This file is indexed.

/usr/include/fmt/format.h is in libfmt-dev 4.0.0+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
/*
 Formatting library for C++

 Copyright (c) 2012 - 2016, Victor Zverovich
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this
    list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <cassert>
#include <clocale>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <limits>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#include <utility>  // for std::pair

// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 40000

#ifdef _SECURE_SCL
# define FMT_SECURE_SCL _SECURE_SCL
#else
# define FMT_SECURE_SCL 0
#endif

#if FMT_SECURE_SCL
# include <iterator>
#endif

#ifdef _MSC_VER
# define FMT_MSC_VER _MSC_VER
#else
# define FMT_MSC_VER 0
#endif

#if FMT_MSC_VER && FMT_MSC_VER <= 1500
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
typedef __int64          intmax_t;
#else
#include <stdint.h>
#endif

#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
# ifdef FMT_EXPORT
#  define FMT_API __declspec(dllexport)
# elif defined(FMT_SHARED)
#  define FMT_API __declspec(dllimport)
# endif
#endif
#ifndef FMT_API
# define FMT_API
#endif

#ifdef __GNUC__
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FMT_GCC_EXTENSION __extension__
# if FMT_GCC_VERSION >= 406
#  pragma GCC diagnostic push
// Disable the warning about "long long" which is sometimes reported even
// when using __extension__.
#  pragma GCC diagnostic ignored "-Wlong-long"
// Disable the warning about declaration shadowing because it affects too
// many valid cases.
#  pragma GCC diagnostic ignored "-Wshadow"
// Disable the warning about implicit conversions that may change the sign of
// an integer; silencing it otherwise would require many explicit casts.
#  pragma GCC diagnostic ignored "-Wsign-conversion"
# endif
# if __cplusplus >= 201103L || defined __GXX_EXPERIMENTAL_CXX0X__
#  define FMT_HAS_GXX_CXX11 1
# endif
#else
# define FMT_GCC_EXTENSION
#endif

#if defined(__INTEL_COMPILER)
# define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
# define FMT_ICC_VERSION __ICL
#endif

#if defined(__clang__) && !defined(FMT_ICC_VERSION)
# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
# pragma clang diagnostic ignored "-Wpadded"
#endif

#ifdef __GNUC_LIBSTD__
# define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__)
#endif

#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif

#ifdef __has_builtin
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
# define FMT_HAS_BUILTIN(x) 0
#endif

#ifdef __has_cpp_attribute
# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif

#ifndef FMT_USE_VARIADIC_TEMPLATES
// Variadic templates are available in GCC since version 4.4
// (http://gcc.gnu.org/projects/cxx0x.html) and in Visual C++
// since version 2013.
# define FMT_USE_VARIADIC_TEMPLATES \
   (FMT_HAS_FEATURE(cxx_variadic_templates) || \
       (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800)
#endif

#ifndef FMT_USE_RVALUE_REFERENCES
// Don't use rvalue references when compiling with clang and an old libstdc++
// as the latter doesn't provide std::move.
# if defined(FMT_GNUC_LIBSTD_VERSION) && FMT_GNUC_LIBSTD_VERSION <= 402
#  define FMT_USE_RVALUE_REFERENCES 0
# else
#  define FMT_USE_RVALUE_REFERENCES \
    (FMT_HAS_FEATURE(cxx_rvalue_references) || \
        (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1600)
# endif
#endif

// Check if exceptions are disabled.
#if defined(__GNUC__) && !defined(__EXCEPTIONS)
# define FMT_EXCEPTIONS 0
#endif
#if FMT_MSC_VER && !_HAS_EXCEPTIONS
# define FMT_EXCEPTIONS 0
#endif
#ifndef FMT_EXCEPTIONS
# define FMT_EXCEPTIONS 1
#endif

#ifndef FMT_THROW
# if FMT_EXCEPTIONS
#  define FMT_THROW(x) throw x
# else
#  define FMT_THROW(x) assert(false)
# endif
#endif

// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
# define FMT_USE_NOEXCEPT 0
#endif

#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
    (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
    FMT_MSC_VER >= 1900
# define FMT_DETECTED_NOEXCEPT noexcept
#else
# define FMT_DETECTED_NOEXCEPT throw()
#endif

#ifndef FMT_NOEXCEPT
# if FMT_EXCEPTIONS
#  define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
# else
#  define FMT_NOEXCEPT
# endif
#endif

// This is needed because GCC still uses throw() in its headers when exceptions
// are disabled.
#if FMT_GCC_VERSION
# define FMT_DTOR_NOEXCEPT FMT_DETECTED_NOEXCEPT
#else
# define FMT_DTOR_NOEXCEPT FMT_NOEXCEPT
#endif

#ifndef FMT_OVERRIDE
# if (defined(FMT_USE_OVERRIDE) && FMT_USE_OVERRIDE) || FMT_HAS_FEATURE(cxx_override) || \
   (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
   FMT_MSC_VER >= 1900
#  define FMT_OVERRIDE override
# else
#  define FMT_OVERRIDE
# endif
#endif

#ifndef FMT_NULL
# if FMT_HAS_FEATURE(cxx_nullptr) || \
   (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
   FMT_MSC_VER >= 1600
#  define FMT_NULL nullptr
# else
#  define FMT_NULL NULL
# endif
#endif

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
#ifndef FMT_USE_DELETED_FUNCTIONS
# define FMT_USE_DELETED_FUNCTIONS 0
#endif

#if FMT_USE_DELETED_FUNCTIONS || FMT_HAS_FEATURE(cxx_deleted_functions) || \
  (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800
# define FMT_DELETED_OR_UNDEFINED  = delete
# define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
    TypeName(const TypeName&) = delete; \
    TypeName& operator=(const TypeName&) = delete
#else
# define FMT_DELETED_OR_UNDEFINED
# define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
    TypeName(const TypeName&); \
    TypeName& operator=(const TypeName&)
#endif

#ifndef FMT_USE_DEFAULTED_FUNCTIONS
# define FMT_USE_DEFAULTED_FUNCTIONS 0
#endif

#ifndef FMT_DEFAULTED_COPY_CTOR
# if FMT_USE_DEFAULTED_FUNCTIONS || FMT_HAS_FEATURE(cxx_defaulted_functions) || \
   (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800
#  define FMT_DEFAULTED_COPY_CTOR(TypeName) \
    TypeName(const TypeName&) = default;
# else
#  define FMT_DEFAULTED_COPY_CTOR(TypeName)
# endif
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// All compilers which support UDLs also support variadic templates. This
// makes the fmt::literals implementation easier. However, an explicit check
// for variadic templates is added here just in case.
// For Intel's compiler both it and the system gcc/msc must support UDLs.
# define FMT_USE_USER_DEFINED_LITERALS \
   FMT_USE_VARIADIC_TEMPLATES && FMT_USE_RVALUE_REFERENCES && \
   (FMT_HAS_FEATURE(cxx_user_literals) || \
     (FMT_GCC_VERSION >= 407 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900) && \
   (!defined(FMT_ICC_VERSION) || FMT_ICC_VERSION >= 1500)
#endif

#ifndef FMT_USE_EXTERN_TEMPLATES
# define FMT_USE_EXTERN_TEMPLATES \
    (FMT_CLANG_VERSION >= 209 || (FMT_GCC_VERSION >= 303 && FMT_HAS_GXX_CXX11))
#endif

#ifdef FMT_HEADER_ONLY
// If header only do not use extern templates.
# undef FMT_USE_EXTERN_TEMPLATES
# define FMT_USE_EXTERN_TEMPLATES 0
#endif

#ifndef FMT_ASSERT
# define FMT_ASSERT(condition, message) assert((condition) && message)
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#ifndef _MSC_VER
# if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz)
#  define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
# endif

# if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll)
#  define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
# endif
#endif

// Some compilers masquerade as both MSVC and GCC-likes or
// otherwise support __builtin_clz and __builtin_clzll, so
// only define FMT_BUILTIN_CLZ using the MSVC intrinsics
// if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED)
# include <intrin.h>  // _BitScanReverse, _BitScanReverse64

namespace fmt {
namespace internal {
# pragma intrinsic(_BitScanReverse)
inline uint32_t clz(uint32_t x) {
  unsigned long r = 0;
  _BitScanReverse(&r, x);

  assert(x != 0);
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
# pragma warning(suppress: 6102)
  return 31 - r;
}
# define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n)

# ifdef _WIN64
#  pragma intrinsic(_BitScanReverse64)
# endif

inline uint32_t clzll(uint64_t x) {
  unsigned long r = 0;
# ifdef _WIN64
  _BitScanReverse64(&r, x);
# else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
    return 63 - (r + 32);

  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
# endif

  assert(x != 0);
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
# pragma warning(suppress: 6102)
  return 63 - r;
}
# define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n)
}
}
#endif

namespace fmt {
namespace internal {
struct DummyInt {
  int data[2];
  operator int() const { return 0; }
};
typedef std::numeric_limits<fmt::internal::DummyInt> FPUtil;

// Dummy implementations of system functions such as signbit and ecvt called
// if the latter are not available.
inline DummyInt signbit(...) { return DummyInt(); }
inline DummyInt _ecvt_s(...) { return DummyInt(); }
inline DummyInt isinf(...) { return DummyInt(); }
inline DummyInt _finite(...) { return DummyInt(); }
inline DummyInt isnan(...) { return DummyInt(); }
inline DummyInt _isnan(...) { return DummyInt(); }

// A helper function to suppress bogus "conditional expression is constant"
// warnings.
template <typename T>
inline T const_check(T value) { return value; }
}
}  // namespace fmt

namespace std {
// Standard permits specialization of std::numeric_limits. This specialization
// is used to resolve ambiguity between isinf and std::isinf in glibc:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891
// and the same for isnan and signbit.
template <>
class numeric_limits<fmt::internal::DummyInt> :
    public std::numeric_limits<int> {
 public:
  // Portable version of isinf.
  template <typename T>
  static bool isinfinity(T x) {
    using namespace fmt::internal;
    // The resolution "priority" is:
    // isinf macro > std::isinf > ::isinf > fmt::internal::isinf
    if (const_check(sizeof(isinf(x)) == sizeof(bool) ||
                    sizeof(isinf(x)) == sizeof(int))) {
      return isinf(x) != 0;
    }
    return !_finite(static_cast<double>(x));
  }

  // Portable version of isnan.
  template <typename T>
  static bool isnotanumber(T x) {
    using namespace fmt::internal;
    if (const_check(sizeof(isnan(x)) == sizeof(bool) ||
                    sizeof(isnan(x)) == sizeof(int))) {
      return isnan(x) != 0;
    }
    return _isnan(static_cast<double>(x)) != 0;
  }

  // Portable version of signbit.
  static bool isnegative(double x) {
    using namespace fmt::internal;
    if (const_check(sizeof(signbit(x)) == sizeof(bool) ||
                    sizeof(signbit(x)) == sizeof(int))) {
      return signbit(x) != 0;
    }
    if (x < 0) return true;
    if (!isnotanumber(x)) return false;
    int dec = 0, sign = 0;
    char buffer[2];  // The buffer size must be >= 2 or _ecvt_s will fail.
    _ecvt_s(buffer, sizeof(buffer), x, 0, &dec, &sign);
    return sign != 0;
  }
};
}  // namespace std

namespace fmt {

// Fix the warning about long long on older versions of GCC
// that don't support the diagnostic pragma.
FMT_GCC_EXTENSION typedef long long LongLong;
FMT_GCC_EXTENSION typedef unsigned long long ULongLong;

#if FMT_USE_RVALUE_REFERENCES
using std::move;
#endif

template <typename Char>
class BasicWriter;

typedef BasicWriter<char> Writer;
typedef BasicWriter<wchar_t> WWriter;

template <typename Char>
class ArgFormatter;

struct FormatSpec;

template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class BasicPrintfArgFormatter;

template <typename CharType,
          typename ArgFormatter = fmt::ArgFormatter<CharType> >
class BasicFormatter;

/**
  \rst
  A string reference. It can be constructed from a C string or
  ``std::basic_string``.

  You can use one of the following typedefs for common character types:

  +------------+-------------------------+
  | Type       | Definition              |
  +============+=========================+
  | StringRef  | BasicStringRef<char>    |
  +------------+-------------------------+
  | WStringRef | BasicStringRef<wchar_t> |
  +------------+-------------------------+

  This class is most useful as a parameter type to allow passing
  different types of strings to a function, for example::

    template <typename... Args>
    std::string format(StringRef format_str, const Args & ... args);

    format("{}", 42);
    format(std::string("{}"), 42);
  \endrst
 */
template <typename Char>
class BasicStringRef {
 private:
  const Char *data_;
  std::size_t size_;

 public:
  /** Constructs a string reference object from a C string and a size. */
  BasicStringRef(const Char *s, std::size_t size) : data_(s), size_(size) {}

  /**
    \rst
    Constructs a string reference object from a C string computing
    the size with ``std::char_traits<Char>::length``.
    \endrst
   */
  BasicStringRef(const Char *s)
    : data_(s), size_(std::char_traits<Char>::length(s)) {}

  /**
    \rst
    Constructs a string reference from a ``std::basic_string`` object.
    \endrst
   */
  template <typename Allocator>
  BasicStringRef(
      const std::basic_string<Char, std::char_traits<Char>, Allocator> &s)
  : data_(s.c_str()), size_(s.size()) {}

  /**
    \rst
    Converts a string reference to an ``std::string`` object.
    \endrst
   */
  std::basic_string<Char> to_string() const {
    return std::basic_string<Char>(data_, size_);
  }

  /** Returns a pointer to the string data. */
  const Char *data() const { return data_; }

  /** Returns the string size. */
  std::size_t size() const { return size_; }

  // Lexicographically compare this string reference to other.
  int compare(BasicStringRef other) const {
    std::size_t size = size_ < other.size_ ? size_ : other.size_;
    int result = std::char_traits<Char>::compare(data_, other.data_, size);
    if (result == 0)
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
    return result;
  }

  friend bool operator==(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) == 0;
  }
  friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) != 0;
  }
  friend bool operator<(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) < 0;
  }
  friend bool operator<=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) <= 0;
  }
  friend bool operator>(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) > 0;
  }
  friend bool operator>=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.compare(rhs) >= 0;
  }
};

typedef BasicStringRef<char> StringRef;
typedef BasicStringRef<wchar_t> WStringRef;

/**
  \rst
  A reference to a null terminated string. It can be constructed from a C
  string or ``std::basic_string``.

  You can use one of the following typedefs for common character types:

  +-------------+--------------------------+
  | Type        | Definition               |
  +=============+==========================+
  | CStringRef  | BasicCStringRef<char>    |
  +-------------+--------------------------+
  | WCStringRef | BasicCStringRef<wchar_t> |
  +-------------+--------------------------+

  This class is most useful as a parameter type to allow passing
  different types of strings to a function, for example::

    template <typename... Args>
    std::string format(CStringRef format_str, const Args & ... args);

    format("{}", 42);
    format(std::string("{}"), 42);
  \endrst
 */
template <typename Char>
class BasicCStringRef {
 private:
  const Char *data_;

 public:
  /** Constructs a string reference object from a C string. */
  BasicCStringRef(const Char *s) : data_(s) {}

  /**
    \rst
    Constructs a string reference from a ``std::basic_string`` object.
    \endrst
   */
  template <typename Allocator>
  BasicCStringRef(
      const std::basic_string<Char, std::char_traits<Char>, Allocator> &s)
  : data_(s.c_str()) {}

  /** Returns the pointer to a C string. */
  const Char *c_str() const { return data_; }
};

typedef BasicCStringRef<char> CStringRef;
typedef BasicCStringRef<wchar_t> WCStringRef;

/** A formatting error such as invalid format string. */
class FormatError : public std::runtime_error {
 public:
  explicit FormatError(CStringRef message)
  : std::runtime_error(message.c_str()) {}
  FormatError(const FormatError &ferr) : std::runtime_error(ferr) {}
  FMT_API ~FormatError() FMT_DTOR_NOEXCEPT;
};

namespace internal {

// MakeUnsigned<T>::Type gives an unsigned type corresponding to integer type T.
template <typename T>
struct MakeUnsigned { typedef T Type; };

#define FMT_SPECIALIZE_MAKE_UNSIGNED(T, U) \
  template <> \
  struct MakeUnsigned<T> { typedef U Type; }

FMT_SPECIALIZE_MAKE_UNSIGNED(char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(signed char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(short, unsigned short);
FMT_SPECIALIZE_MAKE_UNSIGNED(int, unsigned);
FMT_SPECIALIZE_MAKE_UNSIGNED(long, unsigned long);
FMT_SPECIALIZE_MAKE_UNSIGNED(LongLong, ULongLong);

// Casts nonnegative integer to unsigned.
template <typename Int>
inline typename MakeUnsigned<Int>::Type to_unsigned(Int value) {
  FMT_ASSERT(value >= 0, "negative value");
  return static_cast<typename MakeUnsigned<Int>::Type>(value);
}

// The number of characters to store in the MemoryBuffer object itself
// to avoid dynamic memory allocation.
enum { INLINE_BUFFER_SIZE = 500 };

#if FMT_SECURE_SCL
// Use checked iterator to avoid warnings on MSVC.
template <typename T>
inline stdext::checked_array_iterator<T*> make_ptr(T *ptr, std::size_t size) {
  return stdext::checked_array_iterator<T*>(ptr, size);
}
#else
template <typename T>
inline T *make_ptr(T *ptr, std::size_t) { return ptr; }
#endif
}  // namespace internal

/**
  \rst
  A buffer supporting a subset of ``std::vector``'s operations.
  \endrst
 */
template <typename T>
class Buffer {
 private:
  FMT_DISALLOW_COPY_AND_ASSIGN(Buffer);

 protected:
  T *ptr_;
  std::size_t size_;
  std::size_t capacity_;

  Buffer(T *ptr = FMT_NULL, std::size_t capacity = 0)
    : ptr_(ptr), size_(0), capacity_(capacity) {}

  /**
    \rst
    Increases the buffer capacity to hold at least *size* elements updating
    ``ptr_`` and ``capacity_``.
    \endrst
   */
  virtual void grow(std::size_t size) = 0;

 public:
  virtual ~Buffer() {}

  /** Returns the size of this buffer. */
  std::size_t size() const { return size_; }

  /** Returns the capacity of this buffer. */
  std::size_t capacity() const { return capacity_; }

  /**
    Resizes the buffer. If T is a POD type new elements may not be initialized.
   */
  void resize(std::size_t new_size) {
    if (new_size > capacity_)
      grow(new_size);
    size_ = new_size;
  }

  /**
    \rst
    Reserves space to store at least *capacity* elements.
    \endrst
   */
  void reserve(std::size_t capacity) {
    if (capacity > capacity_)
      grow(capacity);
  }

  void clear() FMT_NOEXCEPT { size_ = 0; }

  void push_back(const T &value) {
    if (size_ == capacity_)
      grow(size_ + 1);
    ptr_[size_++] = value;
  }

  /** Appends data to the end of the buffer. */
  template <typename U>
  void append(const U *begin, const U *end);

  T &operator[](std::size_t index) { return ptr_[index]; }
  const T &operator[](std::size_t index) const { return ptr_[index]; }
};

template <typename T>
template <typename U>
void Buffer<T>::append(const U *begin, const U *end) {
  FMT_ASSERT(end >= begin, "negative value");
  std::size_t new_size = size_ + (end - begin);
  if (new_size > capacity_)
    grow(new_size);
  std::uninitialized_copy(begin, end,
                          internal::make_ptr(ptr_, capacity_) + size_);
  size_ = new_size;
}

namespace internal {

// A memory buffer for trivially copyable/constructible types with the first
// SIZE elements stored in the object itself.
template <typename T, std::size_t SIZE, typename Allocator = std::allocator<T> >
class MemoryBuffer : private Allocator, public Buffer<T> {
 private:
  T data_[SIZE];

  // Deallocate memory allocated by the buffer.
  void deallocate() {
    if (this->ptr_ != data_) Allocator::deallocate(this->ptr_, this->capacity_);
  }

 protected:
  void grow(std::size_t size) FMT_OVERRIDE;

 public:
  explicit MemoryBuffer(const Allocator &alloc = Allocator())
      : Allocator(alloc), Buffer<T>(data_, SIZE) {}
  ~MemoryBuffer() { deallocate(); }

#if FMT_USE_RVALUE_REFERENCES
 private:
  // Move data from other to this buffer.
  void move(MemoryBuffer &other) {
    Allocator &this_alloc = *this, &other_alloc = other;
    this_alloc = std::move(other_alloc);
    this->size_ = other.size_;
    this->capacity_ = other.capacity_;
    if (other.ptr_ == other.data_) {
      this->ptr_ = data_;
      std::uninitialized_copy(other.data_, other.data_ + this->size_,
                              make_ptr(data_, this->capacity_));
    } else {
      this->ptr_ = other.ptr_;
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.ptr_ = other.data_;
    }
  }

 public:
  MemoryBuffer(MemoryBuffer &&other) {
    move(other);
  }

  MemoryBuffer &operator=(MemoryBuffer &&other) {
    assert(this != &other);
    deallocate();
    move(other);
    return *this;
  }
#endif

  // Returns a copy of the allocator associated with this buffer.
  Allocator get_allocator() const { return *this; }
};

template <typename T, std::size_t SIZE, typename Allocator>
void MemoryBuffer<T, SIZE, Allocator>::grow(std::size_t size) {
  std::size_t new_capacity = this->capacity_ + this->capacity_ / 2;
  if (size > new_capacity)
      new_capacity = size;
  T *new_ptr = this->allocate(new_capacity, FMT_NULL);
  // The following code doesn't throw, so the raw pointer above doesn't leak.
  std::uninitialized_copy(this->ptr_, this->ptr_ + this->size_,
                          make_ptr(new_ptr, new_capacity));
  std::size_t old_capacity = this->capacity_;
  T *old_ptr = this->ptr_;
  this->capacity_ = new_capacity;
  this->ptr_ = new_ptr;
  // deallocate may throw (at least in principle), but it doesn't matter since
  // the buffer already uses the new storage and will deallocate it in case
  // of exception.
  if (old_ptr != data_)
    Allocator::deallocate(old_ptr, old_capacity);
}

// A fixed-size buffer.
template <typename Char>
class FixedBuffer : public fmt::Buffer<Char> {
 public:
  FixedBuffer(Char *array, std::size_t size) : fmt::Buffer<Char>(array, size) {}

 protected:
  FMT_API void grow(std::size_t size) FMT_OVERRIDE;
};

template <typename Char>
class BasicCharTraits {
 public:
#if FMT_SECURE_SCL
  typedef stdext::checked_array_iterator<Char*> CharPtr;
#else
  typedef Char *CharPtr;
#endif
  static Char cast(int value) { return static_cast<Char>(value); }
};

template <typename Char>
class CharTraits;

template <>
class CharTraits<char> : public BasicCharTraits<char> {
 private:
  // Conversion from wchar_t to char is not allowed.
  static char convert(wchar_t);

 public:
  static char convert(char value) { return value; }

  // Formats a floating-point number.
  template <typename T>
  FMT_API static int format_float(char *buffer, std::size_t size,
      const char *format, unsigned width, int precision, T value);
};

#if FMT_USE_EXTERN_TEMPLATES
extern template int CharTraits<char>::format_float<double>
        (char *buffer, std::size_t size,
         const char* format, unsigned width, int precision, double value);
extern template int CharTraits<char>::format_float<long double>
        (char *buffer, std::size_t size,
         const char* format, unsigned width, int precision, long double value);
#endif

template <>
class CharTraits<wchar_t> : public BasicCharTraits<wchar_t> {
 public:
  static wchar_t convert(char value) { return value; }
  static wchar_t convert(wchar_t value) { return value; }

  template <typename T>
  FMT_API static int format_float(wchar_t *buffer, std::size_t size,
      const wchar_t *format, unsigned width, int precision, T value);
};

#if FMT_USE_EXTERN_TEMPLATES
extern template int CharTraits<wchar_t>::format_float<double>
        (wchar_t *buffer, std::size_t size,
         const wchar_t* format, unsigned width, int precision, double value);
extern template int CharTraits<wchar_t>::format_float<long double>
        (wchar_t *buffer, std::size_t size,
         const wchar_t* format, unsigned width, int precision, long double value);
#endif

// Checks if a number is negative - used to avoid warnings.
template <bool IsSigned>
struct SignChecker {
  template <typename T>
  static bool is_negative(T value) { return value < 0; }
};

template <>
struct SignChecker<false> {
  template <typename T>
  static bool is_negative(T) { return false; }
};

// Returns true if value is negative, false otherwise.
// Same as (value < 0) but doesn't produce warnings if T is an unsigned type.
template <typename T>
inline bool is_negative(T value) {
  return SignChecker<std::numeric_limits<T>::is_signed>::is_negative(value);
}

// Selects uint32_t if FitsIn32Bits is true, uint64_t otherwise.
template <bool FitsIn32Bits>
struct TypeSelector { typedef uint32_t Type; };

template <>
struct TypeSelector<false> { typedef uint64_t Type; };

template <typename T>
struct IntTraits {
  // Smallest of uint32_t and uint64_t that is large enough to represent
  // all values of T.
  typedef typename
    TypeSelector<std::numeric_limits<T>::digits <= 32>::Type MainType;
};

FMT_API void report_unknown_type(char code, const char *type);

// Static data is placed in this class template to allow header-only
// configuration.
template <typename T = void>
struct FMT_API BasicData {
  static const uint32_t POWERS_OF_10_32[];
  static const uint64_t POWERS_OF_10_64[];
  static const char DIGITS[];
};

#if FMT_USE_EXTERN_TEMPLATES
extern template struct BasicData<void>;
#endif

typedef BasicData<> Data;

#ifdef FMT_BUILTIN_CLZLL
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline unsigned count_digits(uint64_t n) {
  // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits.
  int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12;
  return to_unsigned(t) - (n < Data::POWERS_OF_10_64[t]) + 1;
}
#else
// Fallback version of count_digits used when __builtin_clz is not available.
inline unsigned count_digits(uint64_t n) {
  unsigned count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#endif

#ifdef FMT_BUILTIN_CLZ
// Optional version of count_digits for better performance on 32-bit platforms.
inline unsigned count_digits(uint32_t n) {
  int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12;
  return to_unsigned(t) - (n < Data::POWERS_OF_10_32[t]) + 1;
}
#endif

// A functor that doesn't add a thousands separator.
struct NoThousandsSep {
  template <typename Char>
  void operator()(Char *) {}
};

// A functor that adds a thousands separator.
class ThousandsSep {
 private:
  fmt::StringRef sep_;

  // Index of a decimal digit with the least significant digit having index 0.
  unsigned digit_index_;

 public:
  explicit ThousandsSep(fmt::StringRef sep) : sep_(sep), digit_index_(0) {}

  template <typename Char>
  void operator()(Char *&buffer) {
    if (++digit_index_ % 3 != 0)
      return;
    buffer -= sep_.size();
    std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(),
                            internal::make_ptr(buffer, sep_.size()));
  }
};

// Formats a decimal unsigned integer value writing into buffer.
// thousands_sep is a functor that is called after writing each char to
// add a thousands separator if necessary.
template <typename UInt, typename Char, typename ThousandsSep>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits,
                           ThousandsSep thousands_sep) {
  buffer += num_digits;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    unsigned index = static_cast<unsigned>((value % 100) * 2);
    value /= 100;
    *--buffer = Data::DIGITS[index + 1];
    thousands_sep(buffer);
    *--buffer = Data::DIGITS[index];
    thousands_sep(buffer);
  }
  if (value < 10) {
    *--buffer = static_cast<char>('0' + value);
    return;
  }
  unsigned index = static_cast<unsigned>(value * 2);
  *--buffer = Data::DIGITS[index + 1];
  thousands_sep(buffer);
  *--buffer = Data::DIGITS[index];
}

template <typename UInt, typename Char>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
  format_decimal(buffer, value, num_digits, NoThousandsSep());
  return;
}

#ifndef _WIN32
# define FMT_USE_WINDOWS_H 0
#elif !defined(FMT_USE_WINDOWS_H)
# define FMT_USE_WINDOWS_H 1
#endif

// Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h.
// All the functionality that relies on it will be disabled too.
#if FMT_USE_WINDOWS_H
// A converter from UTF-8 to UTF-16.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF8ToUTF16 {
 private:
  MemoryBuffer<wchar_t, INLINE_BUFFER_SIZE> buffer_;

 public:
  FMT_API explicit UTF8ToUTF16(StringRef s);
  operator WStringRef() const { return WStringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const wchar_t *c_str() const { return &buffer_[0]; }
  std::wstring str() const { return std::wstring(&buffer_[0], size()); }
};

// A converter from UTF-16 to UTF-8.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF16ToUTF8 {
 private:
  MemoryBuffer<char, INLINE_BUFFER_SIZE> buffer_;

 public:
  UTF16ToUTF8() {}
  FMT_API explicit UTF16ToUTF8(WStringRef s);
  operator StringRef() const { return StringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const char *c_str() const { return &buffer_[0]; }
  std::string str() const { return std::string(&buffer_[0], size()); }

  // Performs conversion returning a system error code instead of
  // throwing exception on conversion error. This method may still throw
  // in case of memory allocation error.
  FMT_API int convert(WStringRef s);
};

FMT_API void format_windows_error(fmt::Writer &out, int error_code,
                                  fmt::StringRef message) FMT_NOEXCEPT;
#endif

// A formatting argument value.
struct Value {
  template <typename Char>
  struct StringValue {
    const Char *value;
    std::size_t size;
  };

  typedef void (*FormatFunc)(
      void *formatter, const void *arg, void *format_str_ptr);

  struct CustomValue {
    const void *value;
    FormatFunc format;
  };

  union {
    int int_value;
    unsigned uint_value;
    LongLong long_long_value;
    ULongLong ulong_long_value;
    double double_value;
    long double long_double_value;
    const void *pointer;
    StringValue<char> string;
    StringValue<signed char> sstring;
    StringValue<unsigned char> ustring;
    StringValue<wchar_t> wstring;
    CustomValue custom;
  };

  enum Type {
    NONE, NAMED_ARG,
    // Integer types should go first,
    INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR,
    // followed by floating-point types.
    DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE,
    CSTRING, STRING, WSTRING, POINTER, CUSTOM
  };
};

// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in internal::MemoryBuffer.
struct Arg : Value {
  Type type;
};

template <typename Char>
struct NamedArg;
template <typename Char, typename T>
struct NamedArgWithType;

template <typename T = void>
struct Null {};

// A helper class template to enable or disable overloads taking wide
// characters and strings in MakeValue.
template <typename T, typename Char>
struct WCharHelper {
  typedef Null<T> Supported;
  typedef T Unsupported;
};

template <typename T>
struct WCharHelper<T, wchar_t> {
  typedef T Supported;
  typedef Null<T> Unsupported;
};

typedef char Yes[1];
typedef char No[2];

template <typename T>
T &get();

// These are non-members to workaround an overload resolution bug in bcc32.
Yes &convert(fmt::ULongLong);
No &convert(...);

template<typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl {
  enum { value = ENABLE_CONVERSION };
};

template<typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl2 {
  enum { value = false };
};

template<typename T>
struct ConvertToIntImpl2<T, true> {
  enum {
    // Don't convert numeric types.
    value = ConvertToIntImpl<T, !std::numeric_limits<T>::is_specialized>::value
  };
};

template<typename T>
struct ConvertToInt {
  enum {
    enable_conversion = sizeof(fmt::internal::convert(get<T>())) == sizeof(Yes)
  };
  enum { value = ConvertToIntImpl2<T, enable_conversion>::value };
};

#define FMT_DISABLE_CONVERSION_TO_INT(Type) \
  template <> \
  struct ConvertToInt<Type> {  enum { value = 0 }; }

// Silence warnings about convering float to int.
FMT_DISABLE_CONVERSION_TO_INT(float);
FMT_DISABLE_CONVERSION_TO_INT(double);
FMT_DISABLE_CONVERSION_TO_INT(long double);

template<bool B, class T = void>
struct EnableIf {};

template<class T>
struct EnableIf<true, T> { typedef T type; };

template<bool B, class T, class F>
struct Conditional { typedef T type; };

template<class T, class F>
struct Conditional<false, T, F> { typedef F type; };

// For bcc32 which doesn't understand ! in template arguments.
template <bool>
struct Not { enum { value = 0 }; };

template <>
struct Not<false> { enum { value = 1 }; };

template <typename T>
struct FalseType { enum { value = 0 }; };

template <typename T, T> struct LConvCheck {
  LConvCheck(int) {}
};

// Returns the thousands separator for the current locale.
// We check if ``lconv`` contains ``thousands_sep`` because on Android
// ``lconv`` is stubbed as an empty struct.
template <typename LConv>
inline StringRef thousands_sep(
    LConv *lc, LConvCheck<char *LConv::*, &LConv::thousands_sep> = 0) {
  return lc->thousands_sep;
}

inline fmt::StringRef thousands_sep(...) { return ""; }

#define FMT_CONCAT(a, b) a##b

#if FMT_GCC_VERSION >= 303
# define FMT_UNUSED __attribute__((unused))
#else
# define FMT_UNUSED
#endif

#ifndef FMT_USE_STATIC_ASSERT
# define FMT_USE_STATIC_ASSERT 0
#endif

#if FMT_USE_STATIC_ASSERT || FMT_HAS_FEATURE(cxx_static_assert) || \
  (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || _MSC_VER >= 1600
# define FMT_STATIC_ASSERT(cond, message) static_assert(cond, message)
#else
# define FMT_CONCAT_(a, b) FMT_CONCAT(a, b)
# define FMT_STATIC_ASSERT(cond, message) \
  typedef int FMT_CONCAT_(Assert, __LINE__)[(cond) ? 1 : -1] FMT_UNUSED
#endif

template <typename Formatter, typename Char, typename T>
void format_arg(Formatter &, const Char *, const T &) {
  FMT_STATIC_ASSERT(FalseType<T>::value,
                    "Cannot format argument. To enable the use of ostream "
                    "operator<< include fmt/ostream.h. Otherwise provide "
                    "an overload of format_arg.");
}

// Makes an Arg object from any type.
template <typename Formatter>
class MakeValue : public Arg {
 public:
  typedef typename Formatter::Char Char;

 private:
  // The following two methods are private to disallow formatting of
  // arbitrary pointers. If you want to output a pointer cast it to
  // "void *" or "const void *". In particular, this forbids formatting
  // of "[const] volatile char *" which is printed as bool by iostreams.
  // Do not implement!
  template <typename T>
  MakeValue(const T *value);
  template <typename T>
  MakeValue(T *value);

  // The following methods are private to disallow formatting of wide
  // characters and strings into narrow strings as in
  //   fmt::format("{}", L"test");
  // To fix this, use a wide format string: fmt::format(L"{}", L"test").
#if !FMT_MSC_VER || defined(_NATIVE_WCHAR_T_DEFINED)
  MakeValue(typename WCharHelper<wchar_t, Char>::Unsupported);
#endif
  MakeValue(typename WCharHelper<wchar_t *, Char>::Unsupported);
  MakeValue(typename WCharHelper<const wchar_t *, Char>::Unsupported);
  MakeValue(typename WCharHelper<const std::wstring &, Char>::Unsupported);
  MakeValue(typename WCharHelper<WStringRef, Char>::Unsupported);

  void set_string(StringRef str) {
    string.value = str.data();
    string.size = str.size();
  }

  void set_string(WStringRef str) {
    wstring.value = str.data();
    wstring.size = str.size();
  }

  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T>
  static void format_custom_arg(
      void *formatter, const void *arg, void *format_str_ptr) {
    format_arg(*static_cast<Formatter*>(formatter),
               *static_cast<const Char**>(format_str_ptr),
               *static_cast<const T*>(arg));
  }

 public:
  MakeValue() {}

#define FMT_MAKE_VALUE_(Type, field, TYPE, rhs) \
  MakeValue(Type value) { field = rhs; } \
  static uint64_t type(Type) { return Arg::TYPE; }

#define FMT_MAKE_VALUE(Type, field, TYPE) \
  FMT_MAKE_VALUE_(Type, field, TYPE, value)

  FMT_MAKE_VALUE(bool, int_value, BOOL)
  FMT_MAKE_VALUE(short, int_value, INT)
  FMT_MAKE_VALUE(unsigned short, uint_value, UINT)
  FMT_MAKE_VALUE(int, int_value, INT)
  FMT_MAKE_VALUE(unsigned, uint_value, UINT)

  MakeValue(long value) {
    // To minimize the number of types we need to deal with, long is
    // translated either to int or to long long depending on its size.
    if (const_check(sizeof(long) == sizeof(int)))
      int_value = static_cast<int>(value);
    else
      long_long_value = value;
  }
  static uint64_t type(long) {
    return sizeof(long) == sizeof(int) ? Arg::INT : Arg::LONG_LONG;
  }

  MakeValue(unsigned long value) {
    if (const_check(sizeof(unsigned long) == sizeof(unsigned)))
      uint_value = static_cast<unsigned>(value);
    else
      ulong_long_value = value;
  }
  static uint64_t type(unsigned long) {
    return sizeof(unsigned long) == sizeof(unsigned) ?
          Arg::UINT : Arg::ULONG_LONG;
  }

  FMT_MAKE_VALUE(LongLong, long_long_value, LONG_LONG)
  FMT_MAKE_VALUE(ULongLong, ulong_long_value, ULONG_LONG)
  FMT_MAKE_VALUE(float, double_value, DOUBLE)
  FMT_MAKE_VALUE(double, double_value, DOUBLE)
  FMT_MAKE_VALUE(long double, long_double_value, LONG_DOUBLE)
  FMT_MAKE_VALUE(signed char, int_value, INT)
  FMT_MAKE_VALUE(unsigned char, uint_value, UINT)
  FMT_MAKE_VALUE(char, int_value, CHAR)

#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
  MakeValue(typename WCharHelper<wchar_t, Char>::Supported value) {
    int_value = value;
  }
  static uint64_t type(wchar_t) { return Arg::CHAR; }
#endif

#define FMT_MAKE_STR_VALUE(Type, TYPE) \
  MakeValue(Type value) { set_string(value); } \
  static uint64_t type(Type) { return Arg::TYPE; }

  FMT_MAKE_VALUE(char *, string.value, CSTRING)
  FMT_MAKE_VALUE(const char *, string.value, CSTRING)
  FMT_MAKE_VALUE(signed char *, sstring.value, CSTRING)
  FMT_MAKE_VALUE(const signed char *, sstring.value, CSTRING)
  FMT_MAKE_VALUE(unsigned char *, ustring.value, CSTRING)
  FMT_MAKE_VALUE(const unsigned char *, ustring.value, CSTRING)
  FMT_MAKE_STR_VALUE(const std::string &, STRING)
  FMT_MAKE_STR_VALUE(StringRef, STRING)
  FMT_MAKE_VALUE_(CStringRef, string.value, CSTRING, value.c_str())

#define FMT_MAKE_WSTR_VALUE(Type, TYPE) \
  MakeValue(typename WCharHelper<Type, Char>::Supported value) { \
    set_string(value); \
  } \
  static uint64_t type(Type) { return Arg::TYPE; }

  FMT_MAKE_WSTR_VALUE(wchar_t *, WSTRING)
  FMT_MAKE_WSTR_VALUE(const wchar_t *, WSTRING)
  FMT_MAKE_WSTR_VALUE(const std::wstring &, WSTRING)
  FMT_MAKE_WSTR_VALUE(WStringRef, WSTRING)

  FMT_MAKE_VALUE(void *, pointer, POINTER)
  FMT_MAKE_VALUE(const void *, pointer, POINTER)

  template <typename T>
  MakeValue(const T &value,
            typename EnableIf<Not<
              ConvertToInt<T>::value>::value, int>::type = 0) {
    custom.value = &value;
    custom.format = &format_custom_arg<T>;
  }

  template <typename T>
  static typename EnableIf<Not<ConvertToInt<T>::value>::value, uint64_t>::type
      type(const T &) {
    return Arg::CUSTOM;
  }

  // Additional template param `Char_` is needed here because make_type always
  // uses char.
  template <typename Char_>
  MakeValue(const NamedArg<Char_> &value) { pointer = &value; }
  template <typename Char_, typename T>
  MakeValue(const NamedArgWithType<Char_, T> &value) { pointer = &value; }

  template <typename Char_>
  static uint64_t type(const NamedArg<Char_> &) { return Arg::NAMED_ARG; }
  template <typename Char_, typename T>
  static uint64_t type(const NamedArgWithType<Char_, T> &) { return Arg::NAMED_ARG; }
};

template <typename Formatter>
class MakeArg : public Arg {
public:
  MakeArg() {
    type = Arg::NONE;
  }

  template <typename T>
  MakeArg(const T &value)
  : Arg(MakeValue<Formatter>(value)) {
    type = static_cast<Arg::Type>(MakeValue<Formatter>::type(value));
  }
};

template <typename Char>
struct NamedArg : Arg {
  BasicStringRef<Char> name;

  template <typename T>
  NamedArg(BasicStringRef<Char> argname, const T &value)
  : Arg(MakeArg< BasicFormatter<Char> >(value)), name(argname) {}
};

template <typename Char, typename T>
struct NamedArgWithType : NamedArg<Char> {
  NamedArgWithType(BasicStringRef<Char> argname, const T &value)
  : NamedArg<Char>(argname, value) {}
};

class RuntimeError : public std::runtime_error {
 protected:
  RuntimeError() : std::runtime_error("") {}
  RuntimeError(const RuntimeError &rerr) : std::runtime_error(rerr) {}
  FMT_API ~RuntimeError() FMT_DTOR_NOEXCEPT;
};

template <typename Char>
class ArgMap;
}  // namespace internal

/** An argument list. */
class ArgList {
 private:
  // To reduce compiled code size per formatting function call, types of first
  // MAX_PACKED_ARGS arguments are passed in the types_ field.
  uint64_t types_;
  union {
    // If the number of arguments is less than MAX_PACKED_ARGS, the argument
    // values are stored in values_, otherwise they are stored in args_.
    // This is done to reduce compiled code size as storing larger objects
    // may require more code (at least on x86-64) even if the same amount of
    // data is actually copied to stack. It saves ~10% on the bloat test.
    const internal::Value *values_;
    const internal::Arg *args_;
  };

  internal::Arg::Type type(unsigned index) const {
    return type(types_, index);
  }

  template <typename Char>
  friend class internal::ArgMap;

 public:
  // Maximum number of arguments with packed types.
  enum { MAX_PACKED_ARGS = 16 };

  ArgList() : types_(0) {}

  ArgList(ULongLong types, const internal::Value *values)
  : types_(types), values_(values) {}
  ArgList(ULongLong types, const internal::Arg *args)
  : types_(types), args_(args) {}

  uint64_t types() const { return types_; }

  /** Returns the argument at specified index. */
  internal::Arg operator[](unsigned index) const {
    using internal::Arg;
    Arg arg;
    bool use_values = type(MAX_PACKED_ARGS - 1) == Arg::NONE;
    if (index < MAX_PACKED_ARGS) {
      Arg::Type arg_type = type(index);
      internal::Value &val = arg;
      if (arg_type != Arg::NONE)
        val = use_values ? values_[index] : args_[index];
      arg.type = arg_type;
      return arg;
    }
    if (use_values) {
      // The index is greater than the number of arguments that can be stored
      // in values, so return a "none" argument.
      arg.type = Arg::NONE;
      return arg;
    }
    for (unsigned i = MAX_PACKED_ARGS; i <= index; ++i) {
      if (args_[i].type == Arg::NONE)
        return args_[i];
    }
    return args_[index];
  }

  static internal::Arg::Type type(uint64_t types, unsigned index) {
    unsigned shift = index * 4;
    uint64_t mask = 0xf;
    return static_cast<internal::Arg::Type>(
          (types & (mask << shift)) >> shift);
  }
};

#define FMT_DISPATCH(call) static_cast<Impl*>(this)->call

/**
  \rst
  An argument visitor based on the `curiously recurring template pattern
  <http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_.

  To use `~fmt::ArgVisitor` define a subclass that implements some or all of the
  visit methods with the same signatures as the methods in `~fmt::ArgVisitor`,
  for example, `~fmt::ArgVisitor::visit_int()`.
  Pass the subclass as the *Impl* template parameter. Then calling
  `~fmt::ArgVisitor::visit` for some argument will dispatch to a visit method
  specific to the argument type. For example, if the argument type is
  ``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass
  will be called. If the subclass doesn't contain a method with this signature,
  then a corresponding method of `~fmt::ArgVisitor` will be called.

  **Example**::

    class MyArgVisitor : public fmt::ArgVisitor<MyArgVisitor, void> {
     public:
      void visit_int(int value) { fmt::print("{}", value); }
      void visit_double(double value) { fmt::print("{}", value ); }
    };
  \endrst
 */
template <typename Impl, typename Result>
class ArgVisitor {
 private:
  typedef internal::Arg Arg;

 public:
  void report_unhandled_arg() {}

  Result visit_unhandled_arg() {
    FMT_DISPATCH(report_unhandled_arg());
    return Result();
  }

  /** Visits an ``int`` argument. **/
  Result visit_int(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``long long`` argument. **/
  Result visit_long_long(LongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an ``unsigned`` argument. **/
  Result visit_uint(unsigned value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an ``unsigned long long`` argument. **/
  Result visit_ulong_long(ULongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``bool`` argument. **/
  Result visit_bool(bool value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits a ``char`` or ``wchar_t`` argument. **/
  Result visit_char(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }

  /** Visits an argument of any integral type. **/
  template <typename T>
  Result visit_any_int(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a ``double`` argument. **/
  Result visit_double(double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }

  /** Visits a ``long double`` argument. **/
  Result visit_long_double(long double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }

  /** Visits a ``double`` or ``long double`` argument. **/
  template <typename T>
  Result visit_any_double(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a null-terminated C string (``const char *``) argument. **/
  Result visit_cstring(const char *) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a string argument. **/
  Result visit_string(Arg::StringValue<char>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a wide string argument. **/
  Result visit_wstring(Arg::StringValue<wchar_t>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits a pointer argument. **/
  Result visit_pointer(const void *) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /** Visits an argument of a custom (user-defined) type. **/
  Result visit_custom(Arg::CustomValue) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  /**
    \rst
    Visits an argument dispatching to the appropriate visit method based on
    the argument type. For example, if the argument type is ``double`` then
    the `~fmt::ArgVisitor::visit_double()` method of the *Impl* class will be
    called.
    \endrst
   */
  Result visit(const Arg &arg) {
    switch (arg.type) {
    case Arg::NONE:
    case Arg::NAMED_ARG:
      FMT_ASSERT(false, "invalid argument type");
      break;
    case Arg::INT:
      return FMT_DISPATCH(visit_int(arg.int_value));
    case Arg::UINT:
      return FMT_DISPATCH(visit_uint(arg.uint_value));
    case Arg::LONG_LONG:
      return FMT_DISPATCH(visit_long_long(arg.long_long_value));
    case Arg::ULONG_LONG:
      return FMT_DISPATCH(visit_ulong_long(arg.ulong_long_value));
    case Arg::BOOL:
      return FMT_DISPATCH(visit_bool(arg.int_value != 0));
    case Arg::CHAR:
      return FMT_DISPATCH(visit_char(arg.int_value));
    case Arg::DOUBLE:
      return FMT_DISPATCH(visit_double(arg.double_value));
    case Arg::LONG_DOUBLE:
      return FMT_DISPATCH(visit_long_double(arg.long_double_value));
    case Arg::CSTRING:
      return FMT_DISPATCH(visit_cstring(arg.string.value));
    case Arg::STRING:
      return FMT_DISPATCH(visit_string(arg.string));
    case Arg::WSTRING:
      return FMT_DISPATCH(visit_wstring(arg.wstring));
    case Arg::POINTER:
      return FMT_DISPATCH(visit_pointer(arg.pointer));
    case Arg::CUSTOM:
      return FMT_DISPATCH(visit_custom(arg.custom));
    }
    return Result();
  }
};

enum Alignment {
  ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC
};

// Flags.
enum {
  SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8,
  CHAR_FLAG = 0x10  // Argument has char type - used in error reporting.
};

// An empty format specifier.
struct EmptySpec {};

// A type specifier.
template <char TYPE>
struct TypeSpec : EmptySpec {
  Alignment align() const { return ALIGN_DEFAULT; }
  unsigned width() const { return 0; }
  int precision() const { return -1; }
  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
  char type_prefix() const { return TYPE; }
  char fill() const { return ' '; }
};

// A width specifier.
struct WidthSpec {
  unsigned width_;
  // Fill is always wchar_t and cast to char if necessary to avoid having
  // two specialization of WidthSpec and its subclasses.
  wchar_t fill_;

  WidthSpec(unsigned width, wchar_t fill) : width_(width), fill_(fill) {}

  unsigned width() const { return width_; }
  wchar_t fill() const { return fill_; }
};

// An alignment specifier.
struct AlignSpec : WidthSpec {
  Alignment align_;

  AlignSpec(unsigned width, wchar_t fill, Alignment align = ALIGN_DEFAULT)
  : WidthSpec(width, fill), align_(align) {}

  Alignment align() const { return align_; }

  int precision() const { return -1; }
};

// An alignment and type specifier.
template <char TYPE>
struct AlignTypeSpec : AlignSpec {
  AlignTypeSpec(unsigned width, wchar_t fill) : AlignSpec(width, fill) {}

  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
  char type_prefix() const { return TYPE; }
};

// A full format specifier.
struct FormatSpec : AlignSpec {
  unsigned flags_;
  int precision_;
  char type_;

  FormatSpec(
    unsigned width = 0, char type = 0, wchar_t fill = ' ')
  : AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {}

  bool flag(unsigned f) const { return (flags_ & f) != 0; }
  int precision() const { return precision_; }
  char type() const { return type_; }
  char type_prefix() const { return type_; }
};

// An integer format specifier.
template <typename T, typename SpecT = TypeSpec<0>, typename Char = char>
class IntFormatSpec : public SpecT {
 private:
  T value_;

 public:
  IntFormatSpec(T val, const SpecT &spec = SpecT())
  : SpecT(spec), value_(val) {}

  T value() const { return value_; }
};

// A string format specifier.
template <typename Char>
class StrFormatSpec : public AlignSpec {
 private:
  const Char *str_;

 public:
  template <typename FillChar>
  StrFormatSpec(const Char *str, unsigned width, FillChar fill)
  : AlignSpec(width, fill), str_(str) {
    internal::CharTraits<Char>::convert(FillChar());
  }

  const Char *str() const { return str_; }
};

/**
  Returns an integer format specifier to format the value in base 2.
 */
IntFormatSpec<int, TypeSpec<'b'> > bin(int value);

/**
  Returns an integer format specifier to format the value in base 8.
 */
IntFormatSpec<int, TypeSpec<'o'> > oct(int value);

/**
  Returns an integer format specifier to format the value in base 16 using
  lower-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'x'> > hex(int value);

/**
  Returns an integer formatter format specifier to format in base 16 using
  upper-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'X'> > hexu(int value);

/**
  \rst
  Returns an integer format specifier to pad the formatted argument with the
  fill character to the specified width using the default (right) numeric
  alignment.

  **Example**::

    MemoryWriter out;
    out << pad(hex(0xcafe), 8, '0');
    // out.str() == "0000cafe"

  \endrst
 */
template <char TYPE_CODE, typename Char>
IntFormatSpec<int, AlignTypeSpec<TYPE_CODE>, Char> pad(
    int value, unsigned width, Char fill = ' ');

#define FMT_DEFINE_INT_FORMATTERS(TYPE) \
inline IntFormatSpec<TYPE, TypeSpec<'b'> > bin(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'b'> >(value, TypeSpec<'b'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'o'> > oct(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'o'> >(value, TypeSpec<'o'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'x'> > hex(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'x'> >(value, TypeSpec<'x'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'X'> > hexu(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'X'> >(value, TypeSpec<'X'>()); \
} \
 \
template <char TYPE_CODE> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> > pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE> > f, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> >( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, ' ')); \
} \
 \
/* For compatibility with older compilers we provide two overloads for pad, */ \
/* one that takes a fill character and one that doesn't. In the future this */ \
/* can be replaced with one overload making the template argument Char      */ \
/* default to char (C++11). */ \
template <char TYPE_CODE, typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char> pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE>, Char> f, \
    unsigned width, Char fill) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char>( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, fill)); \
} \
 \
inline IntFormatSpec<TYPE, AlignTypeSpec<0> > pad( \
    TYPE value, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<0> >( \
      value, AlignTypeSpec<0>(width, ' ')); \
} \
 \
template <typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<0>, Char> pad( \
   TYPE value, unsigned width, Char fill) { \
 return IntFormatSpec<TYPE, AlignTypeSpec<0>, Char>( \
     value, AlignTypeSpec<0>(width, fill)); \
}

FMT_DEFINE_INT_FORMATTERS(int)
FMT_DEFINE_INT_FORMATTERS(long)
FMT_DEFINE_INT_FORMATTERS(unsigned)
FMT_DEFINE_INT_FORMATTERS(unsigned long)
FMT_DEFINE_INT_FORMATTERS(LongLong)
FMT_DEFINE_INT_FORMATTERS(ULongLong)

/**
  \rst
  Returns a string formatter that pads the formatted argument with the fill
  character to the specified width using the default (left) string alignment.

  **Example**::

    std::string s = str(MemoryWriter() << pad("abc", 8));
    // s == "abc     "

  \endrst
 */
template <typename Char>
inline StrFormatSpec<Char> pad(
    const Char *str, unsigned width, Char fill = ' ') {
  return StrFormatSpec<Char>(str, width, fill);
}

inline StrFormatSpec<wchar_t> pad(
    const wchar_t *str, unsigned width, char fill = ' ') {
  return StrFormatSpec<wchar_t>(str, width, fill);
}

namespace internal {

template <typename Char>
class ArgMap {
 private:
  typedef std::vector<
    std::pair<fmt::BasicStringRef<Char>, internal::Arg> > MapType;
  typedef typename MapType::value_type Pair;

  MapType map_;

 public:
  FMT_API void init(const ArgList &args);

  const internal::Arg *find(const fmt::BasicStringRef<Char> &name) const {
    // The list is unsorted, so just return the first matching name.
    for (typename MapType::const_iterator it = map_.begin(), end = map_.end();
         it != end; ++it) {
      if (it->first == name)
        return &it->second;
    }
    return FMT_NULL;
  }
};

template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class ArgFormatterBase : public ArgVisitor<Impl, void> {
 private:
  BasicWriter<Char> &writer_;
  Spec &spec_;

  FMT_DISALLOW_COPY_AND_ASSIGN(ArgFormatterBase);

  void write_pointer(const void *p) {
    spec_.flags_ = HASH_FLAG;
    spec_.type_ = 'x';
    writer_.write_int(reinterpret_cast<uintptr_t>(p), spec_);
  }

  // workaround MSVC two-phase lookup issue
  typedef internal::Arg Arg;

 protected:
  BasicWriter<Char> &writer() { return writer_; }
  Spec &spec() { return spec_; }

  void write(bool value) {
    const char *str_value = value ? "true" : "false";
    Arg::StringValue<char> str = { str_value, std::strlen(str_value) };
    writer_.write_str(str, spec_);
  }

  void write(const char *value) {
    Arg::StringValue<char> str = {value, value ? std::strlen(value) : 0};
    writer_.write_str(str, spec_);
  }

 public:
  typedef Spec SpecType;

  ArgFormatterBase(BasicWriter<Char> &w, Spec &s)
  : writer_(w), spec_(s) {}

  template <typename T>
  void visit_any_int(T value) { writer_.write_int(value, spec_); }

  template <typename T>
  void visit_any_double(T value) { writer_.write_double(value, spec_); }

  void visit_bool(bool value) {
    if (spec_.type_) {
      visit_any_int(value);
      return;
    }
    write(value);
  }

  void visit_char(int value) {
    if (spec_.type_ && spec_.type_ != 'c') {
      spec_.flags_ |= CHAR_FLAG;
      writer_.write_int(value, spec_);
      return;
    }
    if (spec_.align_ == ALIGN_NUMERIC || spec_.flags_ != 0)
      FMT_THROW(FormatError("invalid format specifier for char"));
    typedef typename BasicWriter<Char>::CharPtr CharPtr;
    Char fill = internal::CharTraits<Char>::cast(spec_.fill());
    CharPtr out = CharPtr();
    const unsigned CHAR_SIZE = 1;
    if (spec_.width_ > CHAR_SIZE) {
      out = writer_.grow_buffer(spec_.width_);
      if (spec_.align_ == ALIGN_RIGHT) {
        std::uninitialized_fill_n(out, spec_.width_ - CHAR_SIZE, fill);
        out += spec_.width_ - CHAR_SIZE;
      } else if (spec_.align_ == ALIGN_CENTER) {
        out = writer_.fill_padding(out, spec_.width_,
                                   internal::const_check(CHAR_SIZE), fill);
      } else {
        std::uninitialized_fill_n(out + CHAR_SIZE,
                                  spec_.width_ - CHAR_SIZE, fill);
      }
    } else {
      out = writer_.grow_buffer(CHAR_SIZE);
    }
    *out = internal::CharTraits<Char>::cast(value);
  }

  void visit_cstring(const char *value) {
    if (spec_.type_ == 'p')
      return write_pointer(value);
    write(value);
  }

  // Qualification with "internal" here and below is a workaround for nvcc.
  void visit_string(internal::Arg::StringValue<char> value) {
    writer_.write_str(value, spec_);
  }

  using ArgVisitor<Impl, void>::visit_wstring;

  void visit_wstring(internal::Arg::StringValue<Char> value) {
    writer_.write_str(value, spec_);
  }

  void visit_pointer(const void *value) {
    if (spec_.type_ && spec_.type_ != 'p')
      report_unknown_type(spec_.type_, "pointer");
    write_pointer(value);
  }
};

class FormatterBase {
 private:
  ArgList args_;
  int next_arg_index_;

  // Returns the argument with specified index.
  FMT_API Arg do_get_arg(unsigned arg_index, const char *&error);

 protected:
  const ArgList &args() const { return args_; }

  explicit FormatterBase(const ArgList &args) {
    args_ = args;
    next_arg_index_ = 0;
  }

  // Returns the next argument.
  Arg next_arg(const char *&error) {
    if (next_arg_index_ >= 0)
      return do_get_arg(internal::to_unsigned(next_arg_index_++), error);
    error = "cannot switch from manual to automatic argument indexing";
    return Arg();
  }

  // Checks if manual indexing is used and returns the argument with
  // specified index.
  Arg get_arg(unsigned arg_index, const char *&error) {
    return check_no_auto_index(error) ? do_get_arg(arg_index, error) : Arg();
  }

  bool check_no_auto_index(const char *&error) {
    if (next_arg_index_ > 0) {
      error = "cannot switch from automatic to manual argument indexing";
      return false;
    }
    next_arg_index_ = -1;
    return true;
  }

  template <typename Char>
  void write(BasicWriter<Char> &w, const Char *start, const Char *end) {
    if (start != end)
      w << BasicStringRef<Char>(start, internal::to_unsigned(end - start));
  }
};
}  // namespace internal

/**
  \rst
  An argument formatter based on the `curiously recurring template pattern
  <http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_.

  To use `~fmt::BasicArgFormatter` define a subclass that implements some or
  all of the visit methods with the same signatures as the methods in
  `~fmt::ArgVisitor`, for example, `~fmt::ArgVisitor::visit_int()`.
  Pass the subclass as the *Impl* template parameter. When a formatting
  function processes an argument, it will dispatch to a visit method
  specific to the argument type. For example, if the argument type is
  ``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass
  will be called. If the subclass doesn't contain a method with this signature,
  then a corresponding method of `~fmt::BasicArgFormatter` or its superclass
  will be called.
  \endrst
 */
template <typename Impl, typename Char, typename Spec = fmt::FormatSpec>
class BasicArgFormatter : public internal::ArgFormatterBase<Impl, Char, Spec> {
 private:
  BasicFormatter<Char, Impl> &formatter_;
  const Char *format_;

 public:
  /**
    \rst
    Constructs an argument formatter object.
    *formatter* is a reference to the main formatter object, *spec* contains
    format specifier information for standard argument types, and *fmt* points
    to the part of the format string being parsed for custom argument types.
    \endrst
   */
  BasicArgFormatter(BasicFormatter<Char, Impl> &formatter,
                    Spec &spec, const Char *fmt)
  : internal::ArgFormatterBase<Impl, Char, Spec>(formatter.writer(), spec),
    formatter_(formatter), format_(fmt) {}

  /** Formats an argument of a custom (user-defined) type. */
  void visit_custom(internal::Arg::CustomValue c) {
    c.format(&formatter_, c.value, &format_);
  }
};

/** The default argument formatter. */
template <typename Char>
class ArgFormatter :
    public BasicArgFormatter<ArgFormatter<Char>, Char, FormatSpec> {
 public:
  /** Constructs an argument formatter object. */
  ArgFormatter(BasicFormatter<Char> &formatter,
               FormatSpec &spec, const Char *fmt)
  : BasicArgFormatter<ArgFormatter<Char>,
                      Char, FormatSpec>(formatter, spec, fmt) {}
};

/** This template formats data and writes the output to a writer. */
template <typename CharType, typename ArgFormatter>
class BasicFormatter : private internal::FormatterBase {
 public:
  /** The character type for the output. */
  typedef CharType Char;

 private:
  BasicWriter<Char> &writer_;
  internal::ArgMap<Char> map_;

  FMT_DISALLOW_COPY_AND_ASSIGN(BasicFormatter);

  using internal::FormatterBase::get_arg;

  // Checks if manual indexing is used and returns the argument with
  // specified name.
  internal::Arg get_arg(BasicStringRef<Char> arg_name, const char *&error);

  // Parses argument index and returns corresponding argument.
  internal::Arg parse_arg_index(const Char *&s);

  // Parses argument name and returns corresponding argument.
  internal::Arg parse_arg_name(const Char *&s);

 public:
  /**
   \rst
   Constructs a ``BasicFormatter`` object. References to the arguments and
   the writer are stored in the formatter object so make sure they have
   appropriate lifetimes.
   \endrst
   */
  BasicFormatter(const ArgList &args, BasicWriter<Char> &w)
    : internal::FormatterBase(args), writer_(w) {}

  /** Returns a reference to the writer associated with this formatter. */
  BasicWriter<Char> &writer() { return writer_; }

  /** Formats stored arguments and writes the output to the writer. */
  void format(BasicCStringRef<Char> format_str);

  // Formats a single argument and advances format_str, a format string pointer.
  const Char *format(const Char *&format_str, const internal::Arg &arg);
};

// Generates a comma-separated list with results of applying f to
// numbers 0..n-1.
# define FMT_GEN(n, f) FMT_GEN##n(f)
# define FMT_GEN1(f)  f(0)
# define FMT_GEN2(f)  FMT_GEN1(f),  f(1)
# define FMT_GEN3(f)  FMT_GEN2(f),  f(2)
# define FMT_GEN4(f)  FMT_GEN3(f),  f(3)
# define FMT_GEN5(f)  FMT_GEN4(f),  f(4)
# define FMT_GEN6(f)  FMT_GEN5(f),  f(5)
# define FMT_GEN7(f)  FMT_GEN6(f),  f(6)
# define FMT_GEN8(f)  FMT_GEN7(f),  f(7)
# define FMT_GEN9(f)  FMT_GEN8(f),  f(8)
# define FMT_GEN10(f) FMT_GEN9(f),  f(9)
# define FMT_GEN11(f) FMT_GEN10(f), f(10)
# define FMT_GEN12(f) FMT_GEN11(f), f(11)
# define FMT_GEN13(f) FMT_GEN12(f), f(12)
# define FMT_GEN14(f) FMT_GEN13(f), f(13)
# define FMT_GEN15(f) FMT_GEN14(f), f(14)

namespace internal {
inline uint64_t make_type() { return 0; }

template <typename T>
inline uint64_t make_type(const T &arg) {
  return MakeValue< BasicFormatter<char> >::type(arg);
}

template <std::size_t N, bool/*IsPacked*/= (N < ArgList::MAX_PACKED_ARGS)>
struct ArgArray;

template <std::size_t N>
struct ArgArray<N, true/*IsPacked*/> {
  typedef Value Type[N > 0 ? N : 1];

  template <typename Formatter, typename T>
  static Value make(const T &value) {
#ifdef __clang__
    Value result = MakeValue<Formatter>(value);
    // Workaround a bug in Apple LLVM version 4.2 (clang-425.0.28) of clang:
    // https://github.com/fmtlib/fmt/issues/276
    (void)result.custom.format;
    return result;
#else
    return MakeValue<Formatter>(value);
#endif
  }
};

template <std::size_t N>
struct ArgArray<N, false/*IsPacked*/> {
  typedef Arg Type[N + 1]; // +1 for the list end Arg::NONE

  template <typename Formatter, typename T>
  static Arg make(const T &value) { return MakeArg<Formatter>(value); }
};

#if FMT_USE_VARIADIC_TEMPLATES
template <typename Arg, typename... Args>
inline uint64_t make_type(const Arg &first, const Args & ... tail) {
  return make_type(first) | (make_type(tail...) << 4);
}

#else

struct ArgType {
  uint64_t type;

  ArgType() : type(0) {}

  template <typename T>
  ArgType(const T &arg) : type(make_type(arg)) {}
};

# define FMT_ARG_TYPE_DEFAULT(n) ArgType t##n = ArgType()

inline uint64_t make_type(FMT_GEN15(FMT_ARG_TYPE_DEFAULT)) {
  return t0.type | (t1.type << 4) | (t2.type << 8) | (t3.type << 12) |
      (t4.type << 16) | (t5.type << 20) | (t6.type << 24) | (t7.type << 28) |
      (t8.type << 32) | (t9.type << 36) | (t10.type << 40) | (t11.type << 44) |
      (t12.type << 48) | (t13.type << 52) | (t14.type << 56);
}
#endif
}  // namespace internal

# define FMT_MAKE_TEMPLATE_ARG(n) typename T##n
# define FMT_MAKE_ARG_TYPE(n) T##n
# define FMT_MAKE_ARG(n) const T##n &v##n
# define FMT_ASSIGN_char(n) \
  arr[n] = fmt::internal::MakeValue< fmt::BasicFormatter<char> >(v##n)
# define FMT_ASSIGN_wchar_t(n) \
  arr[n] = fmt::internal::MakeValue< fmt::BasicFormatter<wchar_t> >(v##n)

#if FMT_USE_VARIADIC_TEMPLATES
// Defines a variadic function returning void.
# define FMT_VARIADIC_VOID(func, arg_type) \
  template <typename... Args> \
  void func(arg_type arg0, const Args & ... args) { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    func(arg0, fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }

// Defines a variadic constructor.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  template <typename... Args> \
  ctor(arg0_type arg0, arg1_type arg1, const Args & ... args) { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    func(arg0, arg1, fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }

#else

# define FMT_MAKE_REF(n) \
  fmt::internal::MakeValue< fmt::BasicFormatter<Char> >(v##n)
# define FMT_MAKE_REF2(n) v##n

// Defines a wrapper for a function taking one argument of type arg_type
// and n additional arguments of arbitrary types.
# define FMT_WRAP1(func, arg_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline void func(arg_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::ArgArray<n>::Type array = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg1, fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), array)); \
  }

// Emulates a variadic function returning void on a pre-C++11 compiler.
# define FMT_VARIADIC_VOID(func, arg_type) \
  inline void func(arg_type arg) { func(arg, fmt::ArgList()); } \
  FMT_WRAP1(func, arg_type, 1) FMT_WRAP1(func, arg_type, 2) \
  FMT_WRAP1(func, arg_type, 3) FMT_WRAP1(func, arg_type, 4) \
  FMT_WRAP1(func, arg_type, 5) FMT_WRAP1(func, arg_type, 6) \
  FMT_WRAP1(func, arg_type, 7) FMT_WRAP1(func, arg_type, 8) \
  FMT_WRAP1(func, arg_type, 9) FMT_WRAP1(func, arg_type, 10)

# define FMT_CTOR(ctor, func, arg0_type, arg1_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  ctor(arg0_type arg0, arg1_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::ArgArray<n>::Type array = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg0, arg1, fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), array)); \
  }

// Emulates a variadic constructor on a pre-C++11 compiler.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 1) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 2) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 3) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 4) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 5) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 6) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 7) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 8) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 9) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 10)
#endif

// Generates a comma-separated list with results of applying f to pairs
// (argument, index).
#define FMT_FOR_EACH1(f, x0) f(x0, 0)
#define FMT_FOR_EACH2(f, x0, x1) \
  FMT_FOR_EACH1(f, x0), f(x1, 1)
#define FMT_FOR_EACH3(f, x0, x1, x2) \
  FMT_FOR_EACH2(f, x0 ,x1), f(x2, 2)
#define FMT_FOR_EACH4(f, x0, x1, x2, x3) \
  FMT_FOR_EACH3(f, x0, x1, x2), f(x3, 3)
#define FMT_FOR_EACH5(f, x0, x1, x2, x3, x4) \
  FMT_FOR_EACH4(f, x0, x1, x2, x3), f(x4, 4)
#define FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5) \
  FMT_FOR_EACH5(f, x0, x1, x2, x3, x4), f(x5, 5)
#define FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6) \
  FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5), f(x6, 6)
#define FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7) \
  FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6), f(x7, 7)
#define FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8) \
  FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7), f(x8, 8)
#define FMT_FOR_EACH10(f, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) \
  FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8), f(x9, 9)

/**
 An error returned by an operating system or a language runtime,
 for example a file opening error.
*/
class SystemError : public internal::RuntimeError {
 private:
  FMT_API void init(int err_code, CStringRef format_str, ArgList args);

 protected:
  int error_code_;

  typedef char Char;  // For FMT_VARIADIC_CTOR.

  SystemError() {}

 public:
  /**
   \rst
   Constructs a :class:`fmt::SystemError` object with a description
   formatted with `fmt::format_system_error`. *message* and additional
   arguments passed into the constructor are formatted similarly to
   `fmt::format`.

   **Example**::

     // This throws a SystemError with the description
     //   cannot open file 'madeup': No such file or directory
     // or similar (system message may vary).
     const char *filename = "madeup";
     std::FILE *file = std::fopen(filename, "r");
     if (!file)
       throw fmt::SystemError(errno, "cannot open file '{}'", filename);
   \endrst
  */
  SystemError(int error_code, CStringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_DEFAULTED_COPY_CTOR(SystemError)
  FMT_VARIADIC_CTOR(SystemError, init, int, CStringRef)

  FMT_API ~SystemError() FMT_DTOR_NOEXCEPT;

  int error_code() const { return error_code_; }
};

/**
  \rst
  Formats an error returned by an operating system or a language runtime,
  for example a file opening error, and writes it to *out* in the following
  form:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is
  the system message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  If *error_code* is not a valid error code such as -1, the system message
  may look like "Unknown error -1" and is platform-dependent.
  \endrst
 */
FMT_API void format_system_error(fmt::Writer &out, int error_code,
                                 fmt::StringRef message) FMT_NOEXCEPT;

/**
  \rst
  This template provides operations for formatting and writing data into
  a character stream. The output is stored in a buffer provided by a subclass
  such as :class:`fmt::BasicMemoryWriter`.

  You can use one of the following typedefs for common character types:

  +---------+----------------------+
  | Type    | Definition           |
  +=========+======================+
  | Writer  | BasicWriter<char>    |
  +---------+----------------------+
  | WWriter | BasicWriter<wchar_t> |
  +---------+----------------------+

  \endrst
 */
template <typename Char>
class BasicWriter {
 private:
  // Output buffer.
  Buffer<Char> &buffer_;

  FMT_DISALLOW_COPY_AND_ASSIGN(BasicWriter);

  typedef typename internal::CharTraits<Char>::CharPtr CharPtr;

#if FMT_SECURE_SCL
  // Returns pointer value.
  static Char *get(CharPtr p) { return p.base(); }
#else
  static Char *get(Char *p) { return p; }
#endif

  // Fills the padding around the content and returns the pointer to the
  // content area.
  static CharPtr fill_padding(CharPtr buffer,
      unsigned total_size, std::size_t content_size, wchar_t fill);

  // Grows the buffer by n characters and returns a pointer to the newly
  // allocated area.
  CharPtr grow_buffer(std::size_t n) {
    std::size_t size = buffer_.size();
    buffer_.resize(size + n);
    return internal::make_ptr(&buffer_[size], n);
  }

  // Writes an unsigned decimal integer.
  template <typename UInt>
  Char *write_unsigned_decimal(UInt value, unsigned prefix_size = 0) {
    unsigned num_digits = internal::count_digits(value);
    Char *ptr = get(grow_buffer(prefix_size + num_digits));
    internal::format_decimal(ptr + prefix_size, value, num_digits);
    return ptr;
  }

  // Writes a decimal integer.
  template <typename Int>
  void write_decimal(Int value) {
    typedef typename internal::IntTraits<Int>::MainType MainType;
    MainType abs_value = static_cast<MainType>(value);
    if (internal::is_negative(value)) {
      abs_value = 0 - abs_value;
      *write_unsigned_decimal(abs_value, 1) = '-';
    } else {
      write_unsigned_decimal(abs_value, 0);
    }
  }

  // Prepare a buffer for integer formatting.
  CharPtr prepare_int_buffer(unsigned num_digits,
      const EmptySpec &, const char *prefix, unsigned prefix_size) {
    unsigned size = prefix_size + num_digits;
    CharPtr p = grow_buffer(size);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }

  template <typename Spec>
  CharPtr prepare_int_buffer(unsigned num_digits,
    const Spec &spec, const char *prefix, unsigned prefix_size);

  // Formats an integer.
  template <typename T, typename Spec>
  void write_int(T value, Spec spec);

  // Formats a floating-point number (double or long double).
  template <typename T, typename Spec>
  void write_double(T value, const Spec &spec);

  // Writes a formatted string.
  template <typename StrChar>
  CharPtr write_str(const StrChar *s, std::size_t size, const AlignSpec &spec);

  template <typename StrChar, typename Spec>
  void write_str(const internal::Arg::StringValue<StrChar> &str,
                 const Spec &spec);

  // This following methods are private to disallow writing wide characters
  // and strings to a char stream. If you want to print a wide string as a
  // pointer as std::ostream does, cast it to const void*.
  // Do not implement!
  void operator<<(typename internal::WCharHelper<wchar_t, Char>::Unsupported);
  void operator<<(
      typename internal::WCharHelper<const wchar_t *, Char>::Unsupported);

  // Appends floating-point length specifier to the format string.
  // The second argument is only used for overload resolution.
  void append_float_length(Char *&format_ptr, long double) {
    *format_ptr++ = 'L';
  }

  template<typename T>
  void append_float_length(Char *&, T) {}

  template <typename Impl, typename Char_, typename Spec_>
  friend class internal::ArgFormatterBase;

  template <typename Impl, typename Char_, typename Spec_>
  friend class BasicPrintfArgFormatter;

 protected:
  /**
    Constructs a ``BasicWriter`` object.
   */
  explicit BasicWriter(Buffer<Char> &b) : buffer_(b) {}

 public:
  /**
    \rst
    Destroys a ``BasicWriter`` object.
    \endrst
   */
  virtual ~BasicWriter() {}

  /**
    Returns the total number of characters written.
   */
  std::size_t size() const { return buffer_.size(); }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const Char *data() const FMT_NOEXCEPT { return &buffer_[0]; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const Char *c_str() const {
    std::size_t size = buffer_.size();
    buffer_.reserve(size + 1);
    buffer_[size] = '\0';
    return &buffer_[0];
  }

  /**
    \rst
    Returns the content of the output buffer as an `std::string`.
    \endrst
   */
  std::basic_string<Char> str() const {
    return std::basic_string<Char>(&buffer_[0], buffer_.size());
  }

  /**
    \rst
    Writes formatted data.

    *args* is an argument list representing arbitrary arguments.

    **Example**::

       MemoryWriter out;
       out.write("Current point:\n");
       out.write("({:+f}, {:+f})", -3.14, 3.14);

    This will write the following output to the ``out`` object:

    .. code-block:: none

       Current point:
       (-3.140000, +3.140000)

    The output can be accessed using :func:`data()`, :func:`c_str` or
    :func:`str` methods.

    See also :ref:`syntax`.
    \endrst
   */
  void write(BasicCStringRef<Char> format, ArgList args) {
    BasicFormatter<Char>(args, *this).format(format);
  }
  FMT_VARIADIC_VOID(write, BasicCStringRef<Char>)

  BasicWriter &operator<<(int value) {
    write_decimal(value);
    return *this;
  }
  BasicWriter &operator<<(unsigned value) {
    return *this << IntFormatSpec<unsigned>(value);
  }
  BasicWriter &operator<<(long value) {
    write_decimal(value);
    return *this;
  }
  BasicWriter &operator<<(unsigned long value) {
    return *this << IntFormatSpec<unsigned long>(value);
  }
  BasicWriter &operator<<(LongLong value) {
    write_decimal(value);
    return *this;
  }

  /**
    \rst
    Formats *value* and writes it to the stream.
    \endrst
   */
  BasicWriter &operator<<(ULongLong value) {
    return *this << IntFormatSpec<ULongLong>(value);
  }

  BasicWriter &operator<<(double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    \rst
    Formats *value* using the general format for floating-point numbers
    (``'g'``) and writes it to the stream.
    \endrst
   */
  BasicWriter &operator<<(long double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    Writes a character to the stream.
   */
  BasicWriter &operator<<(char value) {
    buffer_.push_back(value);
    return *this;
  }

  BasicWriter &operator<<(
      typename internal::WCharHelper<wchar_t, Char>::Supported value) {
    buffer_.push_back(value);
    return *this;
  }

  /**
    \rst
    Writes *value* to the stream.
    \endrst
   */
  BasicWriter &operator<<(fmt::BasicStringRef<Char> value) {
    const Char *str = value.data();
    buffer_.append(str, str + value.size());
    return *this;
  }

  BasicWriter &operator<<(
      typename internal::WCharHelper<StringRef, Char>::Supported value) {
    const char *str = value.data();
    buffer_.append(str, str + value.size());
    return *this;
  }

  template <typename T, typename Spec, typename FillChar>
  BasicWriter &operator<<(IntFormatSpec<T, Spec, FillChar> spec) {
    internal::CharTraits<Char>::convert(FillChar());
    write_int(spec.value(), spec);
    return *this;
  }

  template <typename StrChar>
  BasicWriter &operator<<(const StrFormatSpec<StrChar> &spec) {
    const StrChar *s = spec.str();
    write_str(s, std::char_traits<Char>::length(s), spec);
    return *this;
  }

  void clear() FMT_NOEXCEPT { buffer_.clear(); }

  Buffer<Char> &buffer() FMT_NOEXCEPT { return buffer_; }
};

template <typename Char>
template <typename StrChar>
typename BasicWriter<Char>::CharPtr BasicWriter<Char>::write_str(
      const StrChar *s, std::size_t size, const AlignSpec &spec) {
  CharPtr out = CharPtr();
  if (spec.width() > size) {
    out = grow_buffer(spec.width());
    Char fill = internal::CharTraits<Char>::cast(spec.fill());
    if (spec.align() == ALIGN_RIGHT) {
      std::uninitialized_fill_n(out, spec.width() - size, fill);
      out += spec.width() - size;
    } else if (spec.align() == ALIGN_CENTER) {
      out = fill_padding(out, spec.width(), size, fill);
    } else {
      std::uninitialized_fill_n(out + size, spec.width() - size, fill);
    }
  } else {
    out = grow_buffer(size);
  }
  std::uninitialized_copy(s, s + size, out);
  return out;
}

template <typename Char>
template <typename StrChar, typename Spec>
void BasicWriter<Char>::write_str(
    const internal::Arg::StringValue<StrChar> &s, const Spec &spec) {
  // Check if StrChar is convertible to Char.
  internal::CharTraits<Char>::convert(StrChar());
  if (spec.type_ && spec.type_ != 's')
    internal::report_unknown_type(spec.type_, "string");
  const StrChar *str_value = s.value;
  std::size_t str_size = s.size;
  if (str_size == 0) {
    if (!str_value) {
      FMT_THROW(FormatError("string pointer is null"));
    }
  }
  std::size_t precision = static_cast<std::size_t>(spec.precision_);
  if (spec.precision_ >= 0 && precision < str_size)
    str_size = precision;
  write_str(str_value, str_size, spec);
}

template <typename Char>
typename BasicWriter<Char>::CharPtr
  BasicWriter<Char>::fill_padding(
    CharPtr buffer, unsigned total_size,
    std::size_t content_size, wchar_t fill) {
  std::size_t padding = total_size - content_size;
  std::size_t left_padding = padding / 2;
  Char fill_char = internal::CharTraits<Char>::cast(fill);
  std::uninitialized_fill_n(buffer, left_padding, fill_char);
  buffer += left_padding;
  CharPtr content = buffer;
  std::uninitialized_fill_n(buffer + content_size,
                            padding - left_padding, fill_char);
  return content;
}

template <typename Char>
template <typename Spec>
typename BasicWriter<Char>::CharPtr
  BasicWriter<Char>::prepare_int_buffer(
    unsigned num_digits, const Spec &spec,
    const char *prefix, unsigned prefix_size) {
  unsigned width = spec.width();
  Alignment align = spec.align();
  Char fill = internal::CharTraits<Char>::cast(spec.fill());
  if (spec.precision() > static_cast<int>(num_digits)) {
    // Octal prefix '0' is counted as a digit, so ignore it if precision
    // is specified.
    if (prefix_size > 0 && prefix[prefix_size - 1] == '0')
      --prefix_size;
    unsigned number_size =
        prefix_size + internal::to_unsigned(spec.precision());
    AlignSpec subspec(number_size, '0', ALIGN_NUMERIC);
    if (number_size >= width)
      return prepare_int_buffer(num_digits, subspec, prefix, prefix_size);
    buffer_.reserve(width);
    unsigned fill_size = width - number_size;
    if (align != ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::uninitialized_fill(p, p + fill_size, fill);
    }
    CharPtr result = prepare_int_buffer(
        num_digits, subspec, prefix, prefix_size);
    if (align == ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::uninitialized_fill(p, p + fill_size, fill);
    }
    return result;
  }
  unsigned size = prefix_size + num_digits;
  if (width <= size) {
    CharPtr p = grow_buffer(size);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }
  CharPtr p = grow_buffer(width);
  CharPtr end = p + width;
  if (align == ALIGN_LEFT) {
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    p += size;
    std::uninitialized_fill(p, end, fill);
  } else if (align == ALIGN_CENTER) {
    p = fill_padding(p, width, size, fill);
    std::uninitialized_copy(prefix, prefix + prefix_size, p);
    p += size;
  } else {
    if (align == ALIGN_NUMERIC) {
      if (prefix_size != 0) {
        p = std::uninitialized_copy(prefix, prefix + prefix_size, p);
        size -= prefix_size;
      }
    } else {
      std::uninitialized_copy(prefix, prefix + prefix_size, end - size);
    }
    std::uninitialized_fill(p, end - size, fill);
    p = end;
  }
  return p - 1;
}

template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_int(T value, Spec spec) {
  unsigned prefix_size = 0;
  typedef typename internal::IntTraits<T>::MainType UnsignedType;
  UnsignedType abs_value = static_cast<UnsignedType>(value);
  char prefix[4] = "";
  if (internal::is_negative(value)) {
    prefix[0] = '-';
    ++prefix_size;
    abs_value = 0 - abs_value;
  } else if (spec.flag(SIGN_FLAG)) {
    prefix[0] = spec.flag(PLUS_FLAG) ? '+' : ' ';
    ++prefix_size;
  }
  switch (spec.type()) {
  case 0: case 'd': {
    unsigned num_digits = internal::count_digits(abs_value);
    CharPtr p = prepare_int_buffer(num_digits, spec, prefix, prefix_size) + 1;
    internal::format_decimal(get(p), abs_value, 0);
    break;
  }
  case 'x': case 'X': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type_prefix();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 4) != 0);
    Char *p = get(prepare_int_buffer(
      num_digits, spec, prefix, prefix_size));
    n = abs_value;
    const char *digits = spec.type() == 'x' ?
        "0123456789abcdef" : "0123456789ABCDEF";
    do {
      *p-- = digits[n & 0xf];
    } while ((n >>= 4) != 0);
    break;
  }
  case 'b': case 'B': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type_prefix();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 1) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = static_cast<Char>('0' + (n & 1));
    } while ((n >>= 1) != 0);
    break;
  }
  case 'o': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG))
      prefix[prefix_size++] = '0';
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 3) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = static_cast<Char>('0' + (n & 7));
    } while ((n >>= 3) != 0);
    break;
  }
  case 'n': {
    unsigned num_digits = internal::count_digits(abs_value);
    fmt::StringRef sep = "";
#if !(defined(ANDROID) || defined(__ANDROID__))
    sep = internal::thousands_sep(std::localeconv());
#endif
    unsigned size = static_cast<unsigned>(
          num_digits + sep.size() * ((num_digits - 1) / 3));
    CharPtr p = prepare_int_buffer(size, spec, prefix, prefix_size) + 1;
    internal::format_decimal(get(p), abs_value, 0, internal::ThousandsSep(sep));
    break;
  }
  default:
    internal::report_unknown_type(
      spec.type(), spec.flag(CHAR_FLAG) ? "char" : "integer");
    break;
  }
}

template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_double(T value, const Spec &spec) {
  // Check type.
  char type = spec.type();
  bool upper = false;
  switch (type) {
  case 0:
    type = 'g';
    break;
  case 'e': case 'f': case 'g': case 'a':
    break;
  case 'F':
#if FMT_MSC_VER
    // MSVC's printf doesn't support 'F'.
    type = 'f';
#endif
    // Fall through.
  case 'E': case 'G': case 'A':
    upper = true;
    break;
  default:
    internal::report_unknown_type(type, "double");
    break;
  }

  char sign = 0;
  // Use isnegative instead of value < 0 because the latter is always
  // false for NaN.
  if (internal::FPUtil::isnegative(static_cast<double>(value))) {
    sign = '-';
    value = -value;
  } else if (spec.flag(SIGN_FLAG)) {
    sign = spec.flag(PLUS_FLAG) ? '+' : ' ';
  }

  if (internal::FPUtil::isnotanumber(value)) {
    // Format NaN ourselves because sprintf's output is not consistent
    // across platforms.
    std::size_t nan_size = 4;
    const char *nan = upper ? " NAN" : " nan";
    if (!sign) {
      --nan_size;
      ++nan;
    }
    CharPtr out = write_str(nan, nan_size, spec);
    if (sign)
      *out = sign;
    return;
  }

  if (internal::FPUtil::isinfinity(value)) {
    // Format infinity ourselves because sprintf's output is not consistent
    // across platforms.
    std::size_t inf_size = 4;
    const char *inf = upper ? " INF" : " inf";
    if (!sign) {
      --inf_size;
      ++inf;
    }
    CharPtr out = write_str(inf, inf_size, spec);
    if (sign)
      *out = sign;
    return;
  }

  std::size_t offset = buffer_.size();
  unsigned width = spec.width();
  if (sign) {
    buffer_.reserve(buffer_.size() + (width > 1u ? width : 1u));
    if (width > 0)
      --width;
    ++offset;
  }

  // Build format string.
  enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg
  Char format[MAX_FORMAT_SIZE];
  Char *format_ptr = format;
  *format_ptr++ = '%';
  unsigned width_for_sprintf = width;
  if (spec.flag(HASH_FLAG))
    *format_ptr++ = '#';
  if (spec.align() == ALIGN_CENTER) {
    width_for_sprintf = 0;
  } else {
    if (spec.align() == ALIGN_LEFT)
      *format_ptr++ = '-';
    if (width != 0)
      *format_ptr++ = '*';
  }
  if (spec.precision() >= 0) {
    *format_ptr++ = '.';
    *format_ptr++ = '*';
  }

  append_float_length(format_ptr, value);
  *format_ptr++ = type;
  *format_ptr = '\0';

  // Format using snprintf.
  Char fill = internal::CharTraits<Char>::cast(spec.fill());
  unsigned n = 0;
  Char *start = FMT_NULL;
  for (;;) {
    std::size_t buffer_size = buffer_.capacity() - offset;
#if FMT_MSC_VER
    // MSVC's vsnprintf_s doesn't work with zero size, so reserve
    // space for at least one extra character to make the size non-zero.
    // Note that the buffer's capacity will increase by more than 1.
    if (buffer_size == 0) {
      buffer_.reserve(offset + 1);
      buffer_size = buffer_.capacity() - offset;
    }
#endif
    start = &buffer_[offset];
    int result = internal::CharTraits<Char>::format_float(
        start, buffer_size, format, width_for_sprintf, spec.precision(), value);
    if (result >= 0) {
      n = internal::to_unsigned(result);
      if (offset + n < buffer_.capacity())
        break;  // The buffer is large enough - continue with formatting.
      buffer_.reserve(offset + n + 1);
    } else {
      // If result is negative we ask to increase the capacity by at least 1,
      // but as std::vector, the buffer grows exponentially.
      buffer_.reserve(buffer_.capacity() + 1);
    }
  }
  if (sign) {
    if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) ||
        *start != ' ') {
      *(start - 1) = sign;
      sign = 0;
    } else {
      *(start - 1) = fill;
    }
    ++n;
  }
  if (spec.align() == ALIGN_CENTER && spec.width() > n) {
    width = spec.width();
    CharPtr p = grow_buffer(width);
    std::memmove(get(p) + (width - n) / 2, get(p), n * sizeof(Char));
    fill_padding(p, spec.width(), n, fill);
    return;
  }
  if (spec.fill() != ' ' || sign) {
    while (*start == ' ')
      *start++ = fill;
    if (sign)
      *(start - 1) = sign;
  }
  grow_buffer(n);
}

/**
  \rst
  This class template provides operations for formatting and writing data
  into a character stream. The output is stored in a memory buffer that grows
  dynamically.

  You can use one of the following typedefs for common character types
  and the standard allocator:

  +---------------+-----------------------------------------------------+
  | Type          | Definition                                          |
  +===============+=====================================================+
  | MemoryWriter  | BasicMemoryWriter<char, std::allocator<char>>       |
  +---------------+-----------------------------------------------------+
  | WMemoryWriter | BasicMemoryWriter<wchar_t, std::allocator<wchar_t>> |
  +---------------+-----------------------------------------------------+

  **Example**::

     MemoryWriter out;
     out << "The answer is " << 42 << "\n";
     out.write("({:+f}, {:+f})", -3.14, 3.14);

  This will write the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42
     (-3.140000, +3.140000)

  The output can be converted to an ``std::string`` with ``out.str()`` or
  accessed as a C string with ``out.c_str()``.
  \endrst
 */
template <typename Char, typename Allocator = std::allocator<Char> >
class BasicMemoryWriter : public BasicWriter<Char> {
 private:
  internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE, Allocator> buffer_;

 public:
  explicit BasicMemoryWriter(const Allocator& alloc = Allocator())
    : BasicWriter<Char>(buffer_), buffer_(alloc) {}

#if FMT_USE_RVALUE_REFERENCES
  /**
    \rst
    Constructs a :class:`fmt::BasicMemoryWriter` object moving the content
    of the other object to it.
    \endrst
   */
  BasicMemoryWriter(BasicMemoryWriter &&other)
    : BasicWriter<Char>(buffer_), buffer_(std::move(other.buffer_)) {
  }

  /**
    \rst
    Moves the content of the other ``BasicMemoryWriter`` object to this one.
    \endrst
   */
  BasicMemoryWriter &operator=(BasicMemoryWriter &&other) {
    buffer_ = std::move(other.buffer_);
    return *this;
  }
#endif
};

typedef BasicMemoryWriter<char> MemoryWriter;
typedef BasicMemoryWriter<wchar_t> WMemoryWriter;

/**
  \rst
  This class template provides operations for formatting and writing data
  into a fixed-size array. For writing into a dynamically growing buffer
  use :class:`fmt::BasicMemoryWriter`.

  Any write method will throw ``std::runtime_error`` if the output doesn't fit
  into the array.

  You can use one of the following typedefs for common character types:

  +--------------+---------------------------+
  | Type         | Definition                |
  +==============+===========================+
  | ArrayWriter  | BasicArrayWriter<char>    |
  +--------------+---------------------------+
  | WArrayWriter | BasicArrayWriter<wchar_t> |
  +--------------+---------------------------+
  \endrst
 */
template <typename Char>
class BasicArrayWriter : public BasicWriter<Char> {
 private:
  internal::FixedBuffer<Char> buffer_;

 public:
  /**
   \rst
   Constructs a :class:`fmt::BasicArrayWriter` object for *array* of the
   given size.
   \endrst
   */
  BasicArrayWriter(Char *array, std::size_t size)
    : BasicWriter<Char>(buffer_), buffer_(array, size) {}

  /**
   \rst
   Constructs a :class:`fmt::BasicArrayWriter` object for *array* of the
   size known at compile time.
   \endrst
   */
  template <std::size_t SIZE>
  explicit BasicArrayWriter(Char (&array)[SIZE])
    : BasicWriter<Char>(buffer_), buffer_(array, SIZE) {}
};

typedef BasicArrayWriter<char> ArrayWriter;
typedef BasicArrayWriter<wchar_t> WArrayWriter;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
                                 StringRef message) FMT_NOEXCEPT;

#if FMT_USE_WINDOWS_H

/** A Windows error. */
class WindowsError : public SystemError {
 private:
  FMT_API void init(int error_code, CStringRef format_str, ArgList args);

 public:
  /**
   \rst
   Constructs a :class:`fmt::WindowsError` object with the description
   of the form

   .. parsed-literal::
     *<message>*: *<system-message>*

   where *<message>* is the formatted message and *<system-message>* is the
   system message corresponding to the error code.
   *error_code* is a Windows error code as given by ``GetLastError``.
   If *error_code* is not a valid error code such as -1, the system message
   will look like "error -1".

   **Example**::

     // This throws a WindowsError with the description
     //   cannot open file 'madeup': The system cannot find the file specified.
     // or similar (system message may vary).
     const char *filename = "madeup";
     LPOFSTRUCT of = LPOFSTRUCT();
     HFILE file = OpenFile(filename, &of, OF_READ);
     if (file == HFILE_ERROR) {
       throw fmt::WindowsError(GetLastError(),
                               "cannot open file '{}'", filename);
     }
   \endrst
  */
  WindowsError(int error_code, CStringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_VARIADIC_CTOR(WindowsError, init, int, CStringRef)
};

// Reports a Windows error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_windows_error(int error_code,
                                  StringRef message) FMT_NOEXCEPT;

#endif

enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE };

/**
  Formats a string and prints it to stdout using ANSI escape sequences
  to specify color (experimental).
  Example:
    print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23);
 */
FMT_API void print_colored(Color c, CStringRef format, ArgList args);

/**
  \rst
  Formats arguments and returns the result as a string.

  **Example**::

    std::string message = format("The answer is {}", 42);
  \endrst
*/
inline std::string format(CStringRef format_str, ArgList args) {
  MemoryWriter w;
  w.write(format_str, args);
  return w.str();
}

inline std::wstring format(WCStringRef format_str, ArgList args) {
  WMemoryWriter w;
  w.write(format_str, args);
  return w.str();
}

/**
  \rst
  Prints formatted data to the file *f*.

  **Example**::

    print(stderr, "Don't {}!", "panic");
  \endrst
 */
FMT_API void print(std::FILE *f, CStringRef format_str, ArgList args);

/**
  \rst
  Prints formatted data to ``stdout``.

  **Example**::

    print("Elapsed time: {0:.2f} seconds", 1.23);
  \endrst
 */
FMT_API void print(CStringRef format_str, ArgList args);

/**
  Fast integer formatter.
 */
class FormatInt {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum {BUFFER_SIZE = std::numeric_limits<ULongLong>::digits10 + 3};
  mutable char buffer_[BUFFER_SIZE];
  char *str_;

  // Formats value in reverse and returns the number of digits.
  char *format_decimal(ULongLong value) {
    char *buffer_end = buffer_ + BUFFER_SIZE - 1;
    while (value >= 100) {
      // Integer division is slow so do it for a group of two digits instead
      // of for every digit. The idea comes from the talk by Alexandrescu
      // "Three Optimization Tips for C++". See speed-test for a comparison.
      unsigned index = static_cast<unsigned>((value % 100) * 2);
      value /= 100;
      *--buffer_end = internal::Data::DIGITS[index + 1];
      *--buffer_end = internal::Data::DIGITS[index];
    }
    if (value < 10) {
      *--buffer_end = static_cast<char>('0' + value);
      return buffer_end;
    }
    unsigned index = static_cast<unsigned>(value * 2);
    *--buffer_end = internal::Data::DIGITS[index + 1];
    *--buffer_end = internal::Data::DIGITS[index];
    return buffer_end;
  }

  void FormatSigned(LongLong value) {
    ULongLong abs_value = static_cast<ULongLong>(value);
    bool negative = value < 0;
    if (negative)
      abs_value = 0 - abs_value;
    str_ = format_decimal(abs_value);
    if (negative)
      *--str_ = '-';
  }

 public:
  explicit FormatInt(int value) { FormatSigned(value); }
  explicit FormatInt(long value) { FormatSigned(value); }
  explicit FormatInt(LongLong value) { FormatSigned(value); }
  explicit FormatInt(unsigned value) : str_(format_decimal(value)) {}
  explicit FormatInt(unsigned long value) : str_(format_decimal(value)) {}
  explicit FormatInt(ULongLong value) : str_(format_decimal(value)) {}

  /** Returns the number of characters written to the output buffer. */
  std::size_t size() const {
    return internal::to_unsigned(buffer_ - str_ + BUFFER_SIZE - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const char *data() const { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const char *c_str() const {
    buffer_[BUFFER_SIZE - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  std::string str() const { return std::string(str_, size()); }
};

// Formats a decimal integer value writing into buffer and returns
// a pointer to the end of the formatted string. This function doesn't
// write a terminating null character.
template <typename T>
inline void format_decimal(char *&buffer, T value) {
  typedef typename internal::IntTraits<T>::MainType MainType;
  MainType abs_value = static_cast<MainType>(value);
  if (internal::is_negative(value)) {
    *buffer++ = '-';
    abs_value = 0 - abs_value;
  }
  if (abs_value < 100) {
    if (abs_value < 10) {
      *buffer++ = static_cast<char>('0' + abs_value);
      return;
    }
    unsigned index = static_cast<unsigned>(abs_value * 2);
    *buffer++ = internal::Data::DIGITS[index];
    *buffer++ = internal::Data::DIGITS[index + 1];
    return;
  }
  unsigned num_digits = internal::count_digits(abs_value);
  internal::format_decimal(buffer, abs_value, num_digits);
  buffer += num_digits;
}

/**
  \rst
  Returns a named argument for formatting functions.

  **Example**::

    print("Elapsed time: {s:.2f} seconds", arg("s", 1.23));

  \endrst
 */
template <typename T>
inline internal::NamedArgWithType<char, T> arg(StringRef name, const T &arg) {
  return internal::NamedArgWithType<char, T>(name, arg);
}

template <typename T>
inline internal::NamedArgWithType<wchar_t, T> arg(WStringRef name, const T &arg) {
  return internal::NamedArgWithType<wchar_t, T>(name, arg);
}

// The following two functions are deleted intentionally to disable
// nested named arguments as in ``format("{}", arg("a", arg("b", 42)))``.
template <typename Char>
void arg(StringRef, const internal::NamedArg<Char>&) FMT_DELETED_OR_UNDEFINED;
template <typename Char>
void arg(WStringRef, const internal::NamedArg<Char>&) FMT_DELETED_OR_UNDEFINED;
}

#if FMT_GCC_VERSION
// Use the system_header pragma to suppress warnings about variadic macros
// because suppressing -Wvariadic-macros with the diagnostic pragma doesn't
// work. It is used at the end because we want to suppress as little warnings
// as possible.
# pragma GCC system_header
#endif

// This is used to work around VC++ bugs in handling variadic macros.
#define FMT_EXPAND(args) args

// Returns the number of arguments.
// Based on https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s.
#define FMT_NARG(...) FMT_NARG_(__VA_ARGS__, FMT_RSEQ_N())
#define FMT_NARG_(...) FMT_EXPAND(FMT_ARG_N(__VA_ARGS__))
#define FMT_ARG_N(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define FMT_RSEQ_N() 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

#define FMT_FOR_EACH_(N, f, ...) \
  FMT_EXPAND(FMT_CONCAT(FMT_FOR_EACH, N)(f, __VA_ARGS__))
#define FMT_FOR_EACH(f, ...) \
  FMT_EXPAND(FMT_FOR_EACH_(FMT_NARG(__VA_ARGS__), f, __VA_ARGS__))

#define FMT_ADD_ARG_NAME(type, index) type arg##index
#define FMT_GET_ARG_NAME(type, index) arg##index

#if FMT_USE_VARIADIC_TEMPLATES
# define FMT_VARIADIC_(Char, ReturnType, func, call, ...) \
  template <typename... Args> \
  ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      const Args & ... args) { \
    typedef fmt::internal::ArgArray<sizeof...(Args)> ArgArray; \
    typename ArgArray::Type array{ \
      ArgArray::template make<fmt::BasicFormatter<Char> >(args)...}; \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), \
      fmt::ArgList(fmt::internal::make_type(args...), array)); \
  }
#else
// Defines a wrapper for a function taking __VA_ARGS__ arguments
// and n additional arguments of arbitrary types.
# define FMT_WRAP(Char, ReturnType, func, call, n, ...) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      FMT_GEN(n, FMT_MAKE_ARG)) { \
    fmt::internal::ArgArray<n>::Type arr; \
    FMT_GEN(n, FMT_ASSIGN_##Char); \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), fmt::ArgList( \
      fmt::internal::make_type(FMT_GEN(n, FMT_MAKE_REF2)), arr)); \
  }

# define FMT_VARIADIC_(Char, ReturnType, func, call, ...) \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__)) { \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), fmt::ArgList()); \
  } \
  FMT_WRAP(Char, ReturnType, func, call, 1, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 2, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 3, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 4, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 5, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 6, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 7, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 8, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 9, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 10, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 11, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 12, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 13, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 14, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 15, __VA_ARGS__)
#endif  // FMT_USE_VARIADIC_TEMPLATES

/**
  \rst
  Defines a variadic function with the specified return type, function name
  and argument types passed as variable arguments to this macro.

  **Example**::

    void print_error(const char *file, int line, const char *format,
                     fmt::ArgList args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args);
    }
    FMT_VARIADIC(void, print_error, const char *, int, const char *)

  ``FMT_VARIADIC`` is used for compatibility with legacy C++ compilers that
  don't implement variadic templates. You don't have to use this macro if
  you don't need legacy compiler support and can use variadic templates
  directly::

    template <typename... Args>
    void print_error(const char *file, int line, const char *format,
                     const Args & ... args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args...);
    }
  \endrst
 */
#define FMT_VARIADIC(ReturnType, func, ...) \
  FMT_VARIADIC_(char, ReturnType, func, return func, __VA_ARGS__)

#define FMT_VARIADIC_W(ReturnType, func, ...) \
  FMT_VARIADIC_(wchar_t, ReturnType, func, return func, __VA_ARGS__)

#define FMT_CAPTURE_ARG_(id, index) ::fmt::arg(#id, id)

#define FMT_CAPTURE_ARG_W_(id, index) ::fmt::arg(L###id, id)

/**
  \rst
  Convenient macro to capture the arguments' names and values into several
  ``fmt::arg(name, value)``.

  **Example**::

    int x = 1, y = 2;
    print("point: ({x}, {y})", FMT_CAPTURE(x, y));
    // same as:
    // print("point: ({x}, {y})", arg("x", x), arg("y", y));

  \endrst
 */
#define FMT_CAPTURE(...) FMT_FOR_EACH(FMT_CAPTURE_ARG_, __VA_ARGS__)

#define FMT_CAPTURE_W(...) FMT_FOR_EACH(FMT_CAPTURE_ARG_W_, __VA_ARGS__)

namespace fmt {
FMT_VARIADIC(std::string, format, CStringRef)
FMT_VARIADIC_W(std::wstring, format, WCStringRef)
FMT_VARIADIC(void, print, CStringRef)
FMT_VARIADIC(void, print, std::FILE *, CStringRef)
FMT_VARIADIC(void, print_colored, Color, CStringRef)

namespace internal {
template <typename Char>
inline bool is_name_start(Char c) {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c;
}

// Parses an unsigned integer advancing s to the end of the parsed input.
// This function assumes that the first character of s is a digit.
template <typename Char>
unsigned parse_nonnegative_int(const Char *&s) {
  assert('0' <= *s && *s <= '9');
  unsigned value = 0;
  do {
    unsigned new_value = value * 10 + (*s++ - '0');
    // Check if value wrapped around.
    if (new_value < value) {
      value = (std::numeric_limits<unsigned>::max)();
      break;
    }
    value = new_value;
  } while ('0' <= *s && *s <= '9');
  // Convert to unsigned to prevent a warning.
  unsigned max_int = (std::numeric_limits<int>::max)();
  if (value > max_int)
    FMT_THROW(FormatError("number is too big"));
  return value;
}

inline void require_numeric_argument(const Arg &arg, char spec) {
  if (arg.type > Arg::LAST_NUMERIC_TYPE) {
    std::string message =
        fmt::format("format specifier '{}' requires numeric argument", spec);
    FMT_THROW(fmt::FormatError(message));
  }
}

template <typename Char>
void check_sign(const Char *&s, const Arg &arg) {
  char sign = static_cast<char>(*s);
  require_numeric_argument(arg, sign);
  if (arg.type == Arg::UINT || arg.type == Arg::ULONG_LONG) {
    FMT_THROW(FormatError(fmt::format(
      "format specifier '{}' requires signed argument", sign)));
  }
  ++s;
}
}  // namespace internal

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::get_arg(
    BasicStringRef<Char> arg_name, const char *&error) {
  if (check_no_auto_index(error)) {
    map_.init(args());
    const internal::Arg *arg = map_.find(arg_name);
    if (arg)
      return *arg;
    error = "argument not found";
  }
  return internal::Arg();
}

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::parse_arg_index(const Char *&s) {
  const char *error = FMT_NULL;
  internal::Arg arg = *s < '0' || *s > '9' ?
        next_arg(error) : get_arg(internal::parse_nonnegative_int(s), error);
  if (error) {
    FMT_THROW(FormatError(
                *s != '}' && *s != ':' ? "invalid format string" : error));
  }
  return arg;
}

template <typename Char, typename AF>
inline internal::Arg BasicFormatter<Char, AF>::parse_arg_name(const Char *&s) {
  assert(internal::is_name_start(*s));
  const Char *start = s;
  Char c;
  do {
    c = *++s;
  } while (internal::is_name_start(c) || ('0' <= c && c <= '9'));
  const char *error = FMT_NULL;
  internal::Arg arg = get_arg(BasicStringRef<Char>(start, s - start), error);
  if (error)
    FMT_THROW(FormatError(error));
  return arg;
}

template <typename Char, typename ArgFormatter>
const Char *BasicFormatter<Char, ArgFormatter>::format(
    const Char *&format_str, const internal::Arg &arg) {
  using internal::Arg;
  const Char *s = format_str;
  typename ArgFormatter::SpecType spec;
  if (*s == ':') {
    if (arg.type == Arg::CUSTOM) {
      arg.custom.format(this, arg.custom.value, &s);
      return s;
    }
    ++s;
    // Parse fill and alignment.
    if (Char c = *s) {
      const Char *p = s + 1;
      spec.align_ = ALIGN_DEFAULT;
      do {
        switch (*p) {
          case '<':
            spec.align_ = ALIGN_LEFT;
            break;
          case '>':
            spec.align_ = ALIGN_RIGHT;
            break;
          case '=':
            spec.align_ = ALIGN_NUMERIC;
            break;
          case '^':
            spec.align_ = ALIGN_CENTER;
            break;
        }
        if (spec.align_ != ALIGN_DEFAULT) {
          if (p != s) {
            if (c == '}') break;
            if (c == '{')
              FMT_THROW(FormatError("invalid fill character '{'"));
            s += 2;
            spec.fill_ = c;
          } else ++s;
          if (spec.align_ == ALIGN_NUMERIC)
            require_numeric_argument(arg, '=');
          break;
        }
      } while (--p >= s);
    }

    // Parse sign.
    switch (*s) {
      case '+':
        check_sign(s, arg);
        spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
        break;
      case '-':
        check_sign(s, arg);
        spec.flags_ |= MINUS_FLAG;
        break;
      case ' ':
        check_sign(s, arg);
        spec.flags_ |= SIGN_FLAG;
        break;
    }

    if (*s == '#') {
      require_numeric_argument(arg, '#');
      spec.flags_ |= HASH_FLAG;
      ++s;
    }

    // Parse zero flag.
    if (*s == '0') {
      require_numeric_argument(arg, '0');
      spec.align_ = ALIGN_NUMERIC;
      spec.fill_ = '0';
      ++s;
    }

    // Parse width.
    if ('0' <= *s && *s <= '9') {
      spec.width_ = internal::parse_nonnegative_int(s);
    } else if (*s == '{') {
      ++s;
      Arg width_arg = internal::is_name_start(*s) ?
            parse_arg_name(s) : parse_arg_index(s);
      if (*s++ != '}')
        FMT_THROW(FormatError("invalid format string"));
      ULongLong value = 0;
      switch (width_arg.type) {
      case Arg::INT:
        if (width_arg.int_value < 0)
          FMT_THROW(FormatError("negative width"));
        value = width_arg.int_value;
        break;
      case Arg::UINT:
        value = width_arg.uint_value;
        break;
      case Arg::LONG_LONG:
        if (width_arg.long_long_value < 0)
          FMT_THROW(FormatError("negative width"));
        value = width_arg.long_long_value;
        break;
      case Arg::ULONG_LONG:
        value = width_arg.ulong_long_value;
        break;
      default:
        FMT_THROW(FormatError("width is not integer"));
      }
      if (value > (std::numeric_limits<int>::max)())
        FMT_THROW(FormatError("number is too big"));
      spec.width_ = static_cast<int>(value);
    }

    // Parse precision.
    if (*s == '.') {
      ++s;
      spec.precision_ = 0;
      if ('0' <= *s && *s <= '9') {
        spec.precision_ = internal::parse_nonnegative_int(s);
      } else if (*s == '{') {
        ++s;
        Arg precision_arg = internal::is_name_start(*s) ?
              parse_arg_name(s) : parse_arg_index(s);
        if (*s++ != '}')
          FMT_THROW(FormatError("invalid format string"));
        ULongLong value = 0;
        switch (precision_arg.type) {
          case Arg::INT:
            if (precision_arg.int_value < 0)
              FMT_THROW(FormatError("negative precision"));
            value = precision_arg.int_value;
            break;
          case Arg::UINT:
            value = precision_arg.uint_value;
            break;
          case Arg::LONG_LONG:
            if (precision_arg.long_long_value < 0)
              FMT_THROW(FormatError("negative precision"));
            value = precision_arg.long_long_value;
            break;
          case Arg::ULONG_LONG:
            value = precision_arg.ulong_long_value;
            break;
          default:
            FMT_THROW(FormatError("precision is not integer"));
        }
        if (value > (std::numeric_limits<int>::max)())
          FMT_THROW(FormatError("number is too big"));
        spec.precision_ = static_cast<int>(value);
      } else {
        FMT_THROW(FormatError("missing precision specifier"));
      }
      if (arg.type <= Arg::LAST_INTEGER_TYPE || arg.type == Arg::POINTER) {
        FMT_THROW(FormatError(
            fmt::format("precision not allowed in {} format specifier",
            arg.type == Arg::POINTER ? "pointer" : "integer")));
      }
    }

    // Parse type.
    if (*s != '}' && *s)
      spec.type_ = static_cast<char>(*s++);
  }

  if (*s++ != '}')
    FMT_THROW(FormatError("missing '}' in format string"));

  // Format argument.
  ArgFormatter(*this, spec, s - 1).visit(arg);
  return s;
}

template <typename Char, typename AF>
void BasicFormatter<Char, AF>::format(BasicCStringRef<Char> format_str) {
  const Char *s = format_str.c_str();
  const Char *start = s;
  while (*s) {
    Char c = *s++;
    if (c != '{' && c != '}') continue;
    if (*s == c) {
      write(writer_, start, s);
      start = ++s;
      continue;
    }
    if (c == '}')
      FMT_THROW(FormatError("unmatched '}' in format string"));
    write(writer_, start, s - 1);
    internal::Arg arg = internal::is_name_start(*s) ?
          parse_arg_name(s) : parse_arg_index(s);
    start = s = format(s, arg);
  }
  write(writer_, start, s);
}

template <typename Char, typename It>
struct ArgJoin {
  It first;
  It last;
  BasicCStringRef<Char> sep;

  ArgJoin(It first, It last, const BasicCStringRef<Char>& sep) :
    first(first),
    last(last),
    sep(sep) {}
};

template <typename It>
ArgJoin<char, It> join(It first, It last, const BasicCStringRef<char>& sep) {
  return ArgJoin<char, It>(first, last, sep);
}

template <typename It>
ArgJoin<wchar_t, It> join(It first, It last, const BasicCStringRef<wchar_t>& sep) {
  return ArgJoin<wchar_t, It>(first, last, sep);
}

#if FMT_HAS_GXX_CXX11
template <typename Range>
auto join(const Range& range, const BasicCStringRef<char>& sep)
    -> ArgJoin<char, decltype(std::begin(range))> {
  return join(std::begin(range), std::end(range), sep);
}

template <typename Range>
auto join(const Range& range, const BasicCStringRef<wchar_t>& sep)
    -> ArgJoin<wchar_t, decltype(std::begin(range))> {
  return join(std::begin(range), std::end(range), sep);
}
#endif

template <typename ArgFormatter, typename Char, typename It>
void format_arg(fmt::BasicFormatter<Char, ArgFormatter> &f,
    const Char *&format_str, const ArgJoin<Char, It>& e) {
  const Char* end = format_str;
  if (*end == ':')
    ++end;
  while (*end && *end != '}')
    ++end;
  if (*end != '}')
    FMT_THROW(FormatError("missing '}' in format string"));

  It it = e.first;
  if (it != e.last) {
    const Char* save = format_str;
    f.format(format_str, internal::MakeArg<fmt::BasicFormatter<Char, ArgFormatter> >(*it++));
    while (it != e.last) {
      f.writer().write(e.sep);
      format_str = save;
      f.format(format_str, internal::MakeArg<fmt::BasicFormatter<Char, ArgFormatter> >(*it++));
    }
  }
  format_str = end + 1;
}
}  // namespace fmt

#if FMT_USE_USER_DEFINED_LITERALS
namespace fmt {
namespace internal {

template <typename Char>
struct UdlFormat {
  const Char *str;

  template <typename... Args>
  auto operator()(Args && ... args) const
                  -> decltype(format(str, std::forward<Args>(args)...)) {
    return format(str, std::forward<Args>(args)...);
  }
};

template <typename Char>
struct UdlArg {
  const Char *str;

  template <typename T>
  NamedArgWithType<Char, T> operator=(T &&value) const {
    return {str, std::forward<T>(value)};
  }
};

} // namespace internal

inline namespace literals {

/**
  \rst
  C++11 literal equivalent of :func:`fmt::format`.

  **Example**::

    using namespace fmt::literals;
    std::string message = "The answer is {}"_format(42);
  \endrst
 */
inline internal::UdlFormat<char>
operator"" _format(const char *s, std::size_t) { return {s}; }
inline internal::UdlFormat<wchar_t>
operator"" _format(const wchar_t *s, std::size_t) { return {s}; }

/**
  \rst
  C++11 literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
inline internal::UdlArg<char>
operator"" _a(const char *s, std::size_t) { return {s}; }
inline internal::UdlArg<wchar_t>
operator"" _a(const wchar_t *s, std::size_t) { return {s}; }

} // inline namespace literals
} // namespace fmt
#endif // FMT_USE_USER_DEFINED_LITERALS

// Restore warnings.
#if FMT_GCC_VERSION >= 406
# pragma GCC diagnostic pop
#endif

#if defined(__clang__) && !defined(FMT_ICC_VERSION)
# pragma clang diagnostic pop
#endif

#ifdef FMT_HEADER_ONLY
# define FMT_FUNC inline
# include "format.cc"
#else
# define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_