This file is indexed.

/usr/include/gecode/int/arithmetic/pow-ops.hpp is in libgecode-dev 5.1.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *
 *  Copyright:
 *     Christian Schulte, 2012
 *
 *  Last modified:
 *     $Date: 2016-04-19 17:19:45 +0200 (Tue, 19 Apr 2016) $ by $Author: schulte $
 *     $Revision: 14967 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

namespace Gecode { namespace Int { namespace Arithmetic {

  forceinline
  PowOps::PowOps(int n0) : n(n0) {}

  forceinline bool
  PowOps::even(int m) {
    return (m & 1) == 0;
  }

  forceinline bool
  PowOps::even(void) const {
    return even(n);
  }

  forceinline int
  PowOps::exp(void) const {
    return n;
  }

  forceinline void
  PowOps::exp(int m) {
    n=m;
  }

  template<class IntType>
  inline IntType
  PowOps::pow(IntType x) const {
    int m = n;
    IntType p = 1;
    do {
      if (even(m)) {
        x *= x; m >>= 1;
      } else {
        p *= x; m--;
      }
    } while (m > 0);
    return p;
  }

  inline int
  PowOps::tpow(int _x) const {
    int m = n;
    long long int p = 1;
    long long int x = _x;
    do {
      if (even(m)) {
        x *= x; m >>= 1;
      } else {
        p *= x; m--;
      }
      if (p > Limits::max)
        return Limits::max+1;
      if (p < Limits::min)
        return Limits::min-1;
    } while (m > 0);
    return static_cast<int>(p);
  }

  forceinline bool
  PowOps::powgr(long long int r, int x) const {
    assert(r >= 0);
    int m = n;
    long long int y = r;
    long long int p = 1;
    do {
      if (even(m)) {
        y *= y; m >>= 1;
        if (y > x)
          return true;
      } else {
        p *= y; m--;
        if (p > x)
          return true;
      }
    } while (m > 0);
    assert(y <= x);
    return false;
  }

  inline int
  PowOps::fnroot(int x) const {
    if (x < 2)
      return x;
    /*
     * We look for l such that: l^n <= x < (l+1)^n
     */
    long long int l = 1;
    long long int u = x;
    do {
      long long int m = (l + u) >> 1;
      if (powgr(m,x)) u=m; else l=m;
    } while (l+1 < u);
    assert((pow(l) <= x) && (x < pow(l+1)));
    return static_cast<int>(l);
  }

  forceinline bool
  PowOps::powle(long long int r, int x) const {
    assert(r >= 0);
    int m = n;
    long long int y = r;
    long long int p = 1;
    do {
      if (even(m)) {
        y *= y; m >>= 1;
        if (y >= x)
          return false;
      } else {
        p *= y; m--;
        if (p >= x)
          return false;
      }
    } while (m > 0);
    assert(y < x);
    return true;
  }

  inline int
  PowOps::cnroot(int x) const {
    if (x < 2)
      return x;
    /*
     * We look for u such that: (u-1)^n < x <= u^n
     */
    long long int l = 1;
    long long int u = x;
    do {
      long long int m = (l + u) >> 1;
      if (powle(m,x)) l=m; else u=m;
    } while (l+1 < u);
    assert((pow(u-1) < x) && (x <= pow(u)));
    return static_cast<int>(u);
  }



  forceinline bool
  SqrOps::even(void) const {
    return true;
  }

  forceinline int
  SqrOps::exp(void) const {
    return 2;
  }

  forceinline void
  SqrOps::exp(int) {
    GECODE_NEVER;
  }

  template<class IntType>
  inline IntType
  SqrOps::pow(IntType x) const {
    return x * x;
  }

  inline int
  SqrOps::tpow(int _x) const {
    long long int x = _x;
    if (x*x > Limits::max)
      return Limits::max+1;
    if (x*x < Limits::min)
      return Limits::min-1;
    return static_cast<int>(x*x);
  }

  inline int
  SqrOps::fnroot(int x) const {
    if (x < 2)
      return x;
    /*
     * We look for l such that: l^2 <= x < (l+1)^2
     */
    long long int l = 1;
    long long int u = x;
    do {
      long long int m = (l + u) >> 1;
      if (m*m > x) u=m; else l=m;
    } while (l+1 < u);
    assert((pow(l) <= x) && (x < pow(l+1)));
    return static_cast<int>(l);
  }

  inline int
  SqrOps::cnroot(int x) const {
    if (x < 2)
      return x;
    /*
     * We look for u such that: (u-1)^n < x <= u^n
     */
    long long int l = 1;
    long long int u = x;
    do {
      long long int m = (l + u) >> 1;
      if (m*m < x) l=m; else u=m;
    } while (l+1 < u);
    assert((pow(u-1) < x) && (x <= pow(u)));
    return static_cast<int>(u);
  }

}}}

// STATISTICS: int-other