This file is indexed.

/usr/include/fst/extensions/compress/compress.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Compresses and decompresses unweighted FSTs.

#ifndef FST_EXTENSIONS_COMPRESS_COMPRESS_H_
#define FST_EXTENSIONS_COMPRESS_COMPRESS_H_

#include <cstdio>

#include <iostream>
#include <queue>
#include <vector>

#include <fst/compat.h>
#include <fst/extensions/compress/elias.h>
#include <fst/extensions/compress/gzfile.h>
#include <fstream>

#include <fst/encode.h>
#include <fst/expanded-fst.h>
#include <fst/fst.h>
#include <fst/mutable-fst.h>
#include <fst/statesort.h>

namespace fst {

// Identifies stream data as a vanilla compressed FST.
static const int32 kCompressMagicNumber = 1858869554;
// Identifies stream data as (probably) a Gzip file accidentally read from
// a vanilla stream, without gzip support.
static const int32 kGzipMagicNumber = 0x8b1f;
// Selects the two most significant bytes.
constexpr uint32 kGzipMask = 0xffffffff >> 16;

namespace internal {

// Expands a Lempel Ziv code and returns the set of code words. expanded_code[i]
// is the i^th Lempel Ziv codeword.
template <class Var, class Edge>
bool ExpandLZCode(const std::vector<std::pair<Var, Edge>> &code,
                  std::vector<std::vector<Edge>> *expanded_code) {
  expanded_code->resize(code.size());
  for (int i = 0; i < code.size(); ++i) {
    if (code[i].first > i) {
      LOG(ERROR) << "ExpandLZCode: Not a valid code";
      return false;
    }
    if (code[i].first == 0) {
      (*expanded_code)[i].resize(1, code[i].second);
    } else {
      (*expanded_code)[i].resize((*expanded_code)[code[i].first - 1].size() +
                                 1);
      std::copy((*expanded_code)[code[i].first - 1].begin(),
                (*expanded_code)[code[i].first - 1].end(),
                (*expanded_code)[i].begin());
      (*expanded_code)[i][(*expanded_code)[code[i].first - 1].size()] =
          code[i].second;
    }
  }
  return true;
}

}  // namespace internal

// Lempel Ziv on data structure Edge, with a less than operator
// EdgeLessThan and an equals operator  EdgeEquals.
// Edge has a value defaultedge which it never takes and
// Edge is defined, it is initialized to defaultedge
template <class Var, class Edge, class EdgeLessThan, class EdgeEquals>
class LempelZiv {
 public:
  LempelZiv() : dict_number_(0) {
    root_.current_number = dict_number_++;
    root_.current_edge = default_edge_;
    decode_vector_.push_back(std::make_pair(0, default_edge_));
  }
  // Encodes a vector input into output
  void BatchEncode(const std::vector<Edge> &input,
                   std::vector<std::pair<Var, Edge>> *output);

  // Decodes codedvector to output. Returns false if
  // the index exceeds the size.
  bool BatchDecode(const std::vector<std::pair<Var, Edge>> &input,
                   std::vector<Edge> *output);

  // Decodes a single dictionary element. Returns false
  // if the index exceeds the size.
  bool SingleDecode(const Var &index, Edge *output) {
    if (index >= decode_vector_.size()) {
      LOG(ERROR) << "LempelZiv::SingleDecode: "
                 << "Index exceeded the dictionary size";
      return false;
    } else {
      *output = decode_vector_[index].second;
      return true;
    }
  }

  ~LempelZiv() {
    for (auto it = (root_.next_number).begin(); it != (root_.next_number).end();
         ++it) {
      CleanUp(it->second);
    }
  }
  // Adds a single dictionary element while decoding
  //  void AddDictElement(const std::pair<Var, Edge> &newdict) {
  //    EdgeEquals InstEdgeEquals;
  //  if (InstEdgeEquals(newdict.second, default_edge_) != 1)
  //     decode_vector_.push_back(newdict);
  //  }

 private:
  // Node datastructure is used for encoding

  struct Node {
    Var current_number;
    Edge current_edge;
    std::map<Edge, Node *, EdgeLessThan> next_number;
  };

  void CleanUp(Node *temp) {
    for (auto it = (temp->next_number).begin(); it != (temp->next_number).end();
         ++it) {
      CleanUp(it->second);
    }
    delete temp;
  }
  Node root_;
  Var dict_number_;
  // decode_vector_ is used for decoding
  std::vector<std::pair<Var, Edge>> decode_vector_;
  Edge default_edge_;
};

template <class Var, class Edge, class EdgeLessThan, class EdgeEquals>
void LempelZiv<Var, Edge, EdgeLessThan, EdgeEquals>::BatchEncode(
    const std::vector<Edge> &input, std::vector<std::pair<Var, Edge>> *output) {
  for (typename std::vector<Edge>::const_iterator it = input.begin();
       it != input.end(); ++it) {
    Node *temp_node = &root_;
    while (it != input.end()) {
      auto next = (temp_node->next_number).find(*it);
      if (next != (temp_node->next_number).end()) {
        temp_node = next->second;
        ++it;
      } else {
        break;
      }
    }
    if (it == input.end() && temp_node->current_number != 0) {
      output->push_back(
          std::make_pair(temp_node->current_number, default_edge_));
    } else if (it != input.end()) {
      output->push_back(std::make_pair(temp_node->current_number, *it));
      Node *new_node = new (Node);
      new_node->current_number = dict_number_++;
      new_node->current_edge = *it;
      (temp_node->next_number)[*it] = new_node;
    }
    if (it == input.end()) break;
  }
}

template <class Var, class Edge, class EdgeLessThan, class EdgeEquals>
bool LempelZiv<Var, Edge, EdgeLessThan, EdgeEquals>::BatchDecode(
    const std::vector<std::pair<Var, Edge>> &input, std::vector<Edge> *output) {
  for (typename std::vector<std::pair<Var, Edge>>::const_iterator it =
           input.begin();
       it != input.end(); ++it) {
    std::vector<Edge> temp_output;
    EdgeEquals InstEdgeEquals;
    if (InstEdgeEquals(it->second, default_edge_) != 1) {
      decode_vector_.push_back(*it);
      temp_output.push_back(it->second);
    }
    Var temp_integer = it->first;
    if (temp_integer >= decode_vector_.size()) {
      LOG(ERROR) << "LempelZiv::BatchDecode: "
                 << "Index exceeded the dictionary size";
      return false;
    } else {
      while (temp_integer != 0) {
        temp_output.push_back(decode_vector_[temp_integer].second);
        temp_integer = decode_vector_[temp_integer].first;
      }
      std::reverse(temp_output.begin(), temp_output.end());
      output->insert(output->end(), temp_output.begin(), temp_output.end());
    }
  }
  return true;
}

// The main Compressor class
template <class Arc>
class Compressor {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  Compressor() {}

  // Compresses fst into a boolean vector code. Returns true on sucesss.
  bool Compress(const Fst<Arc> &fst, std::ostream &strm);

  // Decompresses the boolean vector into Fst. Returns true on sucesss.
  bool Decompress(std::istream &strm, const string &source,
                  MutableFst<Arc> *fst);

  // Finds the BFS order of a fst
  void BfsOrder(const ExpandedFst<Arc> &fst, std::vector<StateId> *order);

  // Preprocessing step to convert fst to a isomorphic fst
  // Returns a preproccess fst and a dictionary
  void Preprocess(const Fst<Arc> &fst, MutableFst<Arc> *preprocessedfst,
                  EncodeMapper<Arc> *encoder);

  // Performs Lempel Ziv and outputs a stream of integers
  // and sends it to a stream
  void EncodeProcessedFst(const ExpandedFst<Arc> &fst, std::ostream &strm);

  // Decodes fst from the stream
  void DecodeProcessedFst(const std::vector<StateId> &input,
                          MutableFst<Arc> *fst, bool unweighted);

  // Converts buffer_code_ to uint8 and writes to a stream.

  // Writes the boolean file to the stream
  void WriteToStream(std::ostream &strm);

  // Writes the weights to the stream
  void WriteWeight(const std::vector<Weight> &input, std::ostream &strm);

  void ReadWeight(std::istream &strm, std::vector<Weight> *output);

  // Same as fst::Decode without the line RmFinalEpsilon(fst)
  void DecodeForCompress(MutableFst<Arc> *fst, const EncodeMapper<Arc> &mapper);

  // Updates the buffer_code_
  template <class CVar>
  void WriteToBuffer(CVar input) {
    std::vector<bool> current_code;
    Elias<CVar>::DeltaEncode(input, &current_code);
    if (!buffer_code_.empty()) {
      buffer_code_.insert(buffer_code_.end(), current_code.begin(),
                          current_code.end());
    } else {
      buffer_code_.assign(current_code.begin(), current_code.end());
    }
  }

 private:
  struct LZLabel {
    LZLabel() : label(0) {}
    Label label;
  };

  struct LabelLessThan {
    bool operator()(const LZLabel &labelone, const LZLabel &labeltwo) const {
      return labelone.label < labeltwo.label;
    }
  };

  struct LabelEquals {
    bool operator()(const LZLabel &labelone, const LZLabel &labeltwo) const {
      return labelone.label == labeltwo.label;
    }
  };

  struct Transition {
    Transition() : nextstate(0), label(0), weight(Weight::Zero()) {}

    StateId nextstate;
    Label label;
    Weight weight;
  };

  struct TransitionLessThan {
    bool operator()(const Transition &transition_one,
                    const Transition &transition_two) const {
      if (transition_one.nextstate == transition_two.nextstate)
        return transition_one.label < transition_two.label;
      else
        return transition_one.nextstate < transition_two.nextstate;
    }
  } transition_less_than;

  struct TransitionEquals {
    bool operator()(const Transition &transition_one,
                    const Transition &transition_two) const {
      return transition_one.nextstate == transition_two.nextstate &&
             transition_one.label == transition_two.label;
    }
  } transition_equals;

  struct OldDictCompare {
    bool operator()(const std::pair<StateId, Transition> &pair_one,
                    const std::pair<StateId, Transition> &pair_two) const {
      if ((pair_one.second).nextstate == (pair_two.second).nextstate)
        return (pair_one.second).label < (pair_two.second).label;
      else
        return (pair_one.second).nextstate < (pair_two.second).nextstate;
    }
  } old_dict_compare;

  std::vector<bool> buffer_code_;
  std::vector<Weight> arc_weight_;
  std::vector<Weight> final_weight_;
};

template <class Arc>
inline void Compressor<Arc>::DecodeForCompress(
    MutableFst<Arc> *fst, const EncodeMapper<Arc> &mapper) {
  ArcMap(fst, EncodeMapper<Arc>(mapper, DECODE));
  fst->SetInputSymbols(mapper.InputSymbols());
  fst->SetOutputSymbols(mapper.OutputSymbols());
}

// Compressor::BfsOrder
template <class Arc>
void Compressor<Arc>::BfsOrder(const ExpandedFst<Arc> &fst,
                               std::vector<StateId> *order) {
  Arc arc;
  StateId bfs_visit_number = 0;
  std::queue<StateId> states_queue;
  order->assign(fst.NumStates(), kNoStateId);
  states_queue.push(fst.Start());
  (*order)[fst.Start()] = bfs_visit_number++;
  while (!states_queue.empty()) {
    for (ArcIterator<Fst<Arc>> aiter(fst, states_queue.front()); !aiter.Done();
         aiter.Next()) {
      arc = aiter.Value();
      StateId nextstate = arc.nextstate;
      if ((*order)[nextstate] == kNoStateId) {
        (*order)[nextstate] = bfs_visit_number++;
        states_queue.push(nextstate);
      }
    }
    states_queue.pop();
  }

  // If the FST is unconnected, then the following
  // code finds them
  while (bfs_visit_number < fst.NumStates()) {
    int unseen_state = 0;
    for (unseen_state = 0; unseen_state < fst.NumStates(); ++unseen_state) {
      if ((*order)[unseen_state] == kNoStateId) break;
    }
    states_queue.push(unseen_state);
    (*order)[unseen_state] = bfs_visit_number++;
    while (!states_queue.empty()) {
      for (ArcIterator<Fst<Arc>> aiter(fst, states_queue.front());
           !aiter.Done(); aiter.Next()) {
        arc = aiter.Value();
        StateId nextstate = arc.nextstate;
        if ((*order)[nextstate] == kNoStateId) {
          (*order)[nextstate] = bfs_visit_number++;
          states_queue.push(nextstate);
        }
      }
      states_queue.pop();
    }
  }
}

template <class Arc>
void Compressor<Arc>::Preprocess(const Fst<Arc> &fst,
                                 MutableFst<Arc> *preprocessedfst,
                                 EncodeMapper<Arc> *encoder) {
  std::vector<StateId> order;
  *preprocessedfst = fst;
  // Relabels the edges and develops a dictionary
  Encode(preprocessedfst, encoder);
  // Finds the BFS sorting order of the fst
  BfsOrder(*preprocessedfst, &order);
  // Reorders the states according to the BFS order
  StateSort(preprocessedfst, order);
}

template <class Arc>
void Compressor<Arc>::EncodeProcessedFst(const ExpandedFst<Arc> &fst,
                                         std::ostream &strm) {
  std::vector<StateId> output;
  LempelZiv<StateId, LZLabel, LabelLessThan, LabelEquals> dict_new;
  LempelZiv<StateId, Transition, TransitionLessThan, TransitionEquals> dict_old;
  std::vector<LZLabel> current_new_input;
  std::vector<Transition> current_old_input;
  std::vector<std::pair<StateId, LZLabel>> current_new_output;
  std::vector<std::pair<StateId, Transition>> current_old_output;
  std::vector<StateId> final_states;

  StateId number_of_states = fst.NumStates();

  StateId seen_states = 0;
  // Adding the number of states
  WriteToBuffer<StateId>(number_of_states);

  for (StateId state = 0; state < number_of_states; ++state) {
    current_new_input.clear();
    current_old_input.clear();
    current_new_output.clear();
    current_old_output.clear();
    if (state > seen_states) ++seen_states;

    // Collecting the final states
    if (fst.Final(state) != Weight::Zero()) {
      final_states.push_back(state);
      final_weight_.push_back(fst.Final(state));
    }

    // Reading the states
    for (ArcIterator<Fst<Arc>> aiter(fst, state); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.nextstate > seen_states) {  // RILEY: > or >= ?
        ++seen_states;
        LZLabel temp_label;
        temp_label.label = arc.ilabel;
        arc_weight_.push_back(arc.weight);
        current_new_input.push_back(temp_label);
      } else {
        Transition temp_transition;
        temp_transition.nextstate = arc.nextstate;
        temp_transition.label = arc.ilabel;
        temp_transition.weight = arc.weight;
        current_old_input.push_back(temp_transition);
      }
    }
    // Adding new states
    dict_new.BatchEncode(current_new_input, &current_new_output);
    WriteToBuffer<StateId>(current_new_output.size());

    for (auto it = current_new_output.begin(); it != current_new_output.end();
         ++it) {
      WriteToBuffer<StateId>(it->first);
      WriteToBuffer<Label>((it->second).label);
    }
    // Adding old states by sorting and using difference coding
    std::sort(current_old_input.begin(), current_old_input.end(),
              transition_less_than);
    for (auto it = current_old_input.begin(); it != current_old_input.end();
         ++it) {
      arc_weight_.push_back(it->weight);
    }
    dict_old.BatchEncode(current_old_input, &current_old_output);
    std::vector<StateId> dict_old_temp;
    std::vector<Transition> transition_old_temp;
    for (auto it = current_old_output.begin(); it != current_old_output.end();
         ++it) {
      dict_old_temp.push_back(it->first);
      transition_old_temp.push_back(it->second);
    }
    if (!transition_old_temp.empty()) {
      if ((transition_old_temp.back()).nextstate == 0 &&
          (transition_old_temp.back()).label == 0) {
        transition_old_temp.pop_back();
      }
    }
    std::sort(dict_old_temp.begin(), dict_old_temp.end());
    std::sort(transition_old_temp.begin(), transition_old_temp.end(),
              transition_less_than);

    WriteToBuffer<StateId>(dict_old_temp.size());
    if (dict_old_temp.size() != transition_old_temp.size())
      WriteToBuffer<int>(1);
    else
      WriteToBuffer<int>(0);

    StateId previous;
    if (!dict_old_temp.empty()) {
      WriteToBuffer<StateId>(dict_old_temp.front());
      previous = dict_old_temp.front();
    }
    if (dict_old_temp.size() > 1) {
      for (auto it = dict_old_temp.begin() + 1; it != dict_old_temp.end();
           ++it) {
        WriteToBuffer<StateId>(*it - previous);
        previous = *it;
      }
    }
    if (!transition_old_temp.empty()) {
      WriteToBuffer<StateId>((transition_old_temp.front()).nextstate);
      previous = (transition_old_temp.front()).nextstate;
      WriteToBuffer<Label>((transition_old_temp.front()).label);
    }
    if (transition_old_temp.size() > 1) {
      for (auto it = transition_old_temp.begin() + 1;
           it != transition_old_temp.end(); ++it) {
        WriteToBuffer<StateId>(it->nextstate - previous);
        previous = it->nextstate;
        WriteToBuffer<StateId>(it->label);
      }
    }
  }
  // Adding final states
  WriteToBuffer<StateId>(final_states.size());
  if (!final_states.empty()) {
    for (auto it = final_states.begin(); it != final_states.end(); ++it) {
      WriteToBuffer<StateId>(*it);
    }
  }
  WriteToStream(strm);
  uint8 unweighted = (fst.Properties(kUnweighted, true) == kUnweighted);
  WriteType(strm, unweighted);
  if (unweighted == 0) {
    WriteWeight(arc_weight_, strm);
    WriteWeight(final_weight_, strm);
  }
}

template <class Arc>
void Compressor<Arc>::DecodeProcessedFst(const std::vector<StateId> &input,
                                         MutableFst<Arc> *fst,
                                         bool unweighted) {
  LempelZiv<StateId, LZLabel, LabelLessThan, LabelEquals> dict_new;
  LempelZiv<StateId, Transition, TransitionLessThan, TransitionEquals> dict_old;
  std::vector<std::pair<StateId, LZLabel>> current_new_input;
  std::vector<std::pair<StateId, Transition>> current_old_input;
  std::vector<LZLabel> current_new_output;
  std::vector<Transition> current_old_output;
  std::vector<std::pair<StateId, Transition>> actual_old_dict_numbers;
  std::vector<Transition> actual_old_dict_transitions;
  auto arc_weight_it = arc_weight_.begin();
  Transition default_transition;
  StateId seen_states = 1;

  // Adding states

  for (StateId temp_integer = 0; temp_integer < input.front(); ++temp_integer) {
    fst->AddState();
  }

  fst->SetStart(0);
  typename std::vector<StateId>::const_iterator main_it = input.begin();
  ++main_it;

  for (StateId current_state = 0; current_state < input.front();
       ++current_state) {
    if (current_state >= seen_states) ++seen_states;
    current_new_input.clear();
    current_new_output.clear();
    current_old_input.clear();
    current_old_output.clear();
    // New states
    StateId current_number_new_elements = *main_it;
    ++main_it;
    for (StateId new_integer = 0; new_integer < current_number_new_elements;
         ++new_integer) {
      std::pair<StateId, LZLabel> temp_new_dict_element;
      temp_new_dict_element.first = *main_it;
      ++main_it;
      LZLabel temp_label;
      temp_label.label = *main_it;
      ++main_it;
      temp_new_dict_element.second = temp_label;
      current_new_input.push_back(temp_new_dict_element);
    }
    dict_new.BatchDecode(current_new_input, &current_new_output);
    for (auto it = current_new_output.begin(); it != current_new_output.end();
         ++it) {
      if (!unweighted) {
        fst->AddArc(current_state,
                    Arc(it->label, it->label, *arc_weight_it, seen_states++));
        ++arc_weight_it;
      } else {
        fst->AddArc(current_state,
                    Arc(it->label, it->label, Weight::One(), seen_states++));
      }
    }

    // Old states dictionary
    StateId current_number_old_elements = *main_it;
    ++main_it;
    StateId is_zero_removed = *main_it;
    ++main_it;
    StateId previous = 0;
    actual_old_dict_numbers.clear();
    for (StateId new_integer = 0; new_integer < current_number_old_elements;
         ++new_integer) {
      std::pair<StateId, Transition> pair_temp_transition;
      if (new_integer == 0) {
        pair_temp_transition.first = *main_it;
        previous = *main_it;
      } else {
        pair_temp_transition.first = *main_it + previous;
        previous = pair_temp_transition.first;
      }
      ++main_it;
      Transition temp_test;
      if (!dict_old.SingleDecode(pair_temp_transition.first, &temp_test)) {
        FSTERROR() << "Compressor::Decode: failed";
        fst->DeleteStates();
        fst->SetProperties(kError, kError);
        return;
      }
      pair_temp_transition.second = temp_test;
      actual_old_dict_numbers.push_back(pair_temp_transition);
    }

    // Reordering the dictionary elements
    std::sort(actual_old_dict_numbers.begin(), actual_old_dict_numbers.end(),
              old_dict_compare);

    // Transitions
    previous = 0;
    actual_old_dict_transitions.clear();

    for (StateId new_integer = 0;
         new_integer < current_number_old_elements - is_zero_removed;
         ++new_integer) {
      Transition temp_transition;
      if (new_integer == 0) {
        temp_transition.nextstate = *main_it;
        previous = *main_it;
      } else {
        temp_transition.nextstate = *main_it + previous;
        previous = temp_transition.nextstate;
      }
      ++main_it;
      temp_transition.label = *main_it;
      ++main_it;
      actual_old_dict_transitions.push_back(temp_transition);
    }

    if (is_zero_removed == 1) {
      actual_old_dict_transitions.push_back(default_transition);
    }

    auto trans_it = actual_old_dict_transitions.begin();
    auto dict_it = actual_old_dict_numbers.begin();

    while (trans_it != actual_old_dict_transitions.end() &&
           dict_it != actual_old_dict_numbers.end()) {
      if (dict_it->first == 0) {
        ++dict_it;
      } else {
        std::pair<StateId, Transition> temp_pair;
        if (transition_equals(*trans_it, default_transition) == 1) {
          temp_pair.first = dict_it->first;
          temp_pair.second = default_transition;
          ++dict_it;
        } else if (transition_less_than(dict_it->second, *trans_it) == 1) {
          temp_pair.first = dict_it->first;
          temp_pair.second = *trans_it;
          ++dict_it;
        } else {
          temp_pair.first = 0;
          temp_pair.second = *trans_it;
        }
        ++trans_it;
        current_old_input.push_back(temp_pair);
      }
    }
    while (trans_it != actual_old_dict_transitions.end()) {
      std::pair<StateId, Transition> temp_pair;
      temp_pair.first = 0;
      temp_pair.second = *trans_it;
      ++trans_it;
      current_old_input.push_back(temp_pair);
    }

    // Adding old elements in the dictionary
    if (!dict_old.BatchDecode(current_old_input, &current_old_output)) {
      FSTERROR() << "Compressor::Decode: Failed";
      fst->DeleteStates();
      fst->SetProperties(kError, kError);
      return;
    }

    for (auto it = current_old_output.begin(); it != current_old_output.end();
         ++it) {
      if (!unweighted) {
        fst->AddArc(current_state,
                    Arc(it->label, it->label, *arc_weight_it, it->nextstate));
        ++arc_weight_it;
      } else {
        fst->AddArc(current_state,
                    Arc(it->label, it->label, Weight::One(), it->nextstate));
      }
    }
  }
  // Adding the final states
  StateId number_of_final_states = *main_it;
  if (number_of_final_states > 0) {
    ++main_it;
    for (StateId temp_int = 0; temp_int < number_of_final_states; ++temp_int) {
      if (!unweighted) {
        fst->SetFinal(*main_it, final_weight_[temp_int]);
      } else {
        fst->SetFinal(*main_it, Weight(0));
      }
      ++main_it;
    }
  }
}

template <class Arc>
void Compressor<Arc>::ReadWeight(std::istream &strm,
                                 std::vector<Weight> *output) {
  int64 size;
  Weight weight;
  ReadType(strm, &size);
  for (int64 i = 0; i < size; ++i) {
    weight.Read(strm);
    output->push_back(weight);
  }
}

template <class Arc>
bool Compressor<Arc>::Decompress(std::istream &strm, const string &source,
                                 MutableFst<Arc> *fst) {
  fst->DeleteStates();
  int32 magic_number = 0;
  ReadType(strm, &magic_number);
  if (magic_number != kCompressMagicNumber) {
    LOG(ERROR) << "Decompress: Bad compressed Fst: " << source;
    // If the most significant two bytes of the magic number match the
    // gzip magic number, then we are probably reading a gzip file as an
    // ordinary stream.
    if ((magic_number & kGzipMask) == kGzipMagicNumber) {
      LOG(ERROR) << "Decompress: Fst appears to be compressed with Gzip, but "
                    "gzip decompression was not requested. Try with "
                    "the --gzip flag"
                    ".";
    }
    return false;
  }
  std::unique_ptr<EncodeMapper<Arc>> encoder(
      EncodeMapper<Arc>::Read(strm, "Decoding", DECODE));
  std::vector<bool> bool_code;
  uint8 block;
  uint8 msb = 128;
  int64 data_size;
  ReadType(strm, &data_size);
  for (int64 i = 0; i < data_size; ++i) {
    ReadType(strm, &block);
    for (int j = 0; j < 8; ++j) {
      uint8 temp = msb & block;
      if (temp == 128)
        bool_code.push_back(1);
      else
        bool_code.push_back(0);
      block = block << 1;
    }
  }
  std::vector<StateId> int_code;
  Elias<StateId>::BatchDecode(bool_code, &int_code);
  bool_code.clear();
  uint8 unweighted;
  ReadType(strm, &unweighted);
  if (unweighted == 0) {
    ReadWeight(strm, &arc_weight_);
    ReadWeight(strm, &final_weight_);
  }
  DecodeProcessedFst(int_code, fst, unweighted);
  DecodeForCompress(fst, *encoder);
  return !fst->Properties(kError, false);
}

template <class Arc>
void Compressor<Arc>::WriteWeight(const std::vector<Weight> &input,
                                  std::ostream &strm) {
  int64 size = input.size();
  WriteType(strm, size);
  for (typename std::vector<Weight>::const_iterator it = input.begin();
       it != input.end(); ++it) {
    it->Write(strm);
  }
}

template <class Arc>
void Compressor<Arc>::WriteToStream(std::ostream &strm) {
  while (buffer_code_.size() % 8 != 0) buffer_code_.push_back(1);
  int64 data_size = buffer_code_.size() / 8;
  WriteType(strm, data_size);
  std::vector<bool>::const_iterator it;
  int64 i;
  uint8 block;
  for (it = buffer_code_.begin(), i = 0; it != buffer_code_.end(); ++it, ++i) {
    if (i % 8 == 0) {
      if (i > 0) WriteType(strm, block);
      block = 0;
    } else {
      block = block << 1;
    }
    block |= *it;
  }
  WriteType(strm, block);
}

template <class Arc>
bool Compressor<Arc>::Compress(const Fst<Arc> &fst, std::ostream &strm) {
  VectorFst<Arc> processedfst;
  EncodeMapper<Arc> encoder(kEncodeLabels, ENCODE);
  Preprocess(fst, &processedfst, &encoder);
  WriteType(strm, kCompressMagicNumber);
  encoder.Write(strm, "encoder stream");
  EncodeProcessedFst(processedfst, strm);
  return true;
}

// Convenience functions that call the compressor and decompressor.

template <class Arc>
void Compress(const Fst<Arc> &fst, std::ostream &strm) {
  Compressor<Arc> comp;
  comp.Compress(fst, strm);
}

// Returns true on success.
template <class Arc>
bool Compress(const Fst<Arc> &fst, const string &file_name,
              const bool gzip = false) {
  if (gzip) {
    if (file_name.empty()) {
      std::stringstream strm;
      Compress(fst, strm);
      OGzFile gzfile(fileno(stdout));
      gzfile.write(strm);
      if (!gzfile) {
        LOG(ERROR) << "Compress: Can't write to file: stdout";
        return false;
      }
    } else {
      std::stringstream strm;
      Compress(fst, strm);
      OGzFile gzfile(file_name);
      if (!gzfile) {
        LOG(ERROR) << "Compress: Can't open file: " << file_name;
        return false;
      }
      gzfile.write(strm);
      if (!gzfile) {
        LOG(ERROR) << "Compress: Can't write to file: " << file_name;
        return false;
      }
    }
  } else if (file_name.empty()) {
    Compress(fst, std::cout);
  } else {
    std::ofstream strm(file_name,
                             std::ios_base::out | std::ios_base::binary);
    if (!strm) {
      LOG(ERROR) << "Compress: Can't open file: " << file_name;
      return false;
    }
    Compress(fst, strm);
  }
  return true;
}

template <class Arc>
void Decompress(std::istream &strm, const string &source,
                MutableFst<Arc> *fst) {
  Compressor<Arc> comp;
  comp.Decompress(strm, source, fst);
}

// Returns true on success.
template <class Arc>
bool Decompress(const string &file_name, MutableFst<Arc> *fst,
                const bool gzip = false) {
  if (gzip) {
    if (file_name.empty()) {
      IGzFile gzfile(fileno(stdin));
      Decompress(*gzfile.read(), "stdin", fst);
      if (!gzfile) {
        LOG(ERROR) << "Decompress: Can't read from file: stdin";
        return false;
      }
    } else {
      IGzFile gzfile(file_name);
      if (!gzfile) {
        LOG(ERROR) << "Decompress: Can't open file: " << file_name;
        return false;
      }
      Decompress(*gzfile.read(), file_name, fst);
      if (!gzfile) {
        LOG(ERROR) << "Decompress: Can't read from file: " << file_name;
        return false;
      }
    }
  } else if (file_name.empty()) {
    Decompress(std::cin, "stdin", fst);
  } else {
    std::ifstream strm(file_name,
                            std::ios_base::in | std::ios_base::binary);
    if (!strm) {
      LOG(ERROR) << "Decompress: Can't open file: " << file_name;
      return false;
    }
    Decompress(strm, file_name, fst);
  }
  return true;
}

}  // namespace fst

#endif  // FST_EXTENSIONS_COMPRESS_COMPRESS_H_