This file is indexed.

/usr/include/fst/extensions/linear/linear-fst.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes for building, storing and representing log-linear models as FSTs.

#ifndef FST_EXTENSIONS_LINEAR_LINEAR_FST_H_
#define FST_EXTENSIONS_LINEAR_LINEAR_FST_H_

#include <algorithm>
#include <iostream>
#include <memory>
#include <vector>

#include <fst/compat.h>
#include <fst/log.h>
#include <fst/extensions/pdt/collection.h>
#include <fst/bi-table.h>
#include <fst/cache.h>
#include <fstream>
#include <fst/fst.h>
#include <fst/matcher.h>
#include <fst/symbol-table.h>

#include <fst/extensions/linear/linear-fst-data.h>

namespace fst {

// Forward declaration of the specialized matcher for both
// LinearTaggerFst and LinearClassifierFst.
template <class F>
class LinearFstMatcherTpl;

namespace internal {

// Implementation class for on-the-fly generated LinearTaggerFst with
// special optimization in matching.
template <class A>
class LinearTaggerFstImpl : public CacheImpl<A> {
 public:
  using FstImpl<A>::SetType;
  using FstImpl<A>::SetProperties;
  using FstImpl<A>::SetInputSymbols;
  using FstImpl<A>::SetOutputSymbols;
  using FstImpl<A>::WriteHeader;

  using CacheBaseImpl<CacheState<A>>::PushArc;
  using CacheBaseImpl<CacheState<A>>::HasArcs;
  using CacheBaseImpl<CacheState<A>>::HasFinal;
  using CacheBaseImpl<CacheState<A>>::HasStart;
  using CacheBaseImpl<CacheState<A>>::SetArcs;
  using CacheBaseImpl<CacheState<A>>::SetFinal;
  using CacheBaseImpl<CacheState<A>>::SetStart;

  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef typename Collection<StateId, Label>::SetIterator NGramIterator;

  // Constructs an empty FST by default.
  LinearTaggerFstImpl()
      : CacheImpl<A>(CacheOptions()),
        data_(std::make_shared<LinearFstData<A>>()),
        delay_(0) {
    SetType("linear-tagger");
  }

  // Constructs the FST with given data storage and symbol
  // tables.
  //
  // TODO(wuke): when there is no constraint on output we can delay
  // less than `data->MaxFutureSize` positions.
  LinearTaggerFstImpl(const LinearFstData<Arc> *data, const SymbolTable *isyms,
                      const SymbolTable *osyms, CacheOptions opts)
      : CacheImpl<A>(opts), data_(data), delay_(data->MaxFutureSize()) {
    SetType("linear-tagger");
    SetProperties(kILabelSorted, kFstProperties);
    SetInputSymbols(isyms);
    SetOutputSymbols(osyms);
    ReserveStubSpace();
  }

  // Copy by sharing the underlying data storage.
  LinearTaggerFstImpl(const LinearTaggerFstImpl &impl)
      : CacheImpl<A>(impl), data_(impl.data_), delay_(impl.delay_) {
    SetType("linear-tagger");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
    ReserveStubSpace();
  }

  StateId Start() {
    if (!HasStart()) {
      StateId start = FindStartState();
      SetStart(start);
    }
    return CacheImpl<A>::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      state_stub_.clear();
      FillState(s, &state_stub_);
      if (CanBeFinal(state_stub_))
        SetFinal(s, data_->FinalWeight(InternalBegin(state_stub_),
                                       InternalEnd(state_stub_)));
      else
        SetFinal(s, Weight::Zero());
    }
    return CacheImpl<A>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumOutputEpsilons(s);
  }

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<A>::InitArcIterator(s, data);
  }

  // Computes the outgoing transitions from a state, creating new
  // destination states as needed.
  void Expand(StateId s);

  // Appends to `arcs` all out-going arcs from state `s` that matches `label` as
  // the input label.
  void MatchInput(StateId s, Label ilabel, std::vector<Arc> *arcs);

  static LinearTaggerFstImpl *Read(std::istream &strm,
                                   const FstReadOptions &opts);

  bool Write(std::ostream &strm,  // NOLINT
             const FstWriteOptions &opts) const {
    FstHeader header;
    header.SetStart(kNoStateId);
    WriteHeader(strm, opts, kFileVersion, &header);
    data_->Write(strm);
    if (!strm) {
      LOG(ERROR) << "LinearTaggerFst::Write: Write failed: " << opts.source;
      return false;
    }
    return true;
  }

 private:
  static const int kMinFileVersion;
  static const int kFileVersion;

  // A collection of functions to access parts of the state tuple. A
  // state tuple is a vector of `Label`s with two parts:
  //   [buffer] [internal].
  //
  // - [buffer] is a buffer of observed input labels with length
  // `delay_`. `LinearFstData<A>::kStartOfSentence`
  // (resp. `LinearFstData<A>::kEndOfSentence`) are used as
  // paddings when the buffer has fewer than `delay_` elements, which
  // can only appear as the prefix (resp. suffix) of the buffer.
  //
  // - [internal] is the internal state tuple for `LinearFstData`
  typename std::vector<Label>::const_iterator BufferBegin(
      const std::vector<Label> &state) const {
    return state.begin();
  }

  typename std::vector<Label>::const_iterator BufferEnd(
      const std::vector<Label> &state) const {
    return state.begin() + delay_;
  }

  typename std::vector<Label>::const_iterator InternalBegin(
      const std::vector<Label> &state) const {
    return state.begin() + delay_;
  }

  typename std::vector<Label>::const_iterator InternalEnd(
      const std::vector<Label> &state) const {
    return state.end();
  }

  // The size of state tuples are fixed, reserve them in stubs
  void ReserveStubSpace() {
    state_stub_.reserve(delay_ + data_->NumGroups());
    next_stub_.reserve(delay_ + data_->NumGroups());
  }

  // Computes the start state tuple and maps it to the start state id.
  StateId FindStartState() {
    // Empty buffer with start-of-sentence paddings
    state_stub_.clear();
    state_stub_.resize(delay_, LinearFstData<A>::kStartOfSentence);
    // Append internal states
    data_->EncodeStartState(&state_stub_);
    return FindState(state_stub_);
  }

  // Tests whether the buffer in `(begin, end)` is empty.
  bool IsEmptyBuffer(typename std::vector<Label>::const_iterator begin,
                     typename std::vector<Label>::const_iterator end) const {
    // The following is guanranteed by `ShiftBuffer()`:
    // - buffer[i] == LinearFstData<A>::kEndOfSentence =>
    //       buffer[i+x] == LinearFstData<A>::kEndOfSentence
    // - buffer[i] == LinearFstData<A>::kStartOfSentence =>
    //       buffer[i-x] == LinearFstData<A>::kStartOfSentence
    return delay_ == 0 || *(end - 1) == LinearFstData<A>::kStartOfSentence ||
           *begin == LinearFstData<A>::kEndOfSentence;
  }

  // Tests whether the given state tuple can be a final state. A state
  // is final iff there is no observed input in the buffer.
  bool CanBeFinal(const std::vector<Label> &state) {
    return IsEmptyBuffer(BufferBegin(state), BufferEnd(state));
  }

  // Finds state corresponding to an n-gram. Creates new state if n-gram not
  // found.
  StateId FindState(const std::vector<Label> &ngram) {
    StateId sparse = ngrams_.FindId(ngram, true);
    StateId dense = condensed_.FindId(sparse, true);
    return dense;
  }

  // Appends after `output` the state tuple corresponding to the state id. The
  // state id must exist.
  void FillState(StateId s, std::vector<Label> *output) {
    s = condensed_.FindEntry(s);
    for (NGramIterator it = ngrams_.FindSet(s); !it.Done(); it.Next()) {
      Label label = it.Element();
      output->push_back(label);
    }
  }

  // Shifts the buffer in `state` by appending `ilabel` and popping
  // the one in the front as the return value. `next_stub_` is a
  // shifted buffer of size `delay_` where the first `delay_ - 1`
  // elements are the last `delay_ - 1` elements in the buffer of
  // `state`. The last (if any) element in `next_stub_` will be
  // `ilabel` after the call returns.
  Label ShiftBuffer(const std::vector<Label> &state, Label ilabel,
                    std::vector<Label> *next_stub_);

  // Builds an arc from state tuple `state` consuming `ilabel` and
  // `olabel`. `next_stub_` is the buffer filled in `ShiftBuffer`.
  Arc MakeArc(const std::vector<Label> &state, Label ilabel, Label olabel,
              std::vector<Label> *next_stub_);

  // Expands arcs from state `s`, equivalent to state tuple `state`,
  // with input `ilabel`. `next_stub_` is the buffer filled in
  // `ShiftBuffer`.
  void ExpandArcs(StateId s, const std::vector<Label> &state, Label ilabel,
                  std::vector<Label> *next_stub_);

  // Appends arcs from state `s`, equivalent to state tuple `state`,
  // with input `ilabel` to `arcs`. `next_stub_` is the buffer filled
  // in `ShiftBuffer`.
  void AppendArcs(StateId s, const std::vector<Label> &state, Label ilabel,
                  std::vector<Label> *next_stub_, std::vector<Arc> *arcs);

  std::shared_ptr<const LinearFstData<A>> data_;
  size_t delay_;
  // Mapping from internal state tuple to *non-consecutive* ids
  Collection<StateId, Label> ngrams_;
  // Mapping from non-consecutive id to actual state id
  CompactHashBiTable<StateId, StateId, std::hash<StateId>> condensed_;
  // Two frequently used vectors, reuse to avoid repeated heap
  // allocation
  std::vector<Label> state_stub_, next_stub_;

  LinearTaggerFstImpl &operator=(const LinearTaggerFstImpl &) = delete;
};

template <class A>
const int LinearTaggerFstImpl<A>::kMinFileVersion = 1;

template <class A>
const int LinearTaggerFstImpl<A>::kFileVersion = 1;

template <class A>
inline typename A::Label LinearTaggerFstImpl<A>::ShiftBuffer(
    const std::vector<Label> &state, Label ilabel,
    std::vector<Label> *next_stub_) {
  DCHECK(ilabel > 0 || ilabel == LinearFstData<A>::kEndOfSentence);
  if (delay_ == 0) {
    DCHECK_GT(ilabel, 0);
    return ilabel;
  } else {
    (*next_stub_)[BufferEnd(*next_stub_) - next_stub_->begin() - 1] = ilabel;
    return *BufferBegin(state);
  }
}

template <class A>
inline A LinearTaggerFstImpl<A>::MakeArc(const std::vector<Label> &state,
                                         Label ilabel, Label olabel,
                                         std::vector<Label> *next_stub_) {
  DCHECK(ilabel > 0 || ilabel == LinearFstData<A>::kEndOfSentence);
  DCHECK(olabel > 0 || olabel == LinearFstData<A>::kStartOfSentence);
  Weight weight(Weight::One());
  data_->TakeTransition(BufferEnd(state), InternalBegin(state),
                        InternalEnd(state), ilabel, olabel, next_stub_,
                        &weight);
  StateId nextstate = FindState(*next_stub_);
  // Restore `next_stub_` to its size before the call
  next_stub_->resize(delay_);
  // In the actual arc, we use epsilons instead of boundaries.
  return A(ilabel == LinearFstData<A>::kEndOfSentence ? 0 : ilabel,
           olabel == LinearFstData<A>::kStartOfSentence ? 0 : olabel, weight,
           nextstate);
}

template <class A>
inline void LinearTaggerFstImpl<A>::ExpandArcs(StateId s,
                                               const std::vector<Label> &state,
                                               Label ilabel,
                                               std::vector<Label> *next_stub_) {
  // Input label to constrain the output with, observed `delay_` steps
  // back. `ilabel` is the input label to be put on the arc, which
  // fires features.
  Label obs_ilabel = ShiftBuffer(state, ilabel, next_stub_);
  if (obs_ilabel == LinearFstData<A>::kStartOfSentence) {
    // This happens when input is shorter than `delay_`.
    PushArc(s, MakeArc(state, ilabel, LinearFstData<A>::kStartOfSentence,
                       next_stub_));
  } else {
    std::pair<typename std::vector<typename A::Label>::const_iterator,
              typename std::vector<typename A::Label>::const_iterator> range =
        data_->PossibleOutputLabels(obs_ilabel);
    for (typename std::vector<typename A::Label>::const_iterator it =
             range.first;
         it != range.second; ++it)
      PushArc(s, MakeArc(state, ilabel, *it, next_stub_));
  }
}

// TODO(wuke): this has much in duplicate with `ExpandArcs()`
template <class A>
inline void LinearTaggerFstImpl<A>::AppendArcs(StateId /*s*/,
                                               const std::vector<Label> &state,
                                               Label ilabel,
                                               std::vector<Label> *next_stub_,
                                               std::vector<Arc> *arcs) {
  // Input label to constrain the output with, observed `delay_` steps
  // back. `ilabel` is the input label to be put on the arc, which
  // fires features.
  Label obs_ilabel = ShiftBuffer(state, ilabel, next_stub_);
  if (obs_ilabel == LinearFstData<A>::kStartOfSentence) {
    // This happens when input is shorter than `delay_`.
    arcs->push_back(
        MakeArc(state, ilabel, LinearFstData<A>::kStartOfSentence, next_stub_));
  } else {
    std::pair<typename std::vector<typename A::Label>::const_iterator,
              typename std::vector<typename A::Label>::const_iterator> range =
        data_->PossibleOutputLabels(obs_ilabel);
    for (typename std::vector<typename A::Label>::const_iterator it =
             range.first;
         it != range.second; ++it)
      arcs->push_back(MakeArc(state, ilabel, *it, next_stub_));
  }
}

template <class A>
void LinearTaggerFstImpl<A>::Expand(StateId s) {
  VLOG(3) << "Expand " << s;
  state_stub_.clear();
  FillState(s, &state_stub_);

  // Precompute the first `delay_ - 1` elements in the buffer of
  // next states, which are identical for different input/output.
  next_stub_.clear();
  next_stub_.resize(delay_);
  if (delay_ > 0)
    std::copy(BufferBegin(state_stub_) + 1, BufferEnd(state_stub_),
              next_stub_.begin());

  // Epsilon transition for flushing out the next observed input
  if (!IsEmptyBuffer(BufferBegin(state_stub_), BufferEnd(state_stub_)))
    ExpandArcs(s, state_stub_, LinearFstData<A>::kEndOfSentence, &next_stub_);

  // Non-epsilon input when we haven't flushed
  if (delay_ == 0 ||
      *(BufferEnd(state_stub_) - 1) != LinearFstData<A>::kEndOfSentence)
    for (Label ilabel = data_->MinInputLabel();
         ilabel <= data_->MaxInputLabel(); ++ilabel)
      ExpandArcs(s, state_stub_, ilabel, &next_stub_);

  SetArcs(s);
}

template <class A>
void LinearTaggerFstImpl<A>::MatchInput(StateId s, Label ilabel,
                                        std::vector<Arc> *arcs) {
  state_stub_.clear();
  FillState(s, &state_stub_);

  // Precompute the first `delay_ - 1` elements in the buffer of
  // next states, which are identical for different input/output.
  next_stub_.clear();
  next_stub_.resize(delay_);
  if (delay_ > 0)
    std::copy(BufferBegin(state_stub_) + 1, BufferEnd(state_stub_),
              next_stub_.begin());

  if (ilabel == 0) {
    // Epsilon transition for flushing out the next observed input
    if (!IsEmptyBuffer(BufferBegin(state_stub_), BufferEnd(state_stub_)))
      AppendArcs(s, state_stub_, LinearFstData<A>::kEndOfSentence, &next_stub_,
                 arcs);
  } else {
    // Non-epsilon input when we haven't flushed
    if (delay_ == 0 ||
        *(BufferEnd(state_stub_) - 1) != LinearFstData<A>::kEndOfSentence)
      AppendArcs(s, state_stub_, ilabel, &next_stub_, arcs);
  }
}

template <class A>
inline LinearTaggerFstImpl<A> *LinearTaggerFstImpl<A>::Read(
    std::istream &strm, const FstReadOptions &opts) {  // NOLINT
  std::unique_ptr<LinearTaggerFstImpl<A>> impl(new LinearTaggerFstImpl<A>());
  FstHeader header;
  if (!impl->ReadHeader(strm, opts, kMinFileVersion, &header)) {
    return nullptr;
  }
  impl->data_ = std::shared_ptr<LinearFstData<A>>(LinearFstData<A>::Read(strm));
  if (!impl->data_) {
    return nullptr;
  }
  impl->delay_ = impl->data_->MaxFutureSize();
  impl->ReserveStubSpace();
  return impl.release();
}

}  // namespace internal

// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A>
class LinearTaggerFst : public ImplToFst<internal::LinearTaggerFstImpl<A>> {
 public:
  friend class ArcIterator<LinearTaggerFst<A>>;
  friend class StateIterator<LinearTaggerFst<A>>;
  friend class LinearFstMatcherTpl<LinearTaggerFst<A>>;

  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef DefaultCacheStore<A> Store;
  typedef typename Store::State State;
  using Impl = internal::LinearTaggerFstImpl<A>;

  LinearTaggerFst() : ImplToFst<Impl>(std::make_shared<Impl>()) {}

  explicit LinearTaggerFst(LinearFstData<A> *data,
                           const SymbolTable *isyms = nullptr,
                           const SymbolTable *osyms = nullptr,
                           CacheOptions opts = CacheOptions())
      : ImplToFst<Impl>(std::make_shared<Impl>(data, isyms, osyms, opts)) {}

  explicit LinearTaggerFst(const Fst<A> &fst)
      : ImplToFst<Impl>(std::make_shared<Impl>()) {
    LOG(FATAL) << "LinearTaggerFst: no constructor from arbitrary FST.";
  }

  // See Fst<>::Copy() for doc.
  LinearTaggerFst(const LinearTaggerFst<A> &fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Get a copy of this LinearTaggerFst. See Fst<>::Copy() for further doc.
  LinearTaggerFst<A> *Copy(bool safe = false) const override {
    return new LinearTaggerFst<A>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<A> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

  MatcherBase<A> *InitMatcher(MatchType match_type) const override {
    return new LinearFstMatcherTpl<LinearTaggerFst<A>>(*this, match_type);
  }

  static LinearTaggerFst<A> *Read(const string &filename) {
    if (!filename.empty()) {
      std::ifstream strm(filename,
                              std::ios_base::in | std::ios_base::binary);
      if (!strm) {
        LOG(ERROR) << "LinearTaggerFst::Read: Can't open file: " << filename;
        return nullptr;
      }
      return Read(strm, FstReadOptions(filename));
    } else {
      return Read(std::cin, FstReadOptions("standard input"));
    }
  }

  static LinearTaggerFst<A> *Read(std::istream &in,  // NOLINT
                                  const FstReadOptions &opts) {
    auto *impl = Impl::Read(in, opts);
    return impl ? new LinearTaggerFst<A>(std::shared_ptr<Impl>(impl)) : nullptr;
  }

  bool Write(const string &filename) const override {
    if (!filename.empty()) {
      std::ofstream strm(filename,
                               std::ios_base::out | std::ios_base::binary);
      if (!strm) {
        LOG(ERROR) << "LinearTaggerFst::Write: Can't open file: " << filename;
        return false;
      }
      return Write(strm, FstWriteOptions(filename));
    } else {
      return Write(std::cout, FstWriteOptions("standard output"));
    }
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const override {
    return GetImpl()->Write(strm, opts);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  explicit LinearTaggerFst(std::shared_ptr<Impl> impl)
      : ImplToFst<Impl>(impl) {}

  void operator=(const LinearTaggerFst<A> &fst) = delete;
};

// Specialization for LinearTaggerFst.
template <class Arc>
class StateIterator<LinearTaggerFst<Arc>>
    : public CacheStateIterator<LinearTaggerFst<Arc>> {
 public:
  explicit StateIterator(const LinearTaggerFst<Arc> &fst)
      : CacheStateIterator<LinearTaggerFst<Arc>>(fst, fst.GetMutableImpl()) {}
};

// Specialization for LinearTaggerFst.
template <class Arc>
class ArcIterator<LinearTaggerFst<Arc>>
    : public CacheArcIterator<LinearTaggerFst<Arc>> {
 public:
  using StateId = typename Arc::StateId;

  ArcIterator(const LinearTaggerFst<Arc> &fst, StateId s)
      : CacheArcIterator<LinearTaggerFst<Arc>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class Arc>
inline void LinearTaggerFst<Arc>::InitStateIterator(
    StateIteratorData<Arc> *data) const {
  data->base = new StateIterator<LinearTaggerFst<Arc>>(*this);
}

namespace internal {

// Implementation class for on-the-fly generated LinearClassifierFst with
// special optimization in matching.
template <class A>
class LinearClassifierFstImpl : public CacheImpl<A> {
 public:
  using FstImpl<A>::SetType;
  using FstImpl<A>::SetProperties;
  using FstImpl<A>::SetInputSymbols;
  using FstImpl<A>::SetOutputSymbols;
  using FstImpl<A>::WriteHeader;

  using CacheBaseImpl<CacheState<A>>::PushArc;
  using CacheBaseImpl<CacheState<A>>::HasArcs;
  using CacheBaseImpl<CacheState<A>>::HasFinal;
  using CacheBaseImpl<CacheState<A>>::HasStart;
  using CacheBaseImpl<CacheState<A>>::SetArcs;
  using CacheBaseImpl<CacheState<A>>::SetFinal;
  using CacheBaseImpl<CacheState<A>>::SetStart;

  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef typename Collection<StateId, Label>::SetIterator NGramIterator;

  // Constructs an empty FST by default.
  LinearClassifierFstImpl()
      : CacheImpl<A>(CacheOptions()),
        data_(std::make_shared<LinearFstData<A>>()) {
    SetType("linear-classifier");
    num_classes_ = 0;
    num_groups_ = 0;
  }

  // Constructs the FST with given data storage, number of classes and
  // symbol tables.
  LinearClassifierFstImpl(const LinearFstData<Arc> *data, size_t num_classes,
                          const SymbolTable *isyms, const SymbolTable *osyms,
                          CacheOptions opts)
      : CacheImpl<A>(opts),
        data_(data),
        num_classes_(num_classes),
        num_groups_(data_->NumGroups() / num_classes_) {
    SetType("linear-classifier");
    SetProperties(kILabelSorted, kFstProperties);
    SetInputSymbols(isyms);
    SetOutputSymbols(osyms);
    ReserveStubSpace();
  }

  // Copy by sharing the underlying data storage.
  LinearClassifierFstImpl(const LinearClassifierFstImpl &impl)
      : CacheImpl<A>(impl),
        data_(impl.data_),
        num_classes_(impl.num_classes_),
        num_groups_(impl.num_groups_) {
    SetType("linear-classifier");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
    ReserveStubSpace();
  }

  StateId Start() {
    if (!HasStart()) {
      StateId start = FindStartState();
      SetStart(start);
    }
    return CacheImpl<A>::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      state_stub_.clear();
      FillState(s, &state_stub_);
      SetFinal(s, FinalWeight(state_stub_));
    }
    return CacheImpl<A>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumOutputEpsilons(s);
  }

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<A>::InitArcIterator(s, data);
  }

  // Computes the outgoing transitions from a state, creating new
  // destination states as needed.
  void Expand(StateId s);

  // Appends to `arcs` all out-going arcs from state `s` that matches
  // `label` as the input label.
  void MatchInput(StateId s, Label ilabel, std::vector<Arc> *arcs);

  static LinearClassifierFstImpl<A> *Read(std::istream &strm,
                                          const FstReadOptions &opts);

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
    FstHeader header;
    header.SetStart(kNoStateId);
    WriteHeader(strm, opts, kFileVersion, &header);
    data_->Write(strm);
    WriteType(strm, num_classes_);
    if (!strm) {
      LOG(ERROR) << "LinearClassifierFst::Write: Write failed: " << opts.source;
      return false;
    }
    return true;
  }

 private:
  static const int kMinFileVersion;
  static const int kFileVersion;

  // A collection of functions to access parts of the state tuple. A
  // state tuple is a vector of `Label`s with two parts:
  //   [prediction] [internal].
  //
  // - [prediction] is a single label of the predicted class. A state
  //   must have a positive class label, unless it is the start state.
  //
  // - [internal] is the internal state tuple for `LinearFstData` of
  //   the given class; or kNoTrieNodeId's if in start state.
  Label &Prediction(std::vector<Label> &state) { return state[0]; }  // NOLINT
  Label Prediction(const std::vector<Label> &state) const { return state[0]; }

  Label &InternalAt(std::vector<Label> &state, int index) {  // NOLINT
    return state[index + 1];
  }
  Label InternalAt(const std::vector<Label> &state, int index) const {
    return state[index + 1];
  }

  // The size of state tuples are fixed, reserve them in stubs
  void ReserveStubSpace() {
    size_t size = 1 + num_groups_;
    state_stub_.reserve(size);
    next_stub_.reserve(size);
  }

  // Computes the start state tuple and maps it to the start state id.
  StateId FindStartState() {
    // A start state tuple has no prediction
    state_stub_.clear();
    state_stub_.push_back(kNoLabel);
    // For a start state, we don't yet know where we are in the tries.
    for (size_t i = 0; i < num_groups_; ++i)
      state_stub_.push_back(kNoTrieNodeId);
    return FindState(state_stub_);
  }

  // Tests if the state tuple represents the start state.
  bool IsStartState(const std::vector<Label> &state) const {
    return state[0] == kNoLabel;
  }

  // Computes the actual group id in the data storage.
  int GroupId(Label pred, int group) const {
    return group * num_classes_ + pred - 1;
  }

  // Finds out the final weight of the given state. A state is final
  // iff it is not the start.
  Weight FinalWeight(const std::vector<Label> &state) const {
    if (IsStartState(state)) {
      return Weight::Zero();
    }
    Label pred = Prediction(state);
    DCHECK_GT(pred, 0);
    DCHECK_LE(pred, num_classes_);
    Weight final_weight = Weight::One();
    for (size_t group = 0; group < num_groups_; ++group) {
      int group_id = GroupId(pred, group);
      int trie_state = InternalAt(state, group);
      final_weight =
          Times(final_weight, data_->GroupFinalWeight(group_id, trie_state));
    }
    return final_weight;
  }

  // Finds state corresponding to an n-gram. Creates new state if n-gram not
  // found.
  StateId FindState(const std::vector<Label> &ngram) {
    StateId sparse = ngrams_.FindId(ngram, true);
    StateId dense = condensed_.FindId(sparse, true);
    return dense;
  }

  // Appends after `output` the state tuple corresponding to the state id. The
  // state id must exist.
  void FillState(StateId s, std::vector<Label> *output) {
    s = condensed_.FindEntry(s);
    for (NGramIterator it = ngrams_.FindSet(s); !it.Done(); it.Next()) {
      Label label = it.Element();
      output->push_back(label);
    }
  }

  std::shared_ptr<const LinearFstData<A>> data_;
  // Division of groups in `data_`; num_classes_ * num_groups_ ==
  // data_->NumGroups().
  size_t num_classes_, num_groups_;
  // Mapping from internal state tuple to *non-consecutive* ids
  Collection<StateId, Label> ngrams_;
  // Mapping from non-consecutive id to actual state id
  CompactHashBiTable<StateId, StateId, std::hash<StateId>> condensed_;
  // Two frequently used vectors, reuse to avoid repeated heap
  // allocation
  std::vector<Label> state_stub_, next_stub_;

  void operator=(const LinearClassifierFstImpl<A> &) = delete;
};

template <class A>
const int LinearClassifierFstImpl<A>::kMinFileVersion = 0;

template <class A>
const int LinearClassifierFstImpl<A>::kFileVersion = 0;

template <class A>
void LinearClassifierFstImpl<A>::Expand(StateId s) {
  VLOG(3) << "Expand " << s;
  state_stub_.clear();
  FillState(s, &state_stub_);
  next_stub_.clear();
  next_stub_.resize(1 + num_groups_);

  if (IsStartState(state_stub_)) {
    // Make prediction
    for (Label pred = 1; pred <= num_classes_; ++pred) {
      Prediction(next_stub_) = pred;
      for (int i = 0; i < num_groups_; ++i)
        InternalAt(next_stub_, i) = data_->GroupStartState(GroupId(pred, i));
      PushArc(s, A(0, pred, Weight::One(), FindState(next_stub_)));
    }
  } else {
    Label pred = Prediction(state_stub_);
    DCHECK_GT(pred, 0);
    DCHECK_LE(pred, num_classes_);
    for (Label ilabel = data_->MinInputLabel();
         ilabel <= data_->MaxInputLabel(); ++ilabel) {
      Prediction(next_stub_) = pred;
      Weight weight = Weight::One();
      for (int i = 0; i < num_groups_; ++i)
        InternalAt(next_stub_, i) =
            data_->GroupTransition(GroupId(pred, i), InternalAt(state_stub_, i),
                                   ilabel, pred, &weight);
      PushArc(s, A(ilabel, 0, weight, FindState(next_stub_)));
    }
  }

  SetArcs(s);
}

template <class A>
void LinearClassifierFstImpl<A>::MatchInput(StateId s, Label ilabel,
                                            std::vector<Arc> *arcs) {
  state_stub_.clear();
  FillState(s, &state_stub_);
  next_stub_.clear();
  next_stub_.resize(1 + num_groups_);

  if (IsStartState(state_stub_)) {
    // Make prediction if `ilabel` is epsilon.
    if (ilabel == 0) {
      for (Label pred = 1; pred <= num_classes_; ++pred) {
        Prediction(next_stub_) = pred;
        for (int i = 0; i < num_groups_; ++i)
          InternalAt(next_stub_, i) = data_->GroupStartState(GroupId(pred, i));
        arcs->push_back(A(0, pred, Weight::One(), FindState(next_stub_)));
      }
    }
  } else if (ilabel != 0) {
    Label pred = Prediction(state_stub_);
    Weight weight = Weight::One();
    Prediction(next_stub_) = pred;
    for (int i = 0; i < num_groups_; ++i)
      InternalAt(next_stub_, i) = data_->GroupTransition(
          GroupId(pred, i), InternalAt(state_stub_, i), ilabel, pred, &weight);
    arcs->push_back(A(ilabel, 0, weight, FindState(next_stub_)));
  }
}

template <class A>
inline LinearClassifierFstImpl<A> *LinearClassifierFstImpl<A>::Read(
    std::istream &strm, const FstReadOptions &opts) {
  std::unique_ptr<LinearClassifierFstImpl<A>> impl(
      new LinearClassifierFstImpl<A>());
  FstHeader header;
  if (!impl->ReadHeader(strm, opts, kMinFileVersion, &header)) {
    return nullptr;
  }
  impl->data_ = std::shared_ptr<LinearFstData<A>>(LinearFstData<A>::Read(strm));
  if (!impl->data_) {
    return nullptr;
  }
  ReadType(strm, &impl->num_classes_);
  if (!strm) {
    return nullptr;
  }
  impl->num_groups_ = impl->data_->NumGroups() / impl->num_classes_;
  if (impl->num_groups_ * impl->num_classes_ != impl->data_->NumGroups()) {
    FSTERROR() << "Total number of feature groups is not a multiple of the "
                  "number of classes: num groups = "
               << impl->data_->NumGroups()
               << ", num classes = " << impl->num_classes_;
    return nullptr;
  }
  impl->ReserveStubSpace();
  return impl.release();
}

}  // namespace internal

// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A>
class LinearClassifierFst
    : public ImplToFst<internal::LinearClassifierFstImpl<A>> {
 public:
  friend class ArcIterator<LinearClassifierFst<A>>;
  friend class StateIterator<LinearClassifierFst<A>>;
  friend class LinearFstMatcherTpl<LinearClassifierFst<A>>;

  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef DefaultCacheStore<A> Store;
  typedef typename Store::State State;
  using Impl = internal::LinearClassifierFstImpl<A>;

  LinearClassifierFst() : ImplToFst<Impl>(std::make_shared<Impl>()) {}

  explicit LinearClassifierFst(LinearFstData<A> *data, size_t num_classes,
                               const SymbolTable *isyms = nullptr,
                               const SymbolTable *osyms = nullptr,
                               CacheOptions opts = CacheOptions())
      : ImplToFst<Impl>(
            std::make_shared<Impl>(data, num_classes, isyms, osyms, opts)) {}

  explicit LinearClassifierFst(const Fst<A> &fst)
      : ImplToFst<Impl>(std::make_shared<Impl>()) {
    LOG(FATAL) << "LinearClassifierFst: no constructor from arbitrary FST.";
  }

  // See Fst<>::Copy() for doc.
  LinearClassifierFst(const LinearClassifierFst<A> &fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Get a copy of this LinearClassifierFst. See Fst<>::Copy() for further doc.
  LinearClassifierFst<A> *Copy(bool safe = false) const override {
    return new LinearClassifierFst<A>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<A> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

  MatcherBase<A> *InitMatcher(MatchType match_type) const override {
    return new LinearFstMatcherTpl<LinearClassifierFst<A>>(*this, match_type);
  }

  static LinearClassifierFst<A> *Read(const string &filename) {
    if (!filename.empty()) {
      std::ifstream strm(filename,
                              std::ios_base::in | std::ios_base::binary);
      if (!strm) {
        LOG(ERROR) << "LinearClassifierFst::Read: Can't open file: "
                   << filename;
        return nullptr;
      }
      return Read(strm, FstReadOptions(filename));
    } else {
      return Read(std::cin, FstReadOptions("standard input"));
    }
  }

  static LinearClassifierFst<A> *Read(std::istream &in,
                                      const FstReadOptions &opts) {
    auto *impl = Impl::Read(in, opts);
    return impl ? new LinearClassifierFst<A>(std::shared_ptr<Impl>(impl))
                : nullptr;
  }

  bool Write(const string &filename) const override {
    if (!filename.empty()) {
      std::ofstream strm(filename,
                               std::ios_base::out | std::ios_base::binary);
      if (!strm) {
        LOG(ERROR) << "ProdLmFst::Write: Can't open file: " << filename;
        return false;
      }
      return Write(strm, FstWriteOptions(filename));
    } else {
      return Write(std::cout, FstWriteOptions("standard output"));
    }
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const override {
    return GetImpl()->Write(strm, opts);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  explicit LinearClassifierFst(std::shared_ptr<Impl> impl)
      : ImplToFst<Impl>(impl) {}

  void operator=(const LinearClassifierFst<A> &fst) = delete;
};

// Specialization for LinearClassifierFst.
template <class Arc>
class StateIterator<LinearClassifierFst<Arc>>
    : public CacheStateIterator<LinearClassifierFst<Arc>> {
 public:
  explicit StateIterator(const LinearClassifierFst<Arc> &fst)
      : CacheStateIterator<LinearClassifierFst<Arc>>(fst,
                                                     fst.GetMutableImpl()) {}
};

// Specialization for LinearClassifierFst.
template <class Arc>
class ArcIterator<LinearClassifierFst<Arc>>
    : public CacheArcIterator<LinearClassifierFst<Arc>> {
 public:
  using StateId = typename Arc::StateId;

  ArcIterator(const LinearClassifierFst<Arc> &fst, StateId s)
      : CacheArcIterator<LinearClassifierFst<Arc>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class Arc>
inline void LinearClassifierFst<Arc>::InitStateIterator(
    StateIteratorData<Arc> *data) const {
  data->base = new StateIterator<LinearClassifierFst<Arc>>(*this);
}

// Specialized Matcher for LinearFsts. This matcher only supports
// matching from the input side. This is intentional because comparing
// the scores of different input sequences with the same output
// sequence is meaningless in a discriminative model.
template <class F>
class LinearFstMatcherTpl : public MatcherBase<typename F::Arc> {
 public:
  typedef typename F::Arc Arc;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;
  typedef F FST;

  LinearFstMatcherTpl(const FST &fst, MatchType match_type)
      : fst_(fst.Copy()),
        match_type_(match_type),
        s_(kNoStateId),
        current_loop_(false),
        loop_(kNoLabel, 0, Weight::One(), kNoStateId),
        cur_arc_(0),
        error_(false) {
    switch (match_type_) {
      case MATCH_INPUT:
      case MATCH_OUTPUT:
      case MATCH_NONE:
        break;
      default:
        FSTERROR() << "LinearFstMatcherTpl: Bad match type";
        match_type_ = MATCH_NONE;
        error_ = true;
    }
  }

  LinearFstMatcherTpl(const LinearFstMatcherTpl<F> &matcher, bool safe = false)
      : fst_(matcher.fst_->Copy(safe)),
        match_type_(matcher.match_type_),
        s_(kNoStateId),
        current_loop_(false),
        loop_(matcher.loop_),
        cur_arc_(0),
        error_(matcher.error_) {}

  LinearFstMatcherTpl<F> *Copy(bool safe = false) const override {
    return new LinearFstMatcherTpl<F>(*this, safe);
  }

  MatchType Type(bool /*test*/) const override {
    // `MATCH_INPUT` is the only valid type
    return match_type_ == MATCH_INPUT ? match_type_ : MATCH_NONE;
  }

  void SetState(StateId s) final {
    if (s_ == s) return;
    s_ = s;
    // `MATCH_INPUT` is the only valid type
    if (match_type_ != MATCH_INPUT) {
      FSTERROR() << "LinearFstMatcherTpl: Bad match type";
      error_ = true;
    }
    loop_.nextstate = s;
  }

  bool Find(Label label) final {
    if (error_) {
      current_loop_ = false;
      return false;
    }
    current_loop_ = label == 0;
    if (label == kNoLabel) label = 0;
    arcs_.clear();
    cur_arc_ = 0;
    fst_->GetMutableImpl()->MatchInput(s_, label, &arcs_);
    return current_loop_ || !arcs_.empty();
  }

  bool Done() const final {
    return !(current_loop_ || cur_arc_ < arcs_.size());
  }

  const Arc &Value() const final {
    return current_loop_ ? loop_ : arcs_[cur_arc_];
  }

  void Next() final {
    if (current_loop_)
      current_loop_ = false;
    else
      ++cur_arc_;
  }

  ssize_t Priority(StateId s) final { return kRequirePriority; }

  const FST &GetFst() const override { return *fst_; }

  uint64 Properties(uint64 props) const override {
    if (error_) props |= kError;
    return props;
  }

  uint32 Flags() const override { return kRequireMatch; }

 private:
  std::unique_ptr<const FST> fst_;
  MatchType match_type_;  // Type of match to perform.
  StateId s_;             // Current state.
  bool current_loop_;     // Current arc is the implicit loop.
  Arc loop_;              // For non-consuming symbols.
  // All out-going arcs matching the label in last Find() call.
  std::vector<Arc> arcs_;
  size_t cur_arc_;  // Index to the arc that `Value()` should return.
  bool error_;      // Error encountered.
};

}  // namespace fst

#endif  // FST_EXTENSIONS_LINEAR_LINEAR_FST_H_