This file is indexed.

/usr/include/GeographicLib/GeodesicExact.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/**
 * \file GeodesicExact.hpp
 * \brief Header for GeographicLib::GeodesicExact class
 *
 * Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_GEODESICEXACT_HPP)
#define GEOGRAPHICLIB_GEODESICEXACT_HPP 1

#include <GeographicLib/Constants.hpp>
#include <GeographicLib/EllipticFunction.hpp>

#if !defined(GEOGRAPHICLIB_GEODESICEXACT_ORDER)
/**
 * The order of the expansions used by GeodesicExact.
 **********************************************************************/
#  define GEOGRAPHICLIB_GEODESICEXACT_ORDER 30
#endif

namespace GeographicLib {

  class GeodesicLineExact;

  /**
   * \brief Exact geodesic calculations
   *
   * The equations for geodesics on an ellipsoid can be expressed in terms of
   * incomplete elliptic integrals.  The Geodesic class expands these integrals
   * in a series in the flattening \e f and this provides an accurate solution
   * for \e f &isin; [-0.01, 0.01].  The GeodesicExact class computes the
   * ellitpic integrals directly and so provides a solution which is valid for
   * all \e f.  However, in practice, its use should be limited to about
   * <i>b</i>/\e a &isin; [0.01, 100] or \e f &isin; [&minus;99, 0.99].
   *
   * For the WGS84 ellipsoid, these classes are 2--3 times \e slower than the
   * series solution and 2--3 times \e less \e accurate (because it's less easy
   * to control round-off errors with the elliptic integral formulation); i.e.,
   * the error is about 40 nm (40 nanometers) instead of 15 nm.  However the
   * error in the series solution scales as <i>f</i><sup>7</sup> while the
   * error in the elliptic integral solution depends weakly on \e f.  If the
   * quarter meridian distance is 10000 km and the ratio <i>b</i>/\e a = 1
   * &minus; \e f is varied then the approximate maximum error (expressed as a
   * distance) is <pre>
   *       1 - f  error (nm)
   *       1/128     387
   *       1/64      345
   *       1/32      269
   *       1/16      210
   *       1/8       115
   *       1/4        69
   *       1/2        36
   *         1        15
   *         2        25
   *         4        96
   *         8       318
   *        16       985
   *        32      2352
   *        64      6008
   *       128     19024
   * </pre>
   *
   * The computation of the area in these classes is via a 30th order series.
   * This gives accurate results for <i>b</i>/\e a &isin; [1/2, 2]; the
   * accuracy is about 8 decimal digits for <i>b</i>/\e a &isin; [1/4, 4].
   *
   * See \ref geodellip for the formulation.  See the documentation on the
   * Geodesic class for additional information on the geodesic problems.
   *
   * Example of use:
   * \include example-GeodesicExact.cpp
   *
   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
   * providing access to the functionality of GeodesicExact and
   * GeodesicLineExact (via the -E option).
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT GeodesicExact {
  private:
    typedef Math::real real;
    friend class GeodesicLineExact;
    static const int nC4_ = GEOGRAPHICLIB_GEODESICEXACT_ORDER;
    static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
    static const unsigned maxit1_ = 20;
    unsigned maxit2_;
    real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;

    enum captype {
      CAP_NONE = 0U,
      CAP_E    = 1U<<0,
      // Skip 1U<<1 for compatibility with Geodesic (not required)
      CAP_D    = 1U<<2,
      CAP_H    = 1U<<3,
      CAP_C4   = 1U<<4,
      CAP_ALL  = 0x1FU,
      CAP_MASK = CAP_ALL,
      OUT_ALL  = 0x7F80U,
      OUT_MASK = 0xFF80U,       // Includes LONG_UNROLL
    };

    static real CosSeries(real sinx, real cosx, const real c[], int n);
    static real Astroid(real x, real y);

    real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
    real _C4x[nC4x_];

    void Lengths(const EllipticFunction& E,
                 real sig12,
                 real ssig1, real csig1, real dn1,
                 real ssig2, real csig2, real dn2,
                 real cbet1, real cbet2, unsigned outmask,
                 real& s12s, real& m12a, real& m0,
                 real& M12, real& M21) const;
    real InverseStart(EllipticFunction& E,
                      real sbet1, real cbet1, real dn1,
                      real sbet2, real cbet2, real dn2,
                      real lam12, real slam12, real clam12,
                      real& salp1, real& calp1,
                      real& salp2, real& calp2, real& dnm) const;
    real Lambda12(real sbet1, real cbet1, real dn1,
                  real sbet2, real cbet2, real dn2,
                  real salp1, real calp1, real slam120, real clam120,
                  real& salp2, real& calp2, real& sig12,
                  real& ssig1, real& csig1, real& ssig2, real& csig2,
                  EllipticFunction& E,
                  real& domg12, bool diffp, real& dlam12) const;
    real GenInverse(real lat1, real lon1, real lat2, real lon2,
                    unsigned outmask, real& s12,
                    real& salp1, real& calp1, real& salp2, real& calp2,
                    real& m12, real& M12, real& M21, real& S12) const;

    // These are Maxima generated functions to provide series approximations to
    // the integrals for the area.
    void C4coeff();
    void C4f(real k2, real c[]) const;
    // Large coefficients are split so that lo contains the low 52 bits and hi
    // the rest.  This choice avoids double rounding with doubles and higher
    // precision types.  float coefficients will suffer double rounding;
    // however the accuracy is already lousy for floats.
    static Math::real reale(long long hi, long long lo) {
      using std::ldexp;
      return ldexp(real(hi), 52) + lo;
    }

  public:

    /**
     * Bit masks for what calculations to do.  These masks do double duty.
     * They signify to the GeodesicLineExact::GeodesicLineExact constructor and
     * to GeodesicExact::Line what capabilities should be included in the
     * GeodesicLineExact object.  They also specify which results to return in
     * the general routines GeodesicExact::GenDirect and
     * GeodesicExact::GenInverse routines.  GeodesicLineExact::mask is a
     * duplication of this enum.
     **********************************************************************/
    enum mask {
      /**
       * No capabilities, no output.
       * @hideinitializer
       **********************************************************************/
      NONE          = 0U,
      /**
       * Calculate latitude \e lat2.  (It's not necessary to include this as a
       * capability to GeodesicLineExact because this is included by default.)
       * @hideinitializer
       **********************************************************************/
      LATITUDE      = 1U<<7  | CAP_NONE,
      /**
       * Calculate longitude \e lon2.
       * @hideinitializer
       **********************************************************************/
      LONGITUDE     = 1U<<8  | CAP_H,
      /**
       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
       * include this as a capability to GeodesicLineExact because this is
       * included by default.)
       * @hideinitializer
       **********************************************************************/
      AZIMUTH       = 1U<<9  | CAP_NONE,
      /**
       * Calculate distance \e s12.
       * @hideinitializer
       **********************************************************************/
      DISTANCE      = 1U<<10 | CAP_E,
      /**
       * Allow distance \e s12 to be used as input in the direct geodesic
       * problem.
       * @hideinitializer
       **********************************************************************/
      DISTANCE_IN   = 1U<<11 | CAP_E,
      /**
       * Calculate reduced length \e m12.
       * @hideinitializer
       **********************************************************************/
      REDUCEDLENGTH = 1U<<12 | CAP_D,
      /**
       * Calculate geodesic scales \e M12 and \e M21.
       * @hideinitializer
       **********************************************************************/
      GEODESICSCALE = 1U<<13 | CAP_D,
      /**
       * Calculate area \e S12.
       * @hideinitializer
       **********************************************************************/
      AREA          = 1U<<14 | CAP_C4,
      /**
       * Unroll \e lon2 in the direct calculation.
       * @hideinitializer
       **********************************************************************/
      LONG_UNROLL   = 1U<<15,
      /**
       * All capabilities, calculate everything.  (LONG_UNROLL is not
       * included in this mask.)
       * @hideinitializer
       **********************************************************************/
      ALL           = OUT_ALL| CAP_ALL,
    };

    /** \name Constructor
     **********************************************************************/
    ///@{
    /**
     * Constructor for a ellipsoid with
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
     *   Negative \e f gives a prolate ellipsoid.
     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
     *   positive.
     **********************************************************************/
    GeodesicExact(real a, real f);
    ///@}

    /** \name Direct geodesic problem specified in terms of distance.
     **********************************************************************/
    ///@{
    /**
     * Perform the direct geodesic calculation where the length of the geodesic
     * is specified in terms of distance.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
     *   signed.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
     * 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
     * prolate ellipsoid, an additional condition is necessary for a shortest
     * path: the longitudinal extent must not exceed of 180&deg;.)
     *
     * The following functions are overloaded versions of GeodesicExact::Direct
     * which omit some of the output parameters.  Note, however, that the arc
     * length is always computed and returned as the function value.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& m12, real& M12, real& M21, real& S12)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH |
                       REDUCEDLENGTH | GEODESICSCALE | AREA,
                       lat2, lon2, azi2, t, m12, M12, M21, S12);
    }

    /**
     * See the documentation for GeodesicExact::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE,
                       lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH,
                       lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2, real& m12)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
                       lat2, lon2, azi2, t, m12, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& M12, real& M21)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
                       lat2, lon2, azi2, t, t, M12, M21, t);
    }

    /**
     * See the documentation for GeodesicExact::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& m12, real& M12, real& M21)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH |
                       REDUCEDLENGTH | GEODESICSCALE,
                       lat2, lon2, azi2, t, m12, M12, M21, t);
    }
    ///@}

    /** \name Direct geodesic problem specified in terms of arc length.
     **********************************************************************/
    ///@{
    /**
     * Perform the direct geodesic calculation where the length of the geodesic
     * is specified in terms of arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
     *   be signed.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
     * 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
     * prolate ellipsoid, an additional condition is necessary for a shortest
     * path: the longitudinal extent must not exceed of 180&deg;.)
     *
     * The following functions are overloaded versions of GeodesicExact::Direct
     * which omit some of the output parameters.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& m12, real& M12, real& M21, real& S12)
      const {
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH | GEODESICSCALE | AREA,
                lat2, lon2, azi2, s12, m12, M12, M21, S12);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE,
                lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH,
                lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12)
      const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
                lat2, lon2, azi2, s12, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2,
                   real& s12, real& m12) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH,
                lat2, lon2, azi2, s12, m12, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& M12, real& M21) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                GEODESICSCALE,
                lat2, lon2, azi2, s12, t, M12, M21, t);
    }

    /**
     * See the documentation for GeodesicExact::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& m12, real& M12, real& M21) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH | GEODESICSCALE,
                lat2, lon2, azi2, s12, m12, M12, M21, t);
    }
    ///@}

    /** \name General version of the direct geodesic solution.
     **********************************************************************/
    ///@{

    /**
     * The general direct geodesic calculation.  GeodesicExact::Direct and
     * GeodesicExact::ArcDirect are defined in terms of this function.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] arcmode boolean flag determining the meaning of the second
     *   parameter.
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
     *   point 1 and point 2 (meters); otherwise it is the arc length between
     *   point 1 and point 2 (degrees); it can be signed.
     * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
     *   specifying which of the following parameters should be set.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The GeodesicExact::mask values possible for \e outmask are
     * - \e outmask |= GeodesicExact::LATITUDE for the latitude \e lat2;
     * - \e outmask |= GeodesicExact::LONGITUDE for the latitude \e lon2;
     * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
     * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
     * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
     *   m12;
     * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
     *   M12 and \e M21;
     * - \e outmask |= GeodesicExact::AREA for the area \e S12;
     * - \e outmask |= GeodesicExact::ALL for all of the above;
     * - \e outmask |= GeodesicExact::LONG_UNROLL to unroll \e lon2 instead of
     *   wrapping it into the range [&minus;180&deg;, 180&deg;].
     * .
     * The function value \e a12 is always computed and returned and this
     * equals \e s12_a12 is \e arcmode is true.  If \e outmask includes
     * GeodesicExact::DISTANCE and \e arcmode is false, then \e s12 = \e
     * s12_a12.  It is not necessary to include GeodesicExact::DISTANCE_IN in
     * \e outmask; this is automatically included is \e arcmode is false.
     *
     * With the GeodesicExact::LONG_UNROLL bit set, the quantity \e lon2
     * &minus; \e lon1 indicates how many times and in what sense the geodesic
     * encircles the ellipsoid.
     **********************************************************************/
    Math::real GenDirect(real lat1, real lon1, real azi1,
                         bool arcmode, real s12_a12, unsigned outmask,
                         real& lat2, real& lon2, real& azi2,
                         real& s12, real& m12, real& M12, real& M21,
                         real& S12) const;
    ///@}

    /** \name Inverse geodesic problem.
     **********************************************************************/
    ///@{
    /**
     * Perform the inverse geodesic calculation.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] azi1 azimuth at point 1 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
     * The values of \e azi1 and \e azi2 returned are in the range
     * [&minus;180&deg;, 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.
     *
     * The following functions are overloaded versions of
     * GeodesicExact::Inverse which omit some of the output parameters.  Note,
     * however, that the arc length is always computed and returned as the
     * function value.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12,
                       real& M12, real& M21, real& S12) const {
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH |
                        REDUCEDLENGTH | GEODESICSCALE | AREA,
                        s12, azi1, azi2, m12, M12, M21, S12);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE,
                        s12, t, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& azi1, real& azi2) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        AZIMUTH,
                        t, azi1, azi2, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2)
      const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH,
                        s12, azi1, azi2, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12)
      const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH | REDUCEDLENGTH,
                        s12, azi1, azi2, m12, t, t, t);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2,
                       real& M12, real& M21) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH | GEODESICSCALE,
                        s12, azi1, azi2, t, M12, M21, t);
    }

    /**
     * See the documentation for GeodesicExact::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12,
                       real& M12, real& M21) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH |
                        REDUCEDLENGTH | GEODESICSCALE,
                        s12, azi1, azi2, m12, M12, M21, t);
    }
    ///@}

    /** \name General version of inverse geodesic solution.
     **********************************************************************/
    ///@{
    /**
     * The general inverse geodesic calculation.  GeodesicExact::Inverse is
     * defined in terms of this function.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
     *   specifying which of the following parameters should be set.
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] azi1 azimuth at point 1 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The GeodesicExact::mask values possible for \e outmask are
     * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
     * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
     * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
     *   m12;
     * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
     *   M12 and \e M21;
     * - \e outmask |= GeodesicExact::AREA for the area \e S12;
     * - \e outmask |= GeodesicExact::ALL for all of the above.
     * .
     * The arc length is always computed and returned as the function value.
     **********************************************************************/
    Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
                          unsigned outmask,
                          real& s12, real& azi1, real& azi2,
                          real& m12, real& M12, real& M21, real& S12) const;
    ///@}

    /** \name Interface to GeodesicLineExact.
     **********************************************************************/
    ///@{

    /**
     * Set up to compute several points on a single geodesic.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLineExact::Position.
     * @return a GeodesicLineExact object.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     *
     * The GeodesicExact::mask values are
     * - \e caps |= GeodesicExact::LATITUDE for the latitude \e lat2; this is
     *   added automatically;
     * - \e caps |= GeodesicExact::LONGITUDE for the latitude \e lon2;
     * - \e caps |= GeodesicExact::AZIMUTH for the azimuth \e azi2; this is
     *   added automatically;
     * - \e caps |= GeodesicExact::DISTANCE for the distance \e s12;
     * - \e caps |= GeodesicExact::REDUCEDLENGTH for the reduced length \e m12;
     * - \e caps |= GeodesicExact::GEODESICSCALE for the geodesic scales \e M12
     *   and \e M21;
     * - \e caps |= GeodesicExact::AREA for the area \e S12;
     * - \e caps |= GeodesicExact::DISTANCE_IN permits the length of the
     *   geodesic to be given in terms of \e s12; without this capability the
     *   length can only be specified in terms of arc length;
     * - \e caps |= GeodesicExact::ALL for all of the above.
     * .
     * The default value of \e caps is GeodesicExact::ALL which turns on all
     * the capabilities.
     *
     * If the point is at a pole, the azimuth is defined by keeping \e lon1
     * fixed, writing \e lat1 = &plusmn;(90 &minus; &epsilon;), and taking the
     * limit &epsilon; &rarr; 0+.
     **********************************************************************/
    GeodesicLineExact Line(real lat1, real lon1, real azi1,
                           unsigned caps = ALL) const;

    /**
     * Define a GeodesicLineExact in terms of the inverse geodesic problem.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLineExact::Position.
     * @return a GeodesicLineExact object.
     *
     * This function sets point 3 of the GeodesicLineExact to correspond to
     * point 2 of the inverse geodesic problem.
     *
     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLineExact InverseLine(real lat1, real lon1, real lat2, real lon2,
                                  unsigned caps = ALL) const;

    /**
     * Define a GeodesicLineExact in terms of the direct geodesic problem
     * specified in terms of distance.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
     *   negative.
     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLineExact::Position.
     * @return a GeodesicLineExact object.
     *
     * This function sets point 3 of the GeodesicLineExact to correspond to
     * point 2 of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLineExact DirectLine(real lat1, real lon1, real azi1, real s12,
                                 unsigned caps = ALL) const;

    /**
     * Define a GeodesicLineExact in terms of the direct geodesic problem
     * specified in terms of arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
     *   be negative.
     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLineExact::Position.
     * @return a GeodesicLineExact object.
     *
     * This function sets point 3 of the GeodesicLineExact to correspond to
     * point 2 of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLineExact ArcDirectLine(real lat1, real lon1, real azi1, real a12,
                                    unsigned caps = ALL) const;

    /**
     * Define a GeodesicLineExact in terms of the direct geodesic problem
     * specified in terms of either distance or arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] arcmode boolean flag determining the meaning of the \e
     *   s12_a12.
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
     *   point 1 and point 2 (meters); otherwise it is the arc length between
     *   point 1 and point 2 (degrees); it can be negative.
     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLineExact::Position.
     * @return a GeodesicLineExact object.
     *
     * This function sets point 3 of the GeodesicLineExact to correspond to
     * point 2 of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLineExact GenDirectLine(real lat1, real lon1, real azi1,
                                    bool arcmode, real s12_a12,
                                    unsigned caps = ALL) const;
    ///@}

    /** \name Inspector functions.
     **********************************************************************/
    ///@{

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const { return _a; }

    /**
     * @return \e f the  flattening of the ellipsoid.  This is the
     *   value used in the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _f; }

    /**
     * @return total area of ellipsoid in meters<sup>2</sup>.  The area of a
     *   polygon encircling a pole can be found by adding
     *   GeodesicExact::EllipsoidArea()/2 to the sum of \e S12 for each side of
     *   the polygon.
     **********************************************************************/
    Math::real EllipsoidArea() const
    { return 4 * Math::pi() * _c2; }
    ///@}

    /**
     * A global instantiation of GeodesicExact with the parameters for the
     * WGS84 ellipsoid.
     **********************************************************************/
    static const GeodesicExact& WGS84();

  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_GEODESICEXACT_HPP