/usr/include/Field3D/MIPUtil.h is in libfield3d-dev 1.7.2-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | //----------------------------------------------------------------------------//
/*
* Copyright (c) 2013 Sony Pictures Imageworks Inc
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution. Neither the name of Sony Pictures Imageworks nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//----------------------------------------------------------------------------//
/*! \file MIPUtil.h
\brief Contains MIP-related utility functions
*/
//----------------------------------------------------------------------------//
#ifndef _INCLUDED_Field3D_MIPUtil_H_
#define _INCLUDED_Field3D_MIPUtil_H_
//----------------------------------------------------------------------------//
#include <vector>
#include <boost/thread/thread.hpp>
#include <boost/thread/mutex.hpp>
#include "Resample.h"
#include "SparseField.h"
#include "Types.h"
//----------------------------------------------------------------------------//
#include "ns.h"
FIELD3D_NAMESPACE_OPEN
//----------------------------------------------------------------------------//
// Functions
//----------------------------------------------------------------------------//
//! Computes the origin/offset of a field.
V3i computeOffset(const FieldRes &f);
//! Constructs a MIP representation of the given field, with optional
//! offset vector. The offset vector indicates the 'true' voxel space
//! coordinate of the (0, 0, 0) voxel, such that a consistent voxel placement
//! can be used for the MIP levels.
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
const V3i &offset, const size_t numThreads);
//! Constructs a MIP representation of the given field.
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
const size_t numThreads);
//----------------------------------------------------------------------------//
// Implementation details
//----------------------------------------------------------------------------//
namespace detail {
//--------------------------------------------------------------------------//
extern const std::string k_mipOffsetStr;
//--------------------------------------------------------------------------//
//! Used to delegate the choice of bit depth to process at
template <typename T>
struct ComputationType
{
typedef T type;
};
//! Specialization for half float
template <>
struct ComputationType<Field3D::half>
{
typedef float type;
};
//--------------------------------------------------------------------------//
FIELD3D_API V3i mipResolution(const V3i &baseRes, const size_t level,
const V3i &add);
//--------------------------------------------------------------------------//
//! Constant size for all dense fields
template <typename Data_T>
size_t threadingBlockSize(const DenseField<Data_T> & /* f */)
{
return 16;
}
//! Use block size for sparse fields
template <typename Data_T>
size_t threadingBlockSize(const SparseField<Data_T> &f)
{
return f.blockSize();
}
//--------------------------------------------------------------------------//
template <typename Data_T>
bool checkInputEmpty(const SparseField<Data_T> &src,
const SparseField<Data_T> &/*tgt*/,
const Box3i &tgtBox, const float support,
const size_t dim)
{
const int intSupport = static_cast<int>(std::ceil(support * 0.5));
const int pad = std::max(0, intSupport);
Box3i tgtBoxPad = tgtBox;
tgtBoxPad.min[dim] -= pad;
tgtBoxPad.max[dim] += pad;
Box3i srcBoxPad = tgtBoxPad;
srcBoxPad.min[dim] *= 2;
srcBoxPad.max[dim] *= 2;
// Get the block coordinates
const Box3i dbsBounds = blockCoords(clipBounds(srcBoxPad, src.dataWindow()),
&src);
static boost::mutex mutex;
boost::mutex::scoped_lock lock(mutex);
// Check all blocks
for (int k = dbsBounds.min.z; k <= dbsBounds.max.z; ++k) {
for (int j = dbsBounds.min.y; j <= dbsBounds.max.y; ++j) {
for (int i = dbsBounds.min.x; i <= dbsBounds.max.x; ++i) {
if (src.blockIsAllocated(i, j, k) ||
src.getBlockEmptyValue(i, j, k) != static_cast<Data_T>(0)) {
return false;
}
}
}
}
// No hits. Empty
return true;
}
//--------------------------------------------------------------------------//
//! Fallback version always returns false
template <typename Field_T>
bool checkInputEmpty(const Field_T &/*src*/, const Field_T &/*tgt*/,
const Box3i &/*tgtBox*/, const float /*support*/,
const size_t /*dim*/)
{
return false;
}
//--------------------------------------------------------------------------//
template <typename Field_T, typename FilterOp_T, bool IsAnalytic_T>
struct MIPSeparableThreadOp
{
typedef typename Field_T::value_type T;
MIPSeparableThreadOp(const Field_T &src, Field_T &tgt,
const size_t level, const V3i &add,
const FilterOp_T &filterOp,
const size_t dim,
const std::vector<Box3i> &blocks,
size_t &nextIdx, boost::mutex &mutex)
: m_src(src),
m_tgt(tgt),
m_filterOp(filterOp),
m_level(level),
m_add(add),
m_dim(dim),
m_blocks(blocks),
m_nextIdx(nextIdx),
m_mutex(mutex),
m_numBlocks(blocks.size())
{
// Empty
}
void operator() ()
{
using namespace std;
// Defer to ComputationType to determine the processing data type
typedef typename Field_T::value_type Data_T;
typedef typename ComputationType<Data_T>::type Value_T;
// To ensure we don't sample outside source data
Box3i srcDw = m_src.dataWindow();
// Coordinate frame conversion constants
const float tgtToSrcMult = 2.0;
const float filterCoordMult = 1.0f / (tgtToSrcMult);
// Filter info, support size in target space
const float support = m_filterOp.support();
// Get next index to process
size_t idx;
{
boost::mutex::scoped_lock lock(m_mutex);
idx = m_nextIdx;
m_nextIdx++;
}
// Keep going while there is data to process
while (idx < m_numBlocks) {
// Grab the bounds
const Box3i box = m_blocks[idx];
// Early exit if input blocks are all empty
if (!detail::checkInputEmpty(m_src, m_tgt, box, support, m_dim)) {
// For each output voxel
for (int k = box.min.z; k <= box.max.z; ++k) {
for (int j = box.min.y; j <= box.max.y; ++j) {
for (int i = box.min.x; i <= box.max.x; ++i) {
Value_T accumValue(m_filterOp.initialValue());
if (IsAnalytic_T) {
// Transform from current point in target frame to source frame
const int curTgt = V3i(i, j, k)[m_dim];
const float curSrc = discToCont(curTgt) * tgtToSrcMult - m_add[m_dim];
// Find interval
int startSrc =
static_cast<int>(std::floor(curSrc - support * tgtToSrcMult));
int endSrc =
static_cast<int>(std::ceil(curSrc + support *
tgtToSrcMult)) - 1;
// Clamp coordinates
startSrc = std::max(startSrc, srcDw.min[m_dim]);
endSrc = std::min(endSrc, srcDw.max[m_dim]);
// Loop over source voxels
for (int s = startSrc; s <= endSrc; ++s) {
// Source index
const int xIdx = m_dim == 0 ? s : i;
const int yIdx = m_dim == 1 ? s : j;
const int zIdx = m_dim == 2 ? s : k;
// Source voxel in continuous coords
const float srcP = discToCont(s);
// Compute filter weight in source space (twice as wide)
const float weight = m_filterOp.eval(std::abs(srcP - curSrc) *
filterCoordMult);
// Value
const Value_T value = m_src.fastValue(xIdx, yIdx, zIdx);
// Update
if (weight > 0.0f) {
FilterOp_T::op(accumValue, value);
}
}
// Update final value
if (accumValue !=
static_cast<Value_T>(m_filterOp.initialValue())) {
m_tgt.fastLValue(i, j, k) = accumValue;
}
} else {
float accumWeight = 0.0f;
// Transform from current point in target frame to source frame
const int curTgt = V3i(i, j, k)[m_dim];
const float curSrc = discToCont(curTgt) * tgtToSrcMult - m_add[m_dim];
// Find interval
int startSrc =
static_cast<int>(std::floor(curSrc - support * tgtToSrcMult));
int endSrc =
static_cast<int>(std::ceil(curSrc + support *
tgtToSrcMult)) - 1;
// Clamp coordinates
startSrc = std::max(startSrc, srcDw.min[m_dim]);
endSrc = std::min(endSrc, srcDw.max[m_dim]);
// Loop over source voxels
for (int s = startSrc; s <= endSrc; ++s) {
// Source index
const int xIdx = m_dim == 0 ? s : i;
const int yIdx = m_dim == 1 ? s : j;
const int zIdx = m_dim == 2 ? s : k;
// Source voxel in continuous coords
const float srcP = discToCont(s);
// Compute filter weight in source space (twice as wide)
const float weight = m_filterOp.eval(std::abs(srcP - curSrc) *
filterCoordMult);
// Value
const Value_T value = m_src.fastValue(xIdx, yIdx, zIdx);
// Update
accumWeight += weight;
accumValue += value * weight;
}
// Update final value
if (accumWeight > 0.0f &&
accumValue != static_cast<Value_T>(0.0)) {
m_tgt.fastLValue(i, j, k) = accumValue / accumWeight;
}
} // if (IsAnalytic_T)
}
}
}
} // Empty input
// Get next index
{
boost::mutex::scoped_lock lock(m_mutex);
idx = m_nextIdx;
m_nextIdx++;
}
}
}
private:
// Data members ---
const Field_T &m_src;
Field_T &m_tgt;
const FilterOp_T &m_filterOp;
const size_t m_level;
const V3i &m_add;
const size_t m_dim;
const std::vector<Box3i> &m_blocks;
size_t &m_nextIdx;
boost::mutex &m_mutex;
const size_t m_numBlocks;
};
//--------------------------------------------------------------------------//
//! Threaded implementation of separable MIP filtering
template <typename Field_T, typename FilterOp_T>
void mipSeparable(const Field_T &src, Field_T &tgt,
const V3i &oldRes, const V3i &newRes, const size_t level,
const V3i &add, const FilterOp_T &filterOp,
const size_t dim, const size_t numThreads)
{
using namespace std;
// To ensure we don't sample outside source data
Box3i srcDw = src.dataWindow();
// Compute new res
V3i res;
if (dim == 2) {
res = newRes;
} else if (dim == 1) {
res = V3i(newRes.x, newRes.y, oldRes.z);
} else {
res = V3i(newRes.x, oldRes.y, oldRes.z);
}
// Resize new field
tgt.setSize(res);
// Determine granularity
const size_t blockSize = threadingBlockSize(src);
// Build block list
std::vector<Box3i> blocks;
for (int k = 0; k < res.z; k += blockSize) {
for (int j = 0; j < res.y; j += blockSize) {
for (int i = 0; i < res.x; i += blockSize) {
Box3i box;
// Initialize block size
box.min = V3i(i, j, k);
box.max = box.min + V3i(blockSize - 1);
// Clip against resolution
box.max.x = std::min(box.max.x, res.x - 1);
box.max.y = std::min(box.max.y, res.y - 1);
box.max.z = std::min(box.max.z, res.z - 1);
// Add to list
blocks.push_back(box);
}
}
}
// Next index counter and mutex
size_t nextIdx = 0;
boost::mutex mutex;
// Launch threads ---
boost::thread_group threads;
for (size_t i = 0; i < numThreads; ++i) {
threads.create_thread(
MIPSeparableThreadOp<Field_T, FilterOp_T, FilterOp_T::isAnalytic >
(src, tgt, level, add, filterOp,
dim, blocks, nextIdx, mutex));
}
// Join
threads.join_all();
}
//--------------------------------------------------------------------------//
template <typename Field_T, typename FilterOp_T>
void mipResample(const Field_T &base, const Field_T &src, Field_T &tgt,
const size_t level, const V3i &offset,
const FilterOp_T &filterOp,
const size_t numThreads)
{
using std::ceil;
// Odd-numbered offsets need a pad of one in the negative directions
const V3i add((offset.x % 2 == 0) ? 0 : 1,
(offset.y % 2 == 0) ? 0 : 1,
(offset.z % 2 == 0) ? 0 : 1);
// Compute new res
const Box3i baseDw = base.dataWindow();
const V3i baseRes = baseDw.size() + V3i(1);
const V3i newRes = mipResolution(baseRes, level, add);
// Source res
const Box3i srcDw = src.dataWindow();
const V3i srcRes = srcDw.size() + V3i(1);
// Temporary field for y component
Field_T tmp;
// X axis (src into tgt)
mipSeparable(src, tgt, srcRes, newRes, level, add, filterOp, 0, numThreads);
// Y axis (tgt into temp)
mipSeparable(tgt, tmp, srcRes, newRes, level, add, filterOp, 1, numThreads);
// Z axis (temp into tgt)
mipSeparable(tmp, tgt, srcRes, newRes, level, add, filterOp, 2, numThreads);
// Update final target with mapping and metadata
tgt.name = base.name;
tgt.attribute = base.attribute;
tgt.setMapping(base.mapping());
tgt.copyMetadata(base);
}
//--------------------------------------------------------------------------//
FIELD3D_API
FieldMapping::Ptr adjustedMIPFieldMapping(const FieldRes *base,
const V3i &baseRes,
const Box3i &extents,
const size_t level);
//--------------------------------------------------------------------------//
} // namespace detail
//----------------------------------------------------------------------------//
// Function implementations
//----------------------------------------------------------------------------//
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
const size_t numThreads)
{
// By default, there is no offset
const V3i zero(0);
// Call out to perform actual work
return makeMIP<MIPField_T, Filter_T>(base, minSize, zero, numThreads);
}
//----------------------------------------------------------------------------//
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
const V3i &baseOffset, const size_t numThreads)
{
using namespace Field3D::detail;
typedef typename MIPField_T::value_type Data_T;
typedef typename MIPField_T::NestedType Src_T;
typedef typename Src_T::Ptr SrcPtr;
typedef typename MIPField_T::Ptr MIPPtr;
typedef std::vector<typename Src_T::Ptr> SrcVec;
if (base.extents() != base.dataWindow()) {
return MIPPtr();
}
// Initialize output vector with base resolution
SrcVec result;
result.push_back(field_dynamic_cast<Src_T>(base.clone()));
// Iteration variables
V3i res = base.extents().size() + V3i(1);
V3i offset = baseOffset;
// Loop until minimum size is found
size_t level = 1;
while ((res.x > minSize || res.y > minSize || res.z > minSize) &&
(res.x > 2 && res.y > 2 && res.z > 2)) {
// Perform filtering
SrcPtr nextField(new Src_T);
mipResample(base, *result.back(), *nextField, level, offset,
Filter_T(), numThreads);
// Add to vector of filtered fields
result.push_back(nextField);
// Set up for next iteration
res = nextField->dataWindow().size() + V3i(1);
// ... offset needs to be rounded towards negative inf, not towards zero
for (int i = 0; i < 3; ++i) {
if (offset[i] < 0) {
offset[i] = (offset[i] - 1) / 2;
} else {
offset[i] /= 2;
}
}
level++;
}
MIPPtr mipField(new MIPField_T);
mipField->name = base.name;
mipField->attribute = base.attribute;
mipField->copyMetadata(base);
mipField->setMIPOffset(baseOffset);
mipField->setup(result);
return mipField;
}
//----------------------------------------------------------------------------//
FIELD3D_NAMESPACE_HEADER_CLOSE
//----------------------------------------------------------------------------//
#endif // Include guard
|