverse geodesic calculation.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] azi1 azimuth at point 1 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* \e lat1 and \e lat2 should be in the range [−90°, 90°].
* The values of \e azi1 and \e azi2 returned are in the range
* [−180°, 180°].
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+.
*
* The following functions are overloaded versions of
* GeodesicExact::Inverse which omit some of the output parameters. Note,
* however, that the arc length is always computed and returned as the
* function value.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12,
real& M12, real& M21, real& S12) const {
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE | AREA,
s12, azi1, azi2, m12, M12, M21, S12);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE,
s12, t, t, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& azi1, real& azi2) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
AZIMUTH,
t, azi1, azi2, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2)
const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH,
s12, azi1, azi2, t, t, t, t);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12)
const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH | REDUCEDLENGTH,
s12, azi1, azi2, m12, t, t, t);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2,
real& M12, real& M21) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH | GEODESICSCALE,
s12, azi1, azi2, t, M12, M21, t);
}
/**
* See the documentation for GeodesicExact::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12,
real& M12, real& M21) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE,
s12, azi1, azi2, m12, M12, M21, t);
}
///@}
/** \name General version of inverse geodesic solution.
**********************************************************************/
///@{
/**
* The general inverse geodesic calculation. GeodesicExact::Inverse is
* defined in terms of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
* specifying which of the following parameters should be set.
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] azi1 azimuth at point 1 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The GeodesicExact::mask values possible for \e outmask are
* - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
* - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
* - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
* m12;
* - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
* M12 and \e M21;
* - \e outmask |= GeodesicExact::AREA for the area \e S12;
* - \e outmask |= GeodesicExact::ALL for all of the above.
* .
* The arc length is always computed and returned as the function value.
**********************************************************************/
Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
unsigned outmask,
real& s12, real& azi1, real& azi2,
real& m12, real& M12, real& M21, real& S12) const;
///@}
/** \name Interface to GeodesicLineExact.
**********************************************************************/
///@{
/**
* Set up to compute several points on a single geodesic.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
* specifying the capabilities the GeodesicLineExact object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLineExact::Position.
* @return a GeodesicLineExact object.
*
* \e lat1 should be in the range [−90°, 90°].
*
* The GeodesicExact::mask values are
* - \e caps |= GeodesicExact::LATITUDE for the latitude \e lat2; this is
* added automatically;
* - \e caps |= GeodesicExact::LONGITUDE for the latitude \e lon2;
* - \e caps |= GeodesicExact::AZIMUTH for the azimuth \e azi2; this is
* added automatically;
* - \e caps |= GeodesicExact::DISTANCE for the distance \e s12;
* - \e caps |= GeodesicExact::REDUCEDLENGTH for the reduced length \e m12;
* - \e caps |= GeodesicExact::GEODESICSCALE for the geodesic scales \e M12
* and \e M21;
* - \e caps |= GeodesicExact::AREA for the area \e S12;
* - \e caps |= GeodesicExact::DISTANCE_IN permits the length of the
* geodesic to be given in terms of \e s12; without this capability the
* length can only be specified in terms of arc length;
* - \e caps |= GeodesicExact::ALL for all of the above.
* .
* The default value of \e caps is GeodesicExact::ALL which turns on all
* the capabilities.
*
* If the point is at a pole, the azimuth is defined by keeping \e lon1
* fixed, writing \e lat1 = ±(90 − ε), and taking the
* limit ε → 0+.
**********************************************************************/
GeodesicLineExact Line(real lat1, real lon1, real azi1,
unsigned caps = ALL) const;
/**
* Define a GeodesicLineExact in terms of the inverse geodesic problem.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
* specifying the capabilities the GeodesicLineExact object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLineExact::Position.
* @return a GeodesicLineExact object.
*
* This function sets point 3 of the GeodesicLineExact to correspond to
* point 2 of the inverse geodesic problem.
*
* \e lat1 and \e lat2 should be in the range [−90°, 90°].
**********************************************************************/
GeodesicLineExact InverseLine(real lat1, real lon1, real lat2, real lon2,
unsigned caps = ALL) const;
/**
* Define a GeodesicLineExact in terms of the direct geodesic problem
* specified in terms of distance.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
* specifying the capabilities the GeodesicLineExact object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLineExact::Position.
* @return a GeodesicLineExact object.
*
* This function sets point 3 of the GeodesicLineExact to correspond to
* point 2 of the direct geodesic problem.
*
* \e lat1 should be in the range [−90°, 90°].
**********************************************************************/
GeodesicLineExact DirectLine(real lat1, real lon1, real azi1, real s12,
unsigned caps = ALL) const;
/**
* Define a GeodesicLineExact in terms of the direct geodesic problem
* specified in terms of arc length.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
* be negative.
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
* specifying the capabilities the GeodesicLineExact object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLineExact::Position.
* @return a GeodesicLineExact object.
*
* This function sets point 3 of the GeodesicLineExact to correspond to
* point 2 of the direct geodesic problem.
*
* \e lat1 should be in the range [−90°, 90°].
**********************************************************************/
GeodesicLineExact ArcDirectLine(real lat1, real lon1, real azi1, real a12,
unsigned caps = ALL) const;
/**
* Define a GeodesicLineExact in terms of the direct geodesic problem
* specified in terms of either distance or arc length.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] arcmode boolean flag determining the meaning of the \e
* s12_a12.
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
* point 1 and point 2 (meters); otherwise it is the arc length between
* point 1 and point 2 (degrees); it can be negative.
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
* specifying the capabilities the GeodesicLineExact object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLineExact::Position.
* @return a GeodesicLineExact object.
*
* This function sets point 3 of the GeodesicLineExact to correspond to
* point 2 of the direct geodesic problem.
*
* \e lat1 should be in the range [−90°, 90°].
**********************************************************************/
GeodesicLineExact GenDirectLine(real lat1, real lon1, real azi1,
bool arcmode, real s12_a12,
unsigned caps = ALL) const;
///@}
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _a; }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _f; }
/**
* @return total area of ellipsoid in meters<sup>2</sup>. The area of a
* polygon encircling a pole can be found by adding
* GeodesicExact::EllipsoidArea()/2 to the sum of \e S12 for each side of
* the polygon.
**********************************************************************/
Math::real EllipsoidArea() const
{ return 4 * Math::pi() * _c2; }
///@}
/**
* A global instantiation of GeodesicExact with the parameters for the
* WGS84 ellipsoid.
**********************************************************************/
static const GeodesicExact& WGS84();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_GEODESICEXACT_HPP
|