/usr/include/libGenome-1.3/libGenome/IntervalSequenceTree.h is in libgenome-1.3-dev 1.3.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | #ifndef __IntervalSequenceTree_h__
#define __IntervalSequenceTree_h__
#include <vector>
/*
class interval {
gnSeqI length();
cropEnd();
cropStart();
}
*/
// select idea shamelessly ripped from Metrowerks
template <bool Condition, class If, class Then>
class type_select
{
public:
typedef If type;
};
template <class If, class Then>
class type_select<false, If, Then>
{
public:
typedef Then type;
};
static const uint64 IST_END = ((0xFFFFFFFF << 31) << 1 ) + 0xFFFFFFFF;
/**
* class implementing an Interval Sequence Tree
* this is a tree for storing a changing sequence of intervals
* that was invented one rainy afternoon by Aaron Darling and
* Michael Rusch.
* Important features are that stabbing queries,
* stabbing insertions, and stabbing deletions are O( log n )
* assuming a uniform distribution of stab sites.
*/
template< class Key, class Allocator = std::allocator<Key> >
class IntervalSequenceTree
{
public:
typedef Key value_type;
// typedef unsigned long long size_type;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
// node types and iterator definitions
protected:
/**
* This class represents nodes of an Interval Sequence Tree. Internal
* nodes define any of left, center, and right to be non-null and key to
* be null. Leaf nodes define left, center, and right as null and key points
* to an interval. The length field in an internal node is always the sum
* of lengths of the leaf nodes in its subtree. The subtree_size field is
* defined as the number of nodes (leaf and internal) below the node.
*/
class IstNode {
public:
IstNode* parent;
IstNode* left;
IstNode* right;
size_type subtree_size;
size_type length;
Key* key;
IstNode() :
parent( NULL ),
left( NULL ),
right( NULL ),
subtree_size( 0 ),
length( 0 ),
key( NULL ) {}
};
typedef typename Allocator::template rebind<IstNode>::other node_allocator_type;
typedef typename node_allocator_type::pointer node_pointer;
typedef typename node_allocator_type::const_pointer const_node_pointer;
// typedef typename IstNode* node_pointer;
// typedef typename const IstNode* const_node_pointer;
public:
// generic bidirectional iterator interface ripped from MSL, thanks guys
template <bool is_const>
class __generic_iterator
{
public:
typedef typename IntervalSequenceTree::value_type value_type;
// typedef typename IntervalSequenceTree::difference_type difference_type;
typedef typename type_select<is_const, typename IntervalSequenceTree::const_pointer,
typename IntervalSequenceTree::pointer>::type pointer;
typedef typename type_select<is_const, typename IntervalSequenceTree::const_reference,
typename IntervalSequenceTree::reference>::type reference;
typedef std::bidirectional_iterator_tag iterator_category;
__generic_iterator() {}
__generic_iterator(const __generic_iterator<false>& i) : ptr_(i.ptr_) {}
reference operator * () const {return ptr_->data_;}
pointer operator -> () const {return &ptr_->data_;}
__generic_iterator& operator ++ () {increment((const IstNode*&)ptr_); return *this;}
__generic_iterator operator ++ (int) {__generic_iterator tmp(*this); ++(*this); return tmp;}
__generic_iterator& operator -- () {decrement((const IstNode*&)ptr_); return *this;}
__generic_iterator operator -- (int) {__generic_iterator tmp(*this); --(*this); return tmp;}
friend bool operator ==(const __generic_iterator& x, const __generic_iterator& y) {return x.ptr_ == y.ptr_;}
friend bool operator !=(const __generic_iterator& x, const __generic_iterator& y) {return x.ptr_ != y.ptr_;}
private:
typedef typename type_select<is_const, typename IntervalSequenceTree::node_pointer,
typename IntervalSequenceTree::const_node_pointer>::type node_pointer;
node_pointer ptr_;
explicit __generic_iterator(node_pointer n) : ptr_(n) {}
friend class __generic_iterator<true>;
friend class IntervalSequenceTree;
};
friend class __generic_iterator<false>;
friend class __generic_iterator<true>;
typedef __generic_iterator<false> iterator;
typedef __generic_iterator<true> const_iterator;
typedef std::reverse_iterator< iterator > reverse_iterator;
typedef std::reverse_iterator< const_iterator > const_reverse_iterator;
// constructor related methods
IntervalSequenceTree();
template< class InputIterator >
IntervalSequenceTree( InputIterator first, InputIterator last );
IntervalSequenceTree( const IntervalSequenceTree& ist );
IntervalSequenceTree& operator=( const IntervalSequenceTree& ist );
~IntervalSequenceTree();
// standard container methods
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
size_type max_size() const;
bool empty() const;
// insertion and erasure
iterator insert( const value_type& val, size_type point = IST_END );
template <class InputIterator>
void insert(InputIterator first, InputIterator last, size_type point = IST_END );
size_type erase( size_type point, size_type length );
void erase( iterator first, iterator last );
// search
iterator find( size_type point );
const_iterator find( size_type point ) const;
// interval sequence specific:
/**
* Returns the total length of intervals contained in this interval sequence
*/
size_type length() const;
size_type nodeCount() const;
size_type countNodes( IstNode* x = NULL ) const;
protected:
IstNode *root; /**< Root of the tree */
IstNode *leftmost; /**< Left most tree node, for begin() method */
IstNode *rightmost; /**< Right most tree node, for end() method */
static void propogateChanges( IstNode* cur_node, int64 length_diff, int64 subtree_diff );
static IstNode* recursiveFind( size_type& point, IstNode* node );
static void increment( IstNode*& x);
void decrement( IstNode*& x) const;
static void deleteSubtree( IstNode*& istn );
static void checkTree( node_pointer cur_node );
};
//template< class Key, class Allocator >
//IntervalSequenceTree< Key, Allocator >::IST_END = -1;
template< class Key, class Allocator >
inline
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree(){
root = NULL;
leftmost = NULL;
rightmost = NULL;
// IST_END = -1; // wraps to UINT64_MAX because IST_END is unsigned
}
template< class Key, class Allocator >
template< class InputIterator >
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree( InputIterator first, InputIterator last ){
insert( first, last );
}
template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree( const IntervalSequenceTree& ist ){
insert( ist.begin(), ist.end() );
}
template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >& IntervalSequenceTree< Key, Allocator >::operator=( const IntervalSequenceTree& ist ){
insert( ist.begin(), ist.end() );
}
template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >::~IntervalSequenceTree(){
deleteSubtree( root );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator
IntervalSequenceTree< Key, Allocator >::begin(){
return iterator( leftmost );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator
IntervalSequenceTree< Key, Allocator >::begin() const{
return const_iterator( leftmost );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator
IntervalSequenceTree< Key, Allocator >::end(){
return iterator( NULL );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator
IntervalSequenceTree< Key, Allocator >::end() const{
return const_iterator( NULL );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::reverse_iterator
IntervalSequenceTree< Key, Allocator >::rbegin(){
return reverse_iterator( end() );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_reverse_iterator
IntervalSequenceTree< Key, Allocator >::rbegin() const{
return const_reverse_iterator( end() );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::reverse_iterator
IntervalSequenceTree< Key, Allocator >::rend(){
return reverse_iterator( begin() );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_reverse_iterator
IntervalSequenceTree< Key, Allocator >::rend() const{
return const_reverse_iterator( begin() );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type
IntervalSequenceTree< Key, Allocator >::max_size() const{
return IST_END - 1;
}
template< class Key, class Allocator >
bool IntervalSequenceTree< Key, Allocator >::empty() const{
return root == NULL ? true : false;
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::checkTree(
// IntervalSequenceTree< Key, Allocator >::IstNode*
node_pointer cur_node ){
if( cur_node ){
if( cur_node->parent == cur_node )
std::cerr << "freakout\n";
checkTree( cur_node->left );
checkTree( cur_node->right );
}
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator
IntervalSequenceTree< Key, Allocator >::insert(
const Key& val,
typename IntervalSequenceTree< Key, Allocator >::size_type point )
{
size_type iv_offset = point;
IstNode* ins_node = recursiveFind( iv_offset, root );
IstNode* new_node = new IstNode();
new_node->key = new Key( val );
new_node->length = val.GetLength();
new_node->subtree_size = 0;
if( ins_node == NULL ){
// end insert
rightmost = new_node;
if( root == NULL ){
root = new_node;
leftmost = new_node;
return iterator( new_node );
}
// find the shallowest right insertion point
ins_node = NULL;
decrement( ins_node );
// make a new parent node
IstNode* new_parent = new IstNode();
new_parent->left = ins_node;
new_parent->right = new_node;
new_parent->parent = ins_node->parent;
if( new_parent->parent == NULL )
root = new_parent;
else
new_parent->parent->right = new_parent;
ins_node->parent = new_parent;
new_parent->length = ins_node->length;
// update lengths and subtree_sizes along the path to the root
// checkTree( root );
// propogateChanges( new_node, 0, 0 );
// propogateChanges( ins_node, 0, 0 );
propogateChanges( new_parent, new_node->length, 2 );
return iterator( new_node );
}
// iv_offset is the distance into the node that the leaf should be split
// 0 is a special case (left insert)
if( iv_offset == 0 ){
IstNode* new_parent = new IstNode();
new_parent->left = new_node;
new_parent->right = ins_node;
new_parent->parent = ins_node->parent;
if( new_parent->parent->right == ins_node )
new_parent->parent->right = new_parent;
else
new_parent->parent->left = new_parent;
new_parent->length = ins_node->length;
ins_node->parent = new_parent;
new_node->parent = new_parent;
if( point == 0 )
leftmost = new_node;
// update lengths and subtree_sizes along the path to the root
// checkTree( root );
// propogateChanges( new_node, 0, 0 );
// propogateChanges( ins_node, 0, 0 );
propogateChanges( new_parent, new_node->length, 2 );
}else{
// need to split a leaf node
IstNode* new_gp = new IstNode();
IstNode* new_parent = new IstNode();
new_gp->parent = ins_node->parent;
new_gp->right = new_parent;
new_gp->left = new IstNode();
new_gp->left->key = new Key( *ins_node->key );
new_gp->left->key->CropEnd( ins_node->length - iv_offset );
new_gp->left->length = new_gp->left->key->GetLength();
new_gp->left->parent = new_gp;
ins_node->key->CropStart( iv_offset );
ins_node->length = ins_node->key->GetLength();
ins_node->parent = new_parent;
new_node->parent = new_parent;
new_parent->left = new_node;
new_parent->right = ins_node;
new_parent->parent = new_gp;
new_parent->length = new_node->length + ins_node->length;
new_parent->subtree_size = 2;
new_gp->length = ins_node->length + new_gp->left->length;
new_gp->subtree_size = 1;
if( new_gp->parent == NULL ){
root = new_gp;
leftmost = new_gp->left;
rightmost = ins_node;
}else if( new_gp->parent->right == ins_node )
new_gp->parent->right = new_gp;
else
new_gp->parent->left = new_gp;
// update lengths and subtree_sizes along the path to the root
// checkTree( root );
// propogateChanges( new_node, 0, 0 );
// propogateChanges( ins_node, 0, 0 );
// propogateChanges( new_gp->left, 0, 0 );
// propogateChanges( new_parent, 0, 0 );
new_gp->subtree_size = -1;
propogateChanges( new_gp, new_node->length, 4 );
}
return iterator( new_node );
}
template< class Key, class Allocator >
template <class InputIterator>
void IntervalSequenceTree< Key, Allocator >::insert(
InputIterator first,
InputIterator last,
typename IntervalSequenceTree< Key, Allocator >::size_type point )
{
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type
IntervalSequenceTree< Key, Allocator >::erase(
typename IntervalSequenceTree< Key, Allocator >::size_type point,
typename IntervalSequenceTree< Key, Allocator >::size_type length )
{
size_type iv_offset = point;
IstNode* ins_node = recursiveFind( iv_offset, root );
// iv_offset is the distance into the node that the leaf should be split
// 0 is a special case (left delete)
size_type deleted_nodes = 0;
while( length > 0 ){
if( ins_node == NULL ){
// end delete? that's illegal
return deleted_nodes;
}
if( iv_offset == 0 ){
if( length >= ins_node->length ){
// delete the whole thing
length -= ins_node->length;
if( ins_node->parent == NULL ){
// deleting the root
delete ins_node;
root = NULL;
leftmost = NULL;
rightmost = NULL;
return deleted_nodes + 1;
}
IstNode* other_child, *del_node;
if( ins_node->parent->left == ins_node ){
other_child = ins_node->parent->right;
}else if( ins_node->parent->right == ins_node ){
other_child = ins_node->parent->left;
}
del_node = ins_node;
increment( ins_node );
// update tree structure
IstNode* tmp_parent = other_child->parent;
IstNode* tmp_gp = tmp_parent->parent;
*tmp_parent = *other_child;
tmp_parent->parent = tmp_gp;
if( tmp_parent->left )
tmp_parent->left->parent = tmp_parent;
if( tmp_parent->right )
tmp_parent->right->parent = tmp_parent;
if( ins_node == other_child )
ins_node = tmp_parent;
delete other_child;
// propogate deletion length thru root
tmp_parent = tmp_parent->parent;
// checkTree( root );
propogateChanges( tmp_parent, -del_node->length, -2 );
// finally delete ins_node
delete del_node;
++deleted_nodes;
}else{
// crop from start
ins_node->key->CropStart( length );
// checkTree( root );
propogateChanges( ins_node, -length, 0 );
return deleted_nodes;
}
}else if( length >= ins_node->length - iv_offset ){
// crop from end
ins_node->key->CropEnd( ins_node->length - iv_offset );
length -= ins_node->length - iv_offset;
// checkTree( root );
propogateChanges( ins_node, -(ins_node->length - iv_offset), 0 );
increment( ins_node );
iv_offset = 0;
}else{
// delete from middle (nastee part)
IstNode* new_parent = new IstNode();
new_parent->left = ins_node;
new_parent->length = ins_node->length;
new_parent->right = new IstNode();
new_parent->right->key = new Key( *ins_node->key );
new_parent->right->length = ins_node->length - length - iv_offset;
new_parent->right->key->CropStart( length + iv_offset );
new_parent->left->key->CropEnd( ins_node->length - iv_offset );
new_parent->left->length = iv_offset;
new_parent->parent = ins_node->parent;
if( new_parent->parent == NULL ){
root = new_parent;
rightmost = new_parent->right;
}else if( new_parent->parent->left == ins_node )
new_parent->parent->left = new_parent;
else if( new_parent->parent->right == ins_node )
new_parent->parent->right = new_parent;
ins_node->parent = new_parent;
new_parent->right->parent = new_parent;
// checkTree( root );
// propogateChanges( ins_node, 0, 0 );
// propogateChanges( new_parent->right, 0, 0 );
propogateChanges( new_parent, -length, 2 );
return deleted_nodes;
}
}
return deleted_nodes;
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::propogateChanges(
IstNode* cur_node,
int64 length_diff,
int64 subtree_diff )
{
std::vector< IstNode* > node_stack;
while( cur_node != NULL ){
if( cur_node->parent == cur_node )
std::cerr << "when I say oh, you say shit!";
cur_node->length += length_diff;
cur_node->subtree_size += subtree_diff;
node_stack.push_back( cur_node );
cur_node = cur_node->parent;
}
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::erase(
typename IntervalSequenceTree< Key, Allocator >::iterator first,
typename IntervalSequenceTree< Key, Allocator >::iterator last )
{
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator
IntervalSequenceTree< Key, Allocator >::find(
typename IntervalSequenceTree< Key, Allocator >::size_type point )
{
return iterator( IntervalSequenceTree< Key, Allocator >::recursiveFind( point, root ) );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator
IntervalSequenceTree< Key, Allocator >::find(
typename IntervalSequenceTree< Key, Allocator >::size_type point ) const
{
return const_iterator( IntervalSequenceTree< Key, Allocator >::recursiveFind( point, root ) );
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::IstNode*
IntervalSequenceTree< Key, Allocator >::recursiveFind(
typename IntervalSequenceTree< Key, Allocator >::size_type& point,
IstNode* node ) {
if( node == NULL )
return NULL;
// return this node if it's a leaf
if( node->key != NULL )
return node;
// look for the next node to recurse to
if( point < node->length ){
if( node->left ){
if( point < node->left->length )
return recursiveFind( point, node->left );
point -= node->left->length;
}
return recursiveFind( point, node->right );
}
point -= node->length;
// out of range
return NULL;
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type
IntervalSequenceTree< Key, Allocator >::length() const{
return root == NULL ? 0 : root->length;
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type
IntervalSequenceTree< Key, Allocator >::nodeCount() const{
return root == NULL ? 0 : root->subtree_size + 1;
}
template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type
IntervalSequenceTree< Key, Allocator >::countNodes( IstNode* x ) const{
if( x == NULL )
x = root;
if( x->key == NULL )
return countNodes( x->left ) + countNodes( x->right ) + 1;
return 1;
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::increment( IstNode*& x) {
// find the least-ancestor with another child
// and set x to that child
while( x->parent != NULL ){
if( x == x->parent->left &&
x->parent->right != NULL ){
x = x->parent->right;
break;
}else
x = x->parent;
}
// if there were no other children to the right then we're at the end
if( x->parent == NULL ){
x = NULL;
return;
}
// find the left-most leaf node below x
while( x->key == NULL ){
if( x->left != NULL )
x = x->left;
else if( x->right != NULL )
x = x->right;
}
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::decrement( IstNode*& x) const{
if( x != NULL ){
// find the least-ancestor with another child to the left
// and set x to that child
while( x->parent != NULL ){
if( x == x->parent->right &&
x->parent->left != NULL){
x = x->parent->left;
break;
}else
x = x->parent;
}
// if there was no other children to the left then we're at the end
// raise hell! (cause an access violation)
if( x->parent == NULL )
x = NULL;
}else{
x = root;
}
// find the right-most leaf node below x
while( x->key == NULL ){
if( x->right != NULL )
x = x->right;
else if( x->left != NULL )
x = x->left;
}
}
template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::deleteSubtree( IstNode*& istn ) {
if( istn->left != NULL )
deleteSubtree( istn->left );
if( istn->right != NULL )
deleteSubtree( istn->right );
if( istn->key != NULL )
delete istn->key;
delete istn;
}
#endif // __IntervalSequenceTree_h__
|