/usr/include/GeographicLib/CircularEngine.hpp is in libgeographic-dev 1.49-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | /**
* \file CircularEngine.hpp
* \brief Header for GeographicLib::CircularEngine class
*
* Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_CIRCULARENGINE_HPP)
#define GEOGRAPHICLIB_CIRCULARENGINE_HPP 1
#include <vector>
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/SphericalEngine.hpp>
#if defined(_MSC_VER)
// Squelch warnings about dll vs vector
# pragma warning (push)
# pragma warning (disable: 4251)
#endif
namespace GeographicLib {
/**
* \brief Spherical harmonic sums for a circle
*
* The class is a companion to SphericalEngine. If the results of a
* spherical harmonic sum are needed for several points on a circle of
* constant latitude \e lat and height \e h, then SphericalEngine::Circle can
* compute the inner sum, which is independent of longitude \e lon, and
* produce a CircularEngine object. CircularEngine::operator()() can
* then be used to perform the outer sum for particular vales of \e lon.
* This can lead to substantial improvements in computational speed for high
* degree sum (approximately by a factor of \e N / 2 where \e N is the
* maximum degree).
*
* CircularEngine is tightly linked to the internals of SphericalEngine. For
* that reason, the constructor for this class is private. Use
* SphericalHarmonic::Circle, SphericalHarmonic1::Circle, and
* SphericalHarmonic2::Circle to create instances of this class.
*
* CircularEngine stores the coefficients needed to allow the summation over
* order to be performed in 2 or 6 vectors of length \e M + 1 (depending on
* whether gradients are to be calculated). For this reason the constructor
* may throw a std::bad_alloc exception.
*
* Example of use:
* \include example-CircularEngine.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT CircularEngine {
private:
typedef Math::real real;
enum normalization {
FULL = SphericalEngine::FULL,
SCHMIDT = SphericalEngine::SCHMIDT,
};
int _M;
bool _gradp;
unsigned _norm;
real _a, _r, _u, _t;
std::vector<real> _wc, _ws, _wrc, _wrs, _wtc, _wts;
real _q, _uq, _uq2;
Math::real Value(bool gradp, real sl, real cl,
real& gradx, real& grady, real& gradz) const;
friend class SphericalEngine;
CircularEngine(int M, bool gradp, unsigned norm,
real a, real r, real u, real t)
: _M(M)
, _gradp(gradp)
, _norm(norm)
, _a(a)
, _r(r)
, _u(u)
, _t(t)
, _wc(std::vector<real>(_M + 1, 0))
, _ws(std::vector<real>(_M + 1, 0))
, _wrc(std::vector<real>(_gradp ? _M + 1 : 0, 0))
, _wrs(std::vector<real>(_gradp ? _M + 1 : 0, 0))
, _wtc(std::vector<real>(_gradp ? _M + 1 : 0, 0))
, _wts(std::vector<real>(_gradp ? _M + 1 : 0, 0))
{
_q = _a / _r;
_uq = _u * _q;
_uq2 = Math::sq(_uq);
}
void SetCoeff(int m, real wc, real ws)
{ _wc[m] = wc; _ws[m] = ws; }
void SetCoeff(int m, real wc, real ws,
real wrc, real wrs, real wtc, real wts) {
_wc[m] = wc; _ws[m] = ws;
if (_gradp) {
_wrc[m] = wrc; _wrs[m] = wrs;
_wtc[m] = wtc; _wts[m] = wts;
}
}
public:
/**
* A default constructor. CircularEngine::operator()() on the resulting
* object returns zero. The resulting object can be assigned to the result
* of SphericalHarmonic::Circle.
**********************************************************************/
CircularEngine()
: _M(-1)
, _gradp(true)
, _u(0)
, _t(1)
{}
/**
* Evaluate the sum for a particular longitude given in terms of its
* sine and cosine.
*
* @param[in] sinlon the sine of the longitude.
* @param[in] coslon the cosine of the longitude.
* @return \e V the value of the sum.
*
* The arguments must satisfy <i>sinlon</i><sup>2</sup> +
* <i>coslon</i><sup>2</sup> = 1.
**********************************************************************/
Math::real operator()(real sinlon, real coslon) const {
real dummy;
return Value(false, sinlon, coslon, dummy, dummy, dummy);
}
/**
* Evaluate the sum for a particular longitude.
*
* @param[in] lon the longitude (degrees).
* @return \e V the value of the sum.
**********************************************************************/
Math::real operator()(real lon) const {
real sinlon, coslon;
Math::sincosd(lon, sinlon, coslon);
return (*this)(sinlon, coslon);
}
/**
* Evaluate the sum and its gradient for a particular longitude given in
* terms of its sine and cosine.
*
* @param[in] sinlon the sine of the longitude.
* @param[in] coslon the cosine of the longitude.
* @param[out] gradx \e x component of the gradient.
* @param[out] grady \e y component of the gradient.
* @param[out] gradz \e z component of the gradient.
* @return \e V the value of the sum.
*
* The gradients will only be computed if the CircularEngine object was
* created with this capability (e.g., via \e gradp = true in
* SphericalHarmonic::Circle). If not, \e gradx, etc., will not be
* touched. The arguments must satisfy <i>sinlon</i><sup>2</sup> +
* <i>coslon</i><sup>2</sup> = 1.
**********************************************************************/
Math::real operator()(real sinlon, real coslon,
real& gradx, real& grady, real& gradz) const {
return Value(true, sinlon, coslon, gradx, grady, gradz);
}
/**
* Evaluate the sum and its gradient for a particular longitude.
*
* @param[in] lon the longitude (degrees).
* @param[out] gradx \e x component of the gradient.
* @param[out] grady \e y component of the gradient.
* @param[out] gradz \e z component of the gradient.
* @return \e V the value of the sum.
*
* The gradients will only be computed if the CircularEngine object was
* created with this capability (e.g., via \e gradp = true in
* SphericalHarmonic::Circle). If not, \e gradx, etc., will not be
* touched.
**********************************************************************/
Math::real operator()(real lon,
real& gradx, real& grady, real& gradz) const {
real sinlon, coslon;
Math::sincosd(lon, sinlon, coslon);
return (*this)(sinlon, coslon, gradx, grady, gradz);
}
};
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_CIRCULARENGINE_HPP
|