This file is indexed.

/usr/include/fst/accumulator.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes to accumulate arc weights. Useful for weight lookahead.

#ifndef FST_LIB_ACCUMULATOR_H_
#define FST_LIB_ACCUMULATOR_H_

#include <algorithm>
#include <functional>
#include <unordered_map>
#include <vector>

#include <fst/log.h>

#include <fst/arcfilter.h>
#include <fst/arcsort.h>
#include <fst/dfs-visit.h>
#include <fst/expanded-fst.h>
#include <fst/replace.h>

namespace fst {

// This class accumulates arc weights using the semiring Plus().
template <class A>
class DefaultAccumulator {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  DefaultAccumulator() {}

  DefaultAccumulator(const DefaultAccumulator &acc, bool safe = false) {}

  void Init(const Fst<Arc> &fst, bool copy = false) {}

  void SetState(StateId state) {}

  Weight Sum(Weight w, Weight v) { return Plus(w, v); }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) {
    Adder<Weight> adder(w);  // maintains cumulative sum accurately
    aiter->Seek(begin);
    for (auto pos = begin; pos < end; aiter->Next(), ++pos)
      adder.Add(aiter->Value().weight);
    return adder.Sum();
  }

  constexpr bool Error() const { return false; }

 private:
  DefaultAccumulator &operator=(const DefaultAccumulator &) = delete;
};

// This class accumulates arc weights using the log semiring Plus() assuming an
// arc weight has a WeightConvert specialization to and from log64 weights.
template <class A>
class LogAccumulator {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  LogAccumulator() {}

  LogAccumulator(const LogAccumulator &acc, bool safe = false) {}

  void Init(const Fst<Arc> &fst, bool copy = false) {}

  void SetState(StateId s) {}

  Weight Sum(Weight w, Weight v) { return LogPlus(w, v); }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) {
    auto sum = w;
    aiter->Seek(begin);
    for (auto pos = begin; pos < end; aiter->Next(), ++pos) {
      sum = LogPlus(sum, aiter->Value().weight);
    }
    return sum;
  }

  constexpr bool Error() const { return false; }

 private:
  Weight LogPlus(Weight w, Weight v) {
    const auto f1 = to_log_weight_(w).Value();
    const auto f2 = to_log_weight_(v).Value();
    if (f1 > f2) {
      return to_weight_(Log64Weight(f2 - internal::LogPosExp(f1 - f2)));
    } else {
      return to_weight_(Log64Weight(f1 - internal::LogPosExp(f2 - f1)));
    }
  }

  WeightConvert<Weight, Log64Weight> to_log_weight_;
  WeightConvert<Log64Weight, Weight> to_weight_;

  LogAccumulator &operator=(const LogAccumulator &) = delete;
};

// Interface for shareable data for fast log accumulator copies. Holds pointers
// to data only, storage is provided by derived classes.
class FastLogAccumulatorData {
 public:
  FastLogAccumulatorData(int arc_limit, int arc_period)
      : arc_limit_(arc_limit),
        arc_period_(arc_period),
        weights_ptr_(nullptr),
        num_weights_(0),
        weight_positions_ptr_(nullptr),
        num_positions_(0) {}

  virtual ~FastLogAccumulatorData() {}

  // Cummulative weight per state for all states s.t. # of arcs > arc_limit_
  // with arcs in order. The first element per state is Log64Weight::Zero().
  const double *Weights() const { return weights_ptr_; }

  int NumWeights() const { return num_weights_; }

  // Maps from state to corresponding beginning weight position in weights_.
  // osition -1 means no pre-computed weights for that state.
  const int *WeightPositions() const { return weight_positions_ptr_; }

  int NumPositions() const { return num_positions_; }

  int ArcLimit() const { return arc_limit_; }

  int ArcPeriod() const { return arc_period_; }

  // Returns true if the data object is mutable and supports SetData().
  virtual bool IsMutable() const = 0;

  // Does not take ownership but may invalidate the contents of weights and
  // weight_positions.
  virtual void SetData(std::vector<double> *weights,
                       std::vector<int> *weight_positions) = 0;

 protected:
  void Init(int num_weights, const double *weights, int num_positions,
            const int *weight_positions) {
    weights_ptr_ = weights;
    num_weights_ = num_weights;
    weight_positions_ptr_ = weight_positions;
    num_positions_ = num_positions;
  }

 private:
  const int arc_limit_;
  const int arc_period_;
  const double *weights_ptr_;
  int num_weights_;
  const int *weight_positions_ptr_;
  int num_positions_;

  FastLogAccumulatorData(const FastLogAccumulatorData &) = delete;
  FastLogAccumulatorData &operator=(const FastLogAccumulatorData &) = delete;
};

// FastLogAccumulatorData with mutable storage; filled by
// FastLogAccumulator::Init.
class MutableFastLogAccumulatorData : public FastLogAccumulatorData {
 public:
  MutableFastLogAccumulatorData(int arc_limit, int arc_period)
      : FastLogAccumulatorData(arc_limit, arc_period) {}

  bool IsMutable() const override { return true; }

  void SetData(std::vector<double> *weights,
               std::vector<int> *weight_positions) override {
    weights_.swap(*weights);
    weight_positions_.swap(*weight_positions);
    Init(weights_.size(), weights_.data(), weight_positions_.size(),
         weight_positions_.data());
  }

 private:
  std::vector<double> weights_;
  std::vector<int> weight_positions_;

  MutableFastLogAccumulatorData(const MutableFastLogAccumulatorData &) = delete;
  MutableFastLogAccumulatorData &operator=(
      const MutableFastLogAccumulatorData &) = delete;
};

// This class accumulates arc weights using the log semiring Plus() assuming an
// arc weight has a WeightConvert specialization to and from log64 weights. The
// member function Init(fst) has to be called to setup pre-computed weight
// information.
template <class A>
class FastLogAccumulator {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  explicit FastLogAccumulator(ssize_t arc_limit = 20, ssize_t arc_period = 10)
      : to_log_weight_(),
        to_weight_(),
        arc_limit_(arc_limit),
        arc_period_(arc_period),
        data_(std::make_shared<MutableFastLogAccumulatorData>(arc_limit,
                                                              arc_period)),
        state_weights_(nullptr),
        error_(false) {}

  explicit FastLogAccumulator(std::shared_ptr<FastLogAccumulatorData> data)
      : to_log_weight_(),
        to_weight_(),
        arc_limit_(data->ArcLimit()),
        arc_period_(data->ArcPeriod()),
        data_(data),
        state_weights_(nullptr),
        error_(false) {}

  FastLogAccumulator(const FastLogAccumulator<Arc> &acc, bool safe = false)
      : to_log_weight_(),
        to_weight_(),
        arc_limit_(acc.arc_limit_),
        arc_period_(acc.arc_period_),
        data_(acc.data_),
        state_weights_(nullptr),
        error_(acc.error_) {}

  void SetState(StateId s) {
    const auto *weights = data_->Weights();
    const auto *weight_positions = data_->WeightPositions();
    state_weights_ = nullptr;
    if (s < data_->NumPositions()) {
      const auto pos = weight_positions[s];
      if (pos >= 0) state_weights_ = &(weights[pos]);
    }
  }

  Weight Sum(Weight w, Weight v) const { return LogPlus(w, v); }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) const {
    if (error_) return Weight::NoWeight();
    auto sum = w;
    // Finds begin and end of pre-stored weights.
    ssize_t index_begin = -1;
    ssize_t index_end = -1;
    ssize_t stored_begin = end;
    ssize_t stored_end = end;
    if (state_weights_) {
      index_begin = begin > 0 ? (begin - 1) / arc_period_ + 1 : 0;
      index_end = end / arc_period_;
      stored_begin = index_begin * arc_period_;
      stored_end = index_end * arc_period_;
    }
    // Computes sum before pre-stored weights.
    if (begin < stored_begin) {
      const auto pos_end = std::min(stored_begin, end);
      aiter->Seek(begin);
      for (auto pos = begin; pos < pos_end; aiter->Next(), ++pos) {
        sum = LogPlus(sum, aiter->Value().weight);
      }
    }
    // Computes sum between pre-stored weights.
    if (stored_begin < stored_end) {
      const auto f1 = state_weights_[index_end];
      const auto f2 = state_weights_[index_begin];
      if (f1 < f2) sum = LogPlus(sum, LogMinus(f1, f2));
      // Commented out for efficiency; adds Zero().
      /*
      else {
        // explicitly computes if cumulative sum lacks precision
        aiter->Seek(stored_begin);
        for (auto pos = stored_begin; pos < stored_end; aiter->Next(), ++pos)
          sum = LogPlus(sum, aiter->Value().weight);
      }
      */
    }
    // Computes sum after pre-stored weights.
    if (stored_end < end) {
      const auto pos_start = std::max(stored_begin, stored_end);
      aiter->Seek(pos_start);
      for (auto pos = pos_start; pos < end; aiter->Next(), ++pos) {
        sum = LogPlus(sum, aiter->Value().weight);
      }
    }
    return sum;
  }

  template <class FST>
  void Init(const FST &fst, bool copy = false) {
    if (copy || !data_->IsMutable()) return;
    if (data_->NumPositions() != 0 || arc_limit_ < arc_period_) {
      FSTERROR() << "FastLogAccumulator: Initialization error";
      error_ = true;
      return;
    }
    std::vector<double> weights;
    std::vector<int> weight_positions;
    weight_positions.reserve(CountStates(fst));
    for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
      const auto s = siter.Value();
      if (fst.NumArcs(s) >= arc_limit_) {
        auto sum = FloatLimits<double>::PosInfinity();
        if (weight_positions.size() <= s) weight_positions.resize(s + 1, -1);
        weight_positions[s] = weights.size();
        weights.push_back(sum);
        size_t narcs = 0;
        ArcIterator<FST> aiter(fst, s);
        aiter.SetFlags(kArcWeightValue | kArcNoCache, kArcFlags);
        for (; !aiter.Done(); aiter.Next()) {
          const auto &arc = aiter.Value();
          sum = LogPlus(sum, arc.weight);
          // Stores cumulative weight distribution per arc_period_.
          if (++narcs % arc_period_ == 0) weights.push_back(sum);
        }
      }
    }
    data_->SetData(&weights, &weight_positions);
  }

  bool Error() const { return error_; }

  std::shared_ptr<FastLogAccumulatorData> GetData() const { return data_; }

 private:
  static double LogPosExp(double x) {
    return x == FloatLimits<double>::PosInfinity() ? 0.0
                                                   : log(1.0F + exp(-x));
  }

  static double LogMinusExp(double x) {
    return x == FloatLimits<double>::PosInfinity() ? 0.0
                                                   : log(1.0F - exp(-x));
  }

  Weight LogPlus(Weight w, Weight v) const {
    const auto f1 = to_log_weight_(w).Value();
    const auto f2 = to_log_weight_(v).Value();
    if (f1 > f2) {
      return to_weight_(Log64Weight(f2 - LogPosExp(f1 - f2)));
    } else {
      return to_weight_(Log64Weight(f1 - LogPosExp(f2 - f1)));
    }
  }

  double LogPlus(double f1, Weight v) const {
    const auto f2 = to_log_weight_(v).Value();
    if (f1 == FloatLimits<double>::PosInfinity()) {
      return f2;
    } else if (f1 > f2) {
      return f2 - LogPosExp(f1 - f2);
    } else {
      return f1 - LogPosExp(f2 - f1);
    }
  }

  // Assumes f1 < f2.
  Weight LogMinus(double f1, double f2) const {
    if (f2 == FloatLimits<double>::PosInfinity()) {
      return to_weight_(Log64Weight(f1));
    } else {
      return to_weight_(Log64Weight(f1 - LogMinusExp(f2 - f1)));
    }
  }

  const WeightConvert<Weight, Log64Weight> to_log_weight_;
  const WeightConvert<Log64Weight, Weight> to_weight_;
  const ssize_t arc_limit_;   // Minimum number of arcs to pre-compute state.
  const ssize_t arc_period_;  // Saves cumulative weights per arc_period_.
  std::shared_ptr<FastLogAccumulatorData> data_;
  const double *state_weights_;
  bool error_;

  FastLogAccumulator &operator=(const FastLogAccumulator &) = delete;
};

// Stores shareable data for cache log accumulator copies. All copies share the
// same cache.
template <class Arc>
class CacheLogAccumulatorData {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  CacheLogAccumulatorData(bool gc, size_t gc_limit)
      : cache_gc_(gc), cache_limit_(gc_limit), cache_size_(0) {}

  CacheLogAccumulatorData(const CacheLogAccumulatorData<Arc> &data)
      : cache_gc_(data.cache_gc_),
        cache_limit_(data.cache_limit_),
        cache_size_(0) {}

  bool CacheDisabled() const { return cache_gc_ && cache_limit_ == 0; }

  std::vector<double> *GetWeights(StateId s) {
    auto it = cache_.find(s);
    if (it != cache_.end()) {
      it->second.recent = true;
      return it->second.weights.get();
    } else {
      return nullptr;
    }
  }

  void AddWeights(StateId s, std::vector<double> *weights) {
    if (cache_gc_ && cache_size_ >= cache_limit_) GC(false);
    cache_.insert(std::make_pair(s, CacheState(weights, true)));
    if (cache_gc_) cache_size_ += weights->capacity() * sizeof(double);
  }

 private:
  // Cached information for a given state.
  struct CacheState {
    std::unique_ptr<std::vector<double>> weights;  // Accumulated weights.
    bool recent;  // Has this state been accessed since last GC?

    CacheState(std::vector<double> *weights, bool recent)
        : weights(weights), recent(recent) {}
  };

  // Garbage collect: Deletes from cache states that have not been accessed
  // since the last GC ('free_recent = false') until 'cache_size_' is 2/3 of
  // 'cache_limit_'. If it does not free enough memory, start deleting
  // recently accessed states.
  void GC(bool free_recent) {
    auto cache_target = (2 * cache_limit_) / 3 + 1;
    auto it = cache_.begin();
    while (it != cache_.end() && cache_size_ > cache_target) {
      auto &cs = it->second;
      if (free_recent || !cs.recent) {
        cache_size_ -= cs.weights->capacity() * sizeof(double);
        cache_.erase(it++);
      } else {
        cs.recent = false;
        ++it;
      }
    }
    if (!free_recent && cache_size_ > cache_target) GC(true);
  }

  std::unordered_map<StateId, CacheState> cache_;  // Cache.
  bool cache_gc_;       // Enables garbage collection.
  size_t cache_limit_;  // # of bytes cached.
  size_t cache_size_;   // # of bytes allowed before GC.

  CacheLogAccumulatorData &operator=(const CacheLogAccumulatorData &) = delete;
};

// This class accumulates arc weights using the log semiring Plus() has a
// WeightConvert specialization to and from log64 weights. It is similar to the
// FastLogAccumator. However here, the accumulated weights are pre-computed and
// stored only for the states that are visited. The member function Init(fst)
// has to be called to setup this accumulator.
template <class Arc>
class CacheLogAccumulator {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  explicit CacheLogAccumulator(ssize_t arc_limit = 10, bool gc = false,
                               size_t gc_limit = 10 * 1024 * 1024)
      : arc_limit_(arc_limit),
        data_(std::make_shared<CacheLogAccumulatorData<Arc>>(gc, gc_limit)),
        s_(kNoStateId),
        error_(false) {}

  CacheLogAccumulator(const CacheLogAccumulator<Arc> &acc, bool safe = false)
      : arc_limit_(acc.arc_limit_),
        fst_(acc.fst_ ? acc.fst_->Copy() : nullptr),
        data_(safe ? std::make_shared<CacheLogAccumulatorData<Arc>>(*acc.data_)
                   : acc.data_),
        s_(kNoStateId),
        error_(acc.error_) {}

  // Argument arc_limit specifies the minimum number of arcs to pre-compute.
  void Init(const Fst<Arc> &fst, bool copy = false) {
    if (!copy && fst_) {
      FSTERROR() << "CacheLogAccumulator: Initialization error";
      error_ = true;
      return;
    }
    fst_.reset(fst.Copy());
  }

  void SetState(StateId s, int depth = 0) {
    if (s == s_) return;
    s_ = s;
    if (data_->CacheDisabled() || error_) {
      weights_ = nullptr;
      return;
    }
    if (!fst_) {
      FSTERROR() << "CacheLogAccumulator::SetState: Incorrectly initialized";
      error_ = true;
      weights_ = nullptr;
      return;
    }
    weights_ = data_->GetWeights(s);
    if ((weights_ == nullptr) && (fst_->NumArcs(s) >= arc_limit_)) {
      weights_ = new std::vector<double>;
      weights_->reserve(fst_->NumArcs(s) + 1);
      weights_->push_back(FloatLimits<double>::PosInfinity());
      data_->AddWeights(s, weights_);
    }
  }

  Weight Sum(Weight w, Weight v) { return LogPlus(w, v); }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) {
    if (weights_ == nullptr) {
      auto sum = w;
      aiter->Seek(begin);
      for (auto pos = begin; pos < end; aiter->Next(), ++pos) {
        sum = LogPlus(sum, aiter->Value().weight);
      }
      return sum;
    } else {
      Extend(end, aiter);
      const auto &f1 = (*weights_)[end];
      const auto &f2 = (*weights_)[begin];
      if (f1 < f2) {
        return LogPlus(w, LogMinus(f1, f2));
      } else {
        // Commented out for efficiency; adds Zero().
        /*
        auto sum = w;
        // Explicitly computes if cumulative sum lacks precision.
        aiter->Seek(begin);
        for (auto pos = begin; pos < end; aiter->Next(), ++pos) {
          sum = LogPlus(sum, aiter->Value().weight);
        }
        return sum;
        */
        return w;
      }
    }
  }

  // Returns first position from aiter->Position() whose accumulated
  // value is greater or equal to w (w.r.t. Zero() < One()). The
  // iterator may be repositioned.
  template <class ArcIter>
  size_t LowerBound(Weight w, ArcIter *aiter) {
    const auto f = to_log_weight_(w).Value();
    auto pos = aiter->Position();
    if (weights_) {
      Extend(fst_->NumArcs(s_), aiter);
      return std::lower_bound(weights_->begin() + pos + 1, weights_->end(),
                              f, std::greater<double>()) -
          weights_->begin() - 1;
    } else {
      size_t n = 0;
      auto x = FloatLimits<double>::PosInfinity();
      for (aiter->Reset(); !aiter->Done(); aiter->Next(), ++n) {
        x = LogPlus(x, aiter->Value().weight);
        if (n >= pos && x <= f) break;
      }
      return n;
    }
  }

  bool Error() const { return error_; }

 private:
  double LogPosExp(double x) {
    return x == FloatLimits<double>::PosInfinity() ? 0.0
                                                   : log(1.0F + exp(-x));
  }

  double LogMinusExp(double x) {
    return x == FloatLimits<double>::PosInfinity() ? 0.0
                                                   : log(1.0F - exp(-x));
  }

  Weight LogPlus(Weight w, Weight v) {
    const auto f1 = to_log_weight_(w).Value();
    const auto f2 = to_log_weight_(v).Value();
    if (f1 > f2) {
      return to_weight_(Log64Weight(f2 - LogPosExp(f1 - f2)));
    } else {
      return to_weight_(Log64Weight(f1 - LogPosExp(f2 - f1)));
    }
  }

  double LogPlus(double f1, Weight v) {
    const auto f2 = to_log_weight_(v).Value();
    if (f1 == FloatLimits<double>::PosInfinity()) {
      return f2;
    } else if (f1 > f2) {
      return f2 - LogPosExp(f1 - f2);
    } else {
      return f1 - LogPosExp(f2 - f1);
    }
  }

  // Assumes f1 < f2.
  Weight LogMinus(double f1, double f2) {
    if (f2 == FloatLimits<double>::PosInfinity()) {
      return to_weight_(Log64Weight(f1));
    } else {
      return to_weight_(Log64Weight(f1 - LogMinusExp(f2 - f1)));
    }
  }

  // Extends weights up to index 'end'.
  template <class ArcIter>
  void Extend(ssize_t end, ArcIter *aiter) {
    if (weights_->size() <= end) {
      for (aiter->Seek(weights_->size() - 1); weights_->size() <= end;
           aiter->Next()) {
        weights_->push_back(LogPlus(weights_->back(), aiter->Value().weight));
      }
    }
  }


  WeightConvert<Weight, Log64Weight> to_log_weight_;
  WeightConvert<Log64Weight, Weight> to_weight_;
  ssize_t arc_limit_;                    // Minimum # of arcs to cache a state.
  std::vector<double> *weights_;         // Accumulated weights for cur. state.
  std::unique_ptr<const Fst<Arc>> fst_;  // Input FST.
  std::shared_ptr<CacheLogAccumulatorData<Arc>> data_;  // Cache data.
  StateId s_;                                           // Current state.
  bool error_;
};

// Stores shareable data for replace accumulator copies.
template <class Accumulator, class T>
class ReplaceAccumulatorData {
 public:
  using Arc = typename Accumulator::Arc;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using StateTable = T;
  using StateTuple = typename StateTable::StateTuple;

  ReplaceAccumulatorData() : state_table_(nullptr) {}

  explicit ReplaceAccumulatorData(
      const std::vector<Accumulator *> &accumulators)
      : state_table_(nullptr) {
    accumulators_.reserve(accumulators.size());
    for (const auto accumulator : accumulators) {
      accumulators_.emplace_back(accumulator);
    }
  }

  void Init(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_tuples,
            const StateTable *state_table) {
    state_table_ = state_table;
    accumulators_.resize(fst_tuples.size());
    for (Label i = 0; i < accumulators_.size(); ++i) {
      if (!accumulators_[i]) {
        accumulators_[i].reset(new Accumulator());
        accumulators_[i]->Init(*(fst_tuples[i].second));
      }
      fst_array_.emplace_back(fst_tuples[i].second->Copy());
    }
  }

  const StateTuple &GetTuple(StateId s) const { return state_table_->Tuple(s); }

  Accumulator *GetAccumulator(size_t i) { return accumulators_[i].get(); }

  const Fst<Arc> *GetFst(size_t i) const { return fst_array_[i].get(); }

 private:
  const StateTable *state_table_;
  std::vector<std::unique_ptr<Accumulator>> accumulators_;
  std::vector<std::unique_ptr<const Fst<Arc>>> fst_array_;
};

// This class accumulates weights in a ReplaceFst.  The 'Init' method takes as
// input the argument used to build the ReplaceFst and the ReplaceFst state
// table. It uses accumulators of type 'Accumulator' in the underlying FSTs.
template <class Accumulator,
          class T = DefaultReplaceStateTable<typename Accumulator::Arc>>
class ReplaceAccumulator {
 public:
  using Arc = typename Accumulator::Arc;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using StateTable = T;
  using StateTuple = typename StateTable::StateTuple;
  using Weight = typename Arc::Weight;

  ReplaceAccumulator()
      : init_(false),
        data_(std::make_shared<
              ReplaceAccumulatorData<Accumulator, StateTable>>()),
        error_(false) {}

  explicit ReplaceAccumulator(const std::vector<Accumulator *> &accumulators)
      : init_(false),
        data_(std::make_shared<ReplaceAccumulatorData<Accumulator, StateTable>>(
            accumulators)),
        error_(false) {}

  ReplaceAccumulator(const ReplaceAccumulator<Accumulator, StateTable> &acc,
                     bool safe = false)
      : init_(acc.init_), data_(acc.data_), error_(acc.error_) {
    if (!init_) {
      FSTERROR() << "ReplaceAccumulator: Can't copy unintialized accumulator";
    }
    if (safe) FSTERROR() << "ReplaceAccumulator: Safe copy not supported";
  }

  // Does not take ownership of the state table, the state table is owned by
  // the ReplaceFst.
  void Init(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_tuples,
            const StateTable *state_table) {
    init_ = true;
    data_->Init(fst_tuples, state_table);
  }

  // Method required by LookAheadMatcher. However, ReplaceAccumulator needs to
  // be initialized by calling the Init method above before being passed to
  // LookAheadMatcher.
  //
  // TODO(allauzen): Revisit this. Consider creating a method
  // Init(const ReplaceFst<A, T, C>&, bool) and using friendship to get access
  // to the innards of ReplaceFst.
  void Init(const Fst<Arc> &fst, bool copy = false) {
    if (!init_) {
      FSTERROR() << "ReplaceAccumulator::Init: Accumulator needs to be"
                 << " initialized before being passed to LookAheadMatcher";
      error_ = true;
    }
  }

  void SetState(StateId s) {
    if (!init_) {
      FSTERROR() << "ReplaceAccumulator::SetState: Incorrectly initialized";
      error_ = true;
      return;
    }
    auto tuple = data_->GetTuple(s);
    fst_id_ = tuple.fst_id - 1;  // Replace FST ID is 1-based.
    data_->GetAccumulator(fst_id_)->SetState(tuple.fst_state);
    if ((tuple.prefix_id != 0) &&
        (data_->GetFst(fst_id_)->Final(tuple.fst_state) != Weight::Zero())) {
      offset_ = 1;
      offset_weight_ = data_->GetFst(fst_id_)->Final(tuple.fst_state);
    } else {
      offset_ = 0;
      offset_weight_ = Weight::Zero();
    }
    aiter_.reset(
        new ArcIterator<Fst<Arc>>(*data_->GetFst(fst_id_), tuple.fst_state));
  }

  Weight Sum(Weight w, Weight v) {
    if (error_) return Weight::NoWeight();
    return data_->GetAccumulator(fst_id_)->Sum(w, v);
  }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) {
    if (error_) return Weight::NoWeight();
    auto sum = begin == end ? Weight::Zero()
                            : data_->GetAccumulator(fst_id_)->Sum(
                                  w, aiter_.get(), begin ? begin - offset_ : 0,
                                  end - offset_);
    if (begin == 0 && end != 0 && offset_ > 0) sum = Sum(offset_weight_, sum);
    return sum;
  }

  bool Error() const { return error_; }

 private:
  bool init_;
  std::shared_ptr<ReplaceAccumulatorData<Accumulator, StateTable>> data_;
  Label fst_id_;
  size_t offset_;
  Weight offset_weight_;
  std::unique_ptr<ArcIterator<Fst<Arc>>> aiter_;
  bool error_;
};

// SafeReplaceAccumulator accumulates weights in a ReplaceFst and copies of it
// are always thread-safe copies.
template <class Accumulator, class T>
class SafeReplaceAccumulator {
 public:
  using Arc = typename Accumulator::Arc;
  using StateId = typename Arc::StateId;
  using Label = typename Arc::Label;
  using Weight = typename Arc::Weight;
  using StateTable = T;
  using StateTuple = typename StateTable::StateTuple;

  SafeReplaceAccumulator() {}

  SafeReplaceAccumulator(const SafeReplaceAccumulator &copy, bool safe)
      : SafeReplaceAccumulator(copy) {}

  explicit SafeReplaceAccumulator(
      const std::vector<Accumulator> &accumulators) {
    for (const auto &accumulator : accumulators) {
      accumulators_.emplace_back(accumulator, true);
    }
  }

  void Init(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_tuples,
            const StateTable *state_table) {
    state_table_ = state_table;
    for (Label i = 0; i < fst_tuples.size(); ++i) {
      if (i == accumulators_.size()) {
        accumulators_.resize(accumulators_.size() + 1);
        accumulators_[i].Init(*(fst_tuples[i].second));
      }
      fst_array_.emplace_back(fst_tuples[i].second->Copy(true));
    }
    init_ = true;
  }

  void Init(const Fst<Arc> &fst, bool copy = false) {
    if (!init_) {
      FSTERROR() << "SafeReplaceAccumulator::Init: Accumulator needs to be"
                 << " initialized before being passed to LookAheadMatcher";
      error_ = true;
    }
  }

  void SetState(StateId s) {
    auto tuple = state_table_->Tuple(s);
    fst_id_ = tuple.fst_id - 1;  // Replace FST ID is 1-based
    GetAccumulator(fst_id_)->SetState(tuple.fst_state);
    offset_ = 0;
    offset_weight_ = Weight::Zero();
    const auto final_weight = GetFst(fst_id_)->Final(tuple.fst_state);
    if ((tuple.prefix_id != 0) && (final_weight != Weight::Zero())) {
      offset_ = 1;
      offset_weight_ = final_weight;
    }
    aiter_.Set(*GetFst(fst_id_), tuple.fst_state);
  }

  Weight Sum(Weight w, Weight v) {
    if (error_) return Weight::NoWeight();
    return GetAccumulator(fst_id_)->Sum(w, v);
  }

  template <class ArcIter>
  Weight Sum(Weight w, ArcIter *aiter, ssize_t begin, ssize_t end) {
    if (error_) return Weight::NoWeight();
    if (begin == end) return Weight::Zero();
    auto sum = GetAccumulator(fst_id_)->Sum(
        w, aiter_.get(), begin ? begin - offset_ : 0, end - offset_);
    if (begin == 0 && end != 0 && offset_ > 0) {
      sum = Sum(offset_weight_, sum);
    }
    return sum;
  }

  bool Error() const { return error_; }

 private:
  class ArcIteratorPtr {
   public:
    ArcIteratorPtr() {}

    ArcIteratorPtr(const ArcIteratorPtr &copy) {}

    void Set(const Fst<Arc> &fst, StateId state_id) {
      ptr_.reset(new ArcIterator<Fst<Arc>>(fst, state_id));
    }

    ArcIterator<Fst<Arc>> *get() { return ptr_.get(); }

   private:
    std::unique_ptr<ArcIterator<Fst<Arc>>> ptr_;
  };

  Accumulator *GetAccumulator(size_t i) { return &accumulators_[i]; }

  const Fst<Arc> *GetFst(size_t i) const { return fst_array_[i].get(); }

  const StateTable *state_table_;
  std::vector<Accumulator> accumulators_;
  std::vector<std::shared_ptr<Fst<Arc>>> fst_array_;
  ArcIteratorPtr aiter_;
  bool init_ = false;
  bool error_ = false;
  Label fst_id_;
  size_t offset_;
  Weight offset_weight_;
};

}  // namespace fst

#endif  // FST_LIB_ACCUMULATOR_H_