This file is indexed.

/usr/include/GeographicLib/Geodesic.hpp is in libgeographic-dev 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
/**
 * \file Geodesic.hpp
 * \brief Header for GeographicLib::Geodesic class
 *
 * Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_GEODESIC_HPP)
#define GEOGRAPHICLIB_GEODESIC_HPP 1

#include <GeographicLib/Constants.hpp>

#if !defined(GEOGRAPHICLIB_GEODESIC_ORDER)
/**
 * The order of the expansions used by Geodesic.
 * GEOGRAPHICLIB_GEODESIC_ORDER can be set to any integer in [3, 8].
 **********************************************************************/
#  define GEOGRAPHICLIB_GEODESIC_ORDER \
  (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
   (GEOGRAPHICLIB_PRECISION == 1 ? 3 : \
    (GEOGRAPHICLIB_PRECISION == 3 ? 7 : 8)))
#endif

namespace GeographicLib {

  class GeodesicLine;

  /**
   * \brief %Geodesic calculations
   *
   * The shortest path between two points on a ellipsoid at (\e lat1, \e lon1)
   * and (\e lat2, \e lon2) is called the geodesic.  Its length is \e s12 and
   * the geodesic from point 1 to point 2 has azimuths \e azi1 and \e azi2 at
   * the two end points.  (The azimuth is the heading measured clockwise from
   * north.  \e azi2 is the "forward" azimuth, i.e., the heading that takes you
   * beyond point 2 not back to point 1.)  In the figure below, latitude if
   * labeled &phi;, longitude &lambda; (with &lambda;<sub>12</sub> =
   * &lambda;<sub>2</sub> &minus; &lambda;<sub>1</sub>), and azimuth &alpha;.
   *
   * <img src="https://upload.wikimedia.org/wikipedia/commons/c/cb/Geodesic_problem_on_an_ellipsoid.svg" width=250 alt="spheroidal triangle">
   *
   * Given \e lat1, \e lon1, \e azi1, and \e s12, we can determine \e lat2, \e
   * lon2, and \e azi2.  This is the \e direct geodesic problem and its
   * solution is given by the function Geodesic::Direct.  (If \e s12 is
   * sufficiently large that the geodesic wraps more than halfway around the
   * earth, there will be another geodesic between the points with a smaller \e
   * s12.)
   *
   * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi1, \e
   * azi2, and \e s12.  This is the \e inverse geodesic problem, whose solution
   * is given by Geodesic::Inverse.  Usually, the solution to the inverse
   * problem is unique.  In cases where there are multiple solutions (all with
   * the same \e s12, of course), all the solutions can be easily generated
   * once a particular solution is provided.
   *
   * The standard way of specifying the direct problem is the specify the
   * distance \e s12 to the second point.  However it is sometimes useful
   * instead to specify the arc length \e a12 (in degrees) on the auxiliary
   * sphere.  This is a mathematical construct used in solving the geodesic
   * problems.  The solution of the direct problem in this form is provided by
   * Geodesic::ArcDirect.  An arc length in excess of 180&deg; indicates that
   * the geodesic is not a shortest path.  In addition, the arc length between
   * an equatorial crossing and the next extremum of latitude for a geodesic is
   * 90&deg;.
   *
   * This class can also calculate several other quantities related to
   * geodesics.  These are:
   * - <i>reduced length</i>.  If we fix the first point and increase \e azi1
   *   by \e dazi1 (radians), the second point is displaced \e m12 \e dazi1 in
   *   the direction \e azi2 + 90&deg;.  The quantity \e m12 is called
   *   the "reduced length" and is symmetric under interchange of the two
   *   points.  On a curved surface the reduced length obeys a symmetry
   *   relation, \e m12 + \e m21 = 0.  On a flat surface, we have \e m12 = \e
   *   s12.  The ratio <i>s12</i>/\e m12 gives the azimuthal scale for an
   *   azimuthal equidistant projection.
   * - <i>geodesic scale</i>.  Consider a reference geodesic and a second
   *   geodesic parallel to this one at point 1 and separated by a small
   *   distance \e dt.  The separation of the two geodesics at point 2 is \e
   *   M12 \e dt where \e M12 is called the "geodesic scale".  \e M21 is
   *   defined similarly (with the geodesics being parallel at point 2).  On a
   *   flat surface, we have \e M12 = \e M21 = 1.  The quantity 1/\e M12 gives
   *   the scale of the Cassini-Soldner projection.
   * - <i>area</i>.  The area between the geodesic from point 1 to point 2 and
   *   the equation is represented by \e S12; it is the area, measured
   *   counter-clockwise, of the geodesic quadrilateral with corners
   *   (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>), (0,<i>lon2</i>), and
   *   (<i>lat2</i>,<i>lon2</i>).  It can be used to compute the area of any
   *   simple geodesic polygon.
   *
   * Overloaded versions of Geodesic::Direct, Geodesic::ArcDirect, and
   * Geodesic::Inverse allow these quantities to be returned.  In addition
   * there are general functions Geodesic::GenDirect, and Geodesic::GenInverse
   * which allow an arbitrary set of results to be computed.  The quantities \e
   * m12, \e M12, \e M21 which all specify the behavior of nearby geodesics
   * obey addition rules.  If points 1, 2, and 3 all lie on a single geodesic,
   * then the following rules hold:
   * - \e s13 = \e s12 + \e s23
   * - \e a13 = \e a12 + \e a23
   * - \e S13 = \e S12 + \e S23
   * - \e m13 = \e m12 \e M23 + \e m23 \e M21
   * - \e M13 = \e M12 \e M23 &minus; (1 &minus; \e M12 \e M21) \e m23 / \e m12
   * - \e M31 = \e M32 \e M21 &minus; (1 &minus; \e M23 \e M32) \e m12 / \e m23
   *
   * Additional functionality is provided by the GeodesicLine class, which
   * allows a sequence of points along a geodesic to be computed.
   *
   * The shortest distance returned by the solution of the inverse problem is
   * (obviously) uniquely defined.  However, in a few special cases there are
   * multiple azimuths which yield the same shortest distance.  Here is a
   * catalog of those cases:
   * - \e lat1 = &minus;\e lat2 (with neither point at a pole).  If \e azi1 =
   *   \e azi2, the geodesic is unique.  Otherwise there are two geodesics and
   *   the second one is obtained by setting [\e azi1, \e azi2] &rarr; [\e
   *   azi2, \e azi1], [\e M12, \e M21] &rarr; [\e M21, \e M12], \e S12 &rarr;
   *   &minus;\e S12.  (This occurs when the longitude difference is near
   *   &plusmn;180&deg; for oblate ellipsoids.)
   * - \e lon2 = \e lon1 &plusmn; 180&deg; (with neither point at a pole).  If
   *   \e azi1 = 0&deg; or &plusmn;180&deg;, the geodesic is unique.  Otherwise
   *   there are two geodesics and the second one is obtained by setting [\e
   *   azi1, \e azi2] &rarr; [&minus;\e azi1, &minus;\e azi2], \e S12 &rarr;
   *   &minus;\e S12.  (This occurs when \e lat2 is near &minus;\e lat1 for
   *   prolate ellipsoids.)
   * - Points 1 and 2 at opposite poles.  There are infinitely many geodesics
   *   which can be generated by setting [\e azi1, \e azi2] &rarr; [\e azi1, \e
   *   azi2] + [\e d, &minus;\e d], for arbitrary \e d.  (For spheres, this
   *   prescription applies when points 1 and 2 are antipodal.)
   * - \e s12 = 0 (coincident points).  There are infinitely many geodesics
   *   which can be generated by setting [\e azi1, \e azi2] &rarr;
   *   [\e azi1, \e azi2] + [\e d, \e d], for arbitrary \e d.
   *
   * The calculations are accurate to better than 15 nm (15 nanometers) for the
   * WGS84 ellipsoid.  See Sec. 9 of
   * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
   * details.  The algorithms used by this class are based on series expansions
   * using the flattening \e f as a small parameter.  These are only accurate
   * for |<i>f</i>| &lt; 0.02; however reasonably accurate results will be
   * obtained for |<i>f</i>| &lt; 0.2.  Here is a table of the approximate
   * maximum error (expressed as a distance) for an ellipsoid with the same
   * equatorial radius as the WGS84 ellipsoid and different values of the
   * flattening.<pre>
   *     |f|      error
   *     0.01     25 nm
   *     0.02     30 nm
   *     0.05     10 um
   *     0.1     1.5 mm
   *     0.2     300 mm
   * </pre>
   * For very eccentric ellipsoids, use GeodesicExact instead.
   *
   * The algorithms are described in
   * - C. F. F. Karney,
   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
   *   Algorithms for geodesics</a>,
   *   J. Geodesy <b>87</b>, 43--55 (2013);
   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
   *   10.1007/s00190-012-0578-z</a>;
   *   addenda:
   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
   *   geod-addenda.html</a>.
   * .
   * For more information on geodesics see \ref geodesic.
   *
   * Example of use:
   * \include example-Geodesic.cpp
   *
   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
   * providing access to the functionality of Geodesic and GeodesicLine.
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT Geodesic {
  private:
    typedef Math::real real;
    friend class GeodesicLine;
    static const int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nA3x_ = nA3_;
    static const int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nC3x_ = (nC3_ * (nC3_ - 1)) / 2;
    static const int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
    static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
    // Size for temporary array
    // nC = max(max(nC1_, nC1p_, nC2_) + 1, max(nC3_, nC4_))
    static const int nC_ = GEOGRAPHICLIB_GEODESIC_ORDER + 1;
    static const unsigned maxit1_ = 20;
    unsigned maxit2_;
    real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;

    enum captype {
      CAP_NONE = 0U,
      CAP_C1   = 1U<<0,
      CAP_C1p  = 1U<<1,
      CAP_C2   = 1U<<2,
      CAP_C3   = 1U<<3,
      CAP_C4   = 1U<<4,
      CAP_ALL  = 0x1FU,
      CAP_MASK = CAP_ALL,
      OUT_ALL  = 0x7F80U,
      OUT_MASK = 0xFF80U,       // Includes LONG_UNROLL
    };

    static real SinCosSeries(bool sinp,
                             real sinx, real cosx, const real c[], int n);
    static real Astroid(real x, real y);

    real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
    real _A3x[nA3x_], _C3x[nC3x_], _C4x[nC4x_];

    void Lengths(real eps, real sig12,
                 real ssig1, real csig1, real dn1,
                 real ssig2, real csig2, real dn2,
                 real cbet1, real cbet2, unsigned outmask,
                 real& s12s, real& m12a, real& m0,
                 real& M12, real& M21, real Ca[]) const;
    real InverseStart(real sbet1, real cbet1, real dn1,
                      real sbet2, real cbet2, real dn2,
                      real lam12, real slam12, real clam12,
                      real& salp1, real& calp1,
                      real& salp2, real& calp2, real& dnm,
                      real Ca[]) const;
    real Lambda12(real sbet1, real cbet1, real dn1,
                  real sbet2, real cbet2, real dn2,
                  real salp1, real calp1, real slam120, real clam120,
                  real& salp2, real& calp2, real& sig12,
                  real& ssig1, real& csig1, real& ssig2, real& csig2,
                  real& eps, real& domg12,
                  bool diffp, real& dlam12, real Ca[]) const;
    real GenInverse(real lat1, real lon1, real lat2, real lon2,
                    unsigned outmask, real& s12,
                    real& salp1, real& calp1, real& salp2, real& calp2,
                    real& m12, real& M12, real& M21, real& S12) const;

    // These are Maxima generated functions to provide series approximations to
    // the integrals for the ellipsoidal geodesic.
    static real A1m1f(real eps);
    static void C1f(real eps, real c[]);
    static void C1pf(real eps, real c[]);
    static real A2m1f(real eps);
    static void C2f(real eps, real c[]);

    void A3coeff();
    real A3f(real eps) const;
    void C3coeff();
    void C3f(real eps, real c[]) const;
    void C4coeff();
    void C4f(real k2, real c[]) const;

  public:

    /**
     * Bit masks for what calculations to do.  These masks do double duty.
     * They signify to the GeodesicLine::GeodesicLine constructor and to
     * Geodesic::Line what capabilities should be included in the GeodesicLine
     * object.  They also specify which results to return in the general
     * routines Geodesic::GenDirect and Geodesic::GenInverse routines.
     * GeodesicLine::mask is a duplication of this enum.
     **********************************************************************/
    enum mask {
      /**
       * No capabilities, no output.
       * @hideinitializer
       **********************************************************************/
      NONE          = 0U,
      /**
       * Calculate latitude \e lat2.  (It's not necessary to include this as a
       * capability to GeodesicLine because this is included by default.)
       * @hideinitializer
       **********************************************************************/
      LATITUDE      = 1U<<7  | CAP_NONE,
      /**
       * Calculate longitude \e lon2.
       * @hideinitializer
       **********************************************************************/
      LONGITUDE     = 1U<<8  | CAP_C3,
      /**
       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
       * include this as a capability to GeodesicLine because this is included
       * by default.)
       * @hideinitializer
       **********************************************************************/
      AZIMUTH       = 1U<<9  | CAP_NONE,
      /**
       * Calculate distance \e s12.
       * @hideinitializer
       **********************************************************************/
      DISTANCE      = 1U<<10 | CAP_C1,
      /**
       * Allow distance \e s12 to be used as input in the direct geodesic
       * problem.
       * @hideinitializer
       **********************************************************************/
      DISTANCE_IN   = 1U<<11 | CAP_C1 | CAP_C1p,
      /**
       * Calculate reduced length \e m12.
       * @hideinitializer
       **********************************************************************/
      REDUCEDLENGTH = 1U<<12 | CAP_C1 | CAP_C2,
      /**
       * Calculate geodesic scales \e M12 and \e M21.
       * @hideinitializer
       **********************************************************************/
      GEODESICSCALE = 1U<<13 | CAP_C1 | CAP_C2,
      /**
       * Calculate area \e S12.
       * @hideinitializer
       **********************************************************************/
      AREA          = 1U<<14 | CAP_C4,
      /**
       * Unroll \e lon2 in the direct calculation.
       * @hideinitializer
       **********************************************************************/
      LONG_UNROLL   = 1U<<15,
      /**
       * All capabilities, calculate everything.  (LONG_UNROLL is not
       * included in this mask.)
       * @hideinitializer
       **********************************************************************/
      ALL           = OUT_ALL| CAP_ALL,
    };

    /** \name Constructor
     **********************************************************************/
    ///@{
    /**
     * Constructor for a ellipsoid with
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
     *   Negative \e f gives a prolate ellipsoid.
     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
     *   positive.
     **********************************************************************/
    Geodesic(real a, real f);
    ///@}

    /** \name Direct geodesic problem specified in terms of distance.
     **********************************************************************/
    ///@{
    /**
     * Solve the direct geodesic problem where the length of the geodesic
     * is specified in terms of distance.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
     *   negative.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
     * 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
     * prolate ellipsoid, an additional condition is necessary for a shortest
     * path: the longitudinal extent must not exceed of 180&deg;.)
     *
     * The following functions are overloaded versions of Geodesic::Direct
     * which omit some of the output parameters.  Note, however, that the arc
     * length is always computed and returned as the function value.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& m12, real& M12, real& M21, real& S12)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH |
                       REDUCEDLENGTH | GEODESICSCALE | AREA,
                       lat2, lon2, azi2, t, m12, M12, M21, S12);
    }

    /**
     * See the documentation for Geodesic::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE,
                       lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH,
                       lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2, real& m12)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
                       lat2, lon2, azi2, t, m12, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& M12, real& M21)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
                       lat2, lon2, azi2, t, t, M12, M21, t);
    }

    /**
     * See the documentation for Geodesic::Direct.
     **********************************************************************/
    Math::real Direct(real lat1, real lon1, real azi1, real s12,
                      real& lat2, real& lon2, real& azi2,
                      real& m12, real& M12, real& M21)
      const {
      real t;
      return GenDirect(lat1, lon1, azi1, false, s12,
                       LATITUDE | LONGITUDE | AZIMUTH |
                       REDUCEDLENGTH | GEODESICSCALE,
                       lat2, lon2, azi2, t, m12, M12, M21, t);
    }
    ///@}

    /** \name Direct geodesic problem specified in terms of arc length.
     **********************************************************************/
    ///@{
    /**
     * Solve the direct geodesic problem where the length of the geodesic
     * is specified in terms of arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
     *   be negative.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
     * 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
     * prolate ellipsoid, an additional condition is necessary for a shortest
     * path: the longitudinal extent must not exceed of 180&deg;.)
     *
     * The following functions are overloaded versions of Geodesic::Direct
     * which omit some of the output parameters.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& m12, real& M12, real& M21, real& S12)
      const {
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH | GEODESICSCALE | AREA,
                lat2, lon2, azi2, s12, m12, M12, M21, S12);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE,
                lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH,
                lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12)
      const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
                lat2, lon2, azi2, s12, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2,
                   real& s12, real& m12) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH,
                lat2, lon2, azi2, s12, m12, t, t, t);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& M12, real& M21) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                GEODESICSCALE,
                lat2, lon2, azi2, s12, t, M12, M21, t);
    }

    /**
     * See the documentation for Geodesic::ArcDirect.
     **********************************************************************/
    void ArcDirect(real lat1, real lon1, real azi1, real a12,
                   real& lat2, real& lon2, real& azi2, real& s12,
                   real& m12, real& M12, real& M21) const {
      real t;
      GenDirect(lat1, lon1, azi1, true, a12,
                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                REDUCEDLENGTH | GEODESICSCALE,
                lat2, lon2, azi2, s12, m12, M12, M21, t);
    }
    ///@}

    /** \name General version of the direct geodesic solution.
     **********************************************************************/
    ///@{

    /**
     * The general direct geodesic problem.  Geodesic::Direct and
     * Geodesic::ArcDirect are defined in terms of this function.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] arcmode boolean flag determining the meaning of the \e
     *   s12_a12.
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
     *   point 1 and point 2 (meters); otherwise it is the arc length between
     *   point 1 and point 2 (degrees); it can be negative.
     * @param[in] outmask a bitor'ed combination of Geodesic::mask values
     *   specifying which of the following parameters should be set.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The Geodesic::mask values possible for \e outmask are
     * - \e outmask |= Geodesic::LATITUDE for the latitude \e lat2;
     * - \e outmask |= Geodesic::LONGITUDE for the latitude \e lon2;
     * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
     * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
     * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
     *   m12;
     * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
     *   M12 and \e M21;
     * - \e outmask |= Geodesic::AREA for the area \e S12;
     * - \e outmask |= Geodesic::ALL for all of the above;
     * - \e outmask |= Geodesic::LONG_UNROLL to unroll \e lon2 instead of
     *   wrapping it into the range [&minus;180&deg;, 180&deg;].
     * .
     * The function value \e a12 is always computed and returned and this
     * equals \e s12_a12 is \e arcmode is true.  If \e outmask includes
     * Geodesic::DISTANCE and \e arcmode is false, then \e s12 = \e s12_a12.
     * It is not necessary to include Geodesic::DISTANCE_IN in \e outmask; this
     * is automatically included is \e arcmode is false.
     *
     * With the Geodesic::LONG_UNROLL bit set, the quantity \e lon2 &minus; \e
     * lon1 indicates how many times and in what sense the geodesic encircles
     * the ellipsoid.
     **********************************************************************/
    Math::real GenDirect(real lat1, real lon1, real azi1,
                         bool arcmode, real s12_a12, unsigned outmask,
                         real& lat2, real& lon2, real& azi2,
                         real& s12, real& m12, real& M12, real& M21,
                         real& S12) const;
    ///@}

    /** \name Inverse geodesic problem.
     **********************************************************************/
    ///@{
    /**
     * Solve the inverse geodesic problem.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] azi1 azimuth at point 1 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
     * The values of \e azi1 and \e azi2 returned are in the range
     * [&minus;180&deg;, 180&deg;].
     *
     * If either point is at a pole, the azimuth is defined by keeping the
     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
     * and taking the limit &epsilon; &rarr; 0+.
     *
     * The solution to the inverse problem is found using Newton's method.  If
     * this fails to converge (this is very unlikely in geodetic applications
     * but does occur for very eccentric ellipsoids), then the bisection method
     * is used to refine the solution.
     *
     * The following functions are overloaded versions of Geodesic::Inverse
     * which omit some of the output parameters.  Note, however, that the arc
     * length is always computed and returned as the function value.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12,
                       real& M12, real& M21, real& S12) const {
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH |
                        REDUCEDLENGTH | GEODESICSCALE | AREA,
                        s12, azi1, azi2, m12, M12, M21, S12);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE,
                        s12, t, t, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& azi1, real& azi2) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        AZIMUTH,
                        t, azi1, azi2, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2)
      const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH,
                        s12, azi1, azi2, t, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12)
      const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH | REDUCEDLENGTH,
                        s12, azi1, azi2, m12, t, t, t);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2,
                       real& M12, real& M21) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH | GEODESICSCALE,
                        s12, azi1, azi2, t, M12, M21, t);
    }

    /**
     * See the documentation for Geodesic::Inverse.
     **********************************************************************/
    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
                       real& s12, real& azi1, real& azi2, real& m12,
                       real& M12, real& M21) const {
      real t;
      return GenInverse(lat1, lon1, lat2, lon2,
                        DISTANCE | AZIMUTH |
                        REDUCEDLENGTH | GEODESICSCALE,
                        s12, azi1, azi2, m12, M12, M21, t);
    }
    ///@}

    /** \name General version of inverse geodesic solution.
     **********************************************************************/
    ///@{
    /**
     * The general inverse geodesic calculation.  Geodesic::Inverse is defined
     * in terms of this function.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[in] outmask a bitor'ed combination of Geodesic::mask values
     *   specifying which of the following parameters should be set.
     * @param[out] s12 distance between point 1 and point 2 (meters).
     * @param[out] azi1 azimuth at point 1 (degrees).
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters).
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless).
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless).
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The Geodesic::mask values possible for \e outmask are
     * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
     * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
     * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
     *   m12;
     * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
     *   M12 and \e M21;
     * - \e outmask |= Geodesic::AREA for the area \e S12;
     * - \e outmask |= Geodesic::ALL for all of the above.
     * .
     * The arc length is always computed and returned as the function value.
     **********************************************************************/
    Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
                          unsigned outmask,
                          real& s12, real& azi1, real& azi2,
                          real& m12, real& M12, real& M21, real& S12) const;
    ///@}

    /** \name Interface to GeodesicLine.
     **********************************************************************/
    ///@{

    /**
     * Set up to compute several points on a single geodesic.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] caps bitor'ed combination of Geodesic::mask values
     *   specifying the capabilities the GeodesicLine object should possess,
     *   i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     * @return a GeodesicLine object.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     *
     * The Geodesic::mask values are
     * - \e caps |= Geodesic::LATITUDE for the latitude \e lat2; this is
     *   added automatically;
     * - \e caps |= Geodesic::LONGITUDE for the latitude \e lon2;
     * - \e caps |= Geodesic::AZIMUTH for the azimuth \e azi2; this is
     *   added automatically;
     * - \e caps |= Geodesic::DISTANCE for the distance \e s12;
     * - \e caps |= Geodesic::REDUCEDLENGTH for the reduced length \e m12;
     * - \e caps |= Geodesic::GEODESICSCALE for the geodesic scales \e M12
     *   and \e M21;
     * - \e caps |= Geodesic::AREA for the area \e S12;
     * - \e caps |= Geodesic::DISTANCE_IN permits the length of the
     *   geodesic to be given in terms of \e s12; without this capability the
     *   length can only be specified in terms of arc length;
     * - \e caps |= Geodesic::ALL for all of the above.
     * .
     * The default value of \e caps is Geodesic::ALL.
     *
     * If the point is at a pole, the azimuth is defined by keeping \e lon1
     * fixed, writing \e lat1 = &plusmn;(90 &minus; &epsilon;), and taking the
     * limit &epsilon; &rarr; 0+.
     **********************************************************************/
    GeodesicLine Line(real lat1, real lon1, real azi1, unsigned caps = ALL)
      const;

    /**
     * Define a GeodesicLine in terms of the inverse geodesic problem.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] lat2 latitude of point 2 (degrees).
     * @param[in] lon2 longitude of point 2 (degrees).
     * @param[in] caps bitor'ed combination of Geodesic::mask values
     *   specifying the capabilities the GeodesicLine object should possess,
     *   i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     * @return a GeodesicLine object.
     *
     * This function sets point 3 of the GeodesicLine to correspond to point 2
     * of the inverse geodesic problem.
     *
     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLine InverseLine(real lat1, real lon1, real lat2, real lon2,
                             unsigned caps = ALL) const;

    /**
     * Define a GeodesicLine in terms of the direct geodesic problem specified
     * in terms of distance.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
     *   negative.
     * @param[in] caps bitor'ed combination of Geodesic::mask values
     *   specifying the capabilities the GeodesicLine object should possess,
     *   i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     * @return a GeodesicLine object.
     *
     * This function sets point 3 of the GeodesicLine to correspond to point 2
     * of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLine DirectLine(real lat1, real lon1, real azi1, real s12,
                            unsigned caps = ALL) const;

    /**
     * Define a GeodesicLine in terms of the direct geodesic problem specified
     * in terms of arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
     *   be negative.
     * @param[in] caps bitor'ed combination of Geodesic::mask values
     *   specifying the capabilities the GeodesicLine object should possess,
     *   i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     * @return a GeodesicLine object.
     *
     * This function sets point 3 of the GeodesicLine to correspond to point 2
     * of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLine ArcDirectLine(real lat1, real lon1, real azi1, real a12,
                               unsigned caps = ALL) const;

    /**
     * Define a GeodesicLine in terms of the direct geodesic problem specified
     * in terms of either distance or arc length.
     *
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] arcmode boolean flag determining the meaning of the \e
     *   s12_a12.
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
     *   point 1 and point 2 (meters); otherwise it is the arc length between
     *   point 1 and point 2 (degrees); it can be negative.
     * @param[in] caps bitor'ed combination of Geodesic::mask values
     *   specifying the capabilities the GeodesicLine object should possess,
     *   i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     * @return a GeodesicLine object.
     *
     * This function sets point 3 of the GeodesicLine to correspond to point 2
     * of the direct geodesic problem.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    GeodesicLine GenDirectLine(real lat1, real lon1, real azi1,
                               bool arcmode, real s12_a12,
                               unsigned caps = ALL) const;
    ///@}

    /** \name Inspector functions.
     **********************************************************************/
    ///@{

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const { return _a; }

    /**
     * @return \e f the  flattening of the ellipsoid.  This is the
     *   value used in the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _f; }

    /**
     * @return total area of ellipsoid in meters<sup>2</sup>.  The area of a
     *   polygon encircling a pole can be found by adding
     *   Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
     *   polygon.
     **********************************************************************/
    Math::real EllipsoidArea() const
    { return 4 * Math::pi() * _c2; }
    ///@}

    /**
     * A global instantiation of Geodesic with the parameters for the WGS84
     * ellipsoid.
     **********************************************************************/
    static const Geodesic& WGS84();

  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_GEODESIC_HPP