This file is indexed.

/usr/include/Field3D/DenseField.h is in libfield3d-dev 1.7.2-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//----------------------------------------------------------------------------//

/*
 * Copyright (c) 2009 Sony Pictures Imageworks Inc
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the
 * distribution.  Neither the name of Sony Pictures Imageworks nor the
 * names of its contributors may be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

//----------------------------------------------------------------------------//

/*! \file DenseField.h
  \brief Contains the DenseField class.
*/

//----------------------------------------------------------------------------//

#ifndef _INCLUDED_Field3D_DenseField_H_
#define _INCLUDED_Field3D_DenseField_H_

#include <vector>

#include <boost/lexical_cast.hpp>

#include "Field.h"

//----------------------------------------------------------------------------//

#include "ns.h"

FIELD3D_NAMESPACE_OPEN

//----------------------------------------------------------------------------//
// Forward declarations 
//----------------------------------------------------------------------------//

template <class Field_T>
class LinearGenericFieldInterp;
template <class Field_T>
class CubicGenericFieldInterp; 

//----------------------------------------------------------------------------//
// DenseField
//----------------------------------------------------------------------------//

/*! \class DenseField
  \ingroup field
  \brief This subclass of Field stores data in a contiguous std::vector.

  Regarding threading granularity - DenseField considers each scanline
  (i.e. continuous X coords) to be one grain. Thus, numGrains is res.y * res.z.

  Refer to \ref using_fields for examples of how to use this in your code.
*/

//----------------------------------------------------------------------------//

template <class Data_T>
class DenseField
  : public ResizableField<Data_T>
{
public:

  // Typedefs ------------------------------------------------------------------
  
  typedef boost::intrusive_ptr<DenseField> Ptr;
  typedef std::vector<Ptr> Vec;

  typedef LinearGenericFieldInterp<DenseField<Data_T> > LinearInterp;
  typedef CubicGenericFieldInterp<DenseField<Data_T> > CubicInterp;

  typedef ResizableField<Data_T> base;

  // Constructors --------------------------------------------------------------

  //! \name Constructors & destructor
  //! \{

  //! Constructs an empty buffer
  DenseField();

  // \}

  // Main methods --------------------------------------------------------------

  //! Clears all the voxels in the storage
  virtual void clear(const Data_T &value);

  // Threading-related ---------------------------------------------------------

  //! Number of 'grains' to use with threaded access
  size_t numGrains() const;
  //! Bounding box of the given 'grain'
  bool   getGrainBounds(const size_t idx, Box3i &vsBounds) const;  

  // From Field base class -----------------------------------------------------

  //! \name From Field
  //! \{  
  virtual Data_T value(int i, int j, int k) const;
  virtual long long int memSize() const;
  //! \}

  // RTTI replacement ----------------------------------------------------------

  typedef DenseField<Data_T> class_type;
  DEFINE_FIELD_RTTI_CONCRETE_CLASS

  static const char *staticClassName()
  {
    return "DenseField";
  }

  static const char *staticClassType()
  {
    return DenseField<Data_T>::ms_classType.name();
  } 
    
  // From WritableField base class ---------------------------------------------

  //! \name From WritableField
  //! \{
  virtual Data_T& lvalue(int i, int j, int k);
  //! \}
  
  // Concrete voxel access -----------------------------------------------------

  //! Read access to voxel. Notice that this is non-virtual.
  const Data_T& fastValue(int i, int j, int k) const;
  //! Write access to voxel. Notice that this is non-virtual.
  Data_T& fastLValue(int i, int j, int k);

  // Iterators -----------------------------------------------------------------

  //! \name Iterators
  //! \{

  //! Const iterator for traversing the values in a Field object.
  class const_iterator;

  //! Non-const iterator for traversing the values in a Field object.
  class iterator;

  //! Const iterator to first element. "cbegin" matches the tr1 c++ standard.
  const_iterator cbegin() const;
  //! Const iterator to first element of specific subset
  const_iterator cbegin(const Box3i &subset) const;
  //! Const iterator pointing one element past the last valid one.
  const_iterator cend() const;
  //! Const iterator pointing one element past the last valid one (for a 
  //! subset)
  const_iterator cend(const Box3i &subset) const;
  //! Iterator to first element.
  iterator begin();
  //! Iterator to first element of specific subset
  iterator begin(const Box3i &subset);
  //! Iterator pointing one element past the last valid one.
  iterator end();
  //! Iterator pointing one element past the last valid one (for a 
  //! subset)
  iterator end(const Box3i &subset);

  //! \}

  // Utility methods -----------------------------------------------------------

  //! Returns the internal memory size in each dimension. This is used for
  //! example in LinearInterpolator, where it optimizes random access to
  //! voxels.
  const FIELD3D_VEC3_T<size_t> &internalMemSize() const
  { return m_memSize; }

  // From FieldBase ------------------------------------------------------------

  //! \name From FieldBase
  //! \{

  FIELD3D_CLASSNAME_CLASSTYPE_IMPLEMENTATION;
  
  virtual FieldBase::Ptr clone() const
  { return Ptr(new DenseField(*this)); }

  //! \}

protected:

  // From ResizableField class -------------------------------------------------

  virtual void sizeChanged();

  // Data members --------------------------------------------------------------

  //! Memory allocation size in each dimension
  FIELD3D_VEC3_T<size_t> m_memSize;
  //! X scanline * Y scanline size
  size_t m_memSizeXY;
  //! Field storage
  std::vector<Data_T> m_data;

private:

  // Static data members -------------------------------------------------------

  static TemplatedFieldType<DenseField<Data_T> > ms_classType;

  // Direct access to memory for iterators -------------------------------------

  //! Returns a pointer to a given element. Used by the iterators mainly.
  inline Data_T* ptr(int i, int j, int k);
  //! Returns a pointer to a given element. Used by the iterators mainly.
  inline const Data_T* ptr(int i, int j, int k) const;

};

//----------------------------------------------------------------------------//
// Typedefs
//----------------------------------------------------------------------------//

typedef DenseField<half>   DenseFieldh;
typedef DenseField<float>  DenseFieldf;
typedef DenseField<double> DenseFieldd;
typedef DenseField<V3h>    DenseField3h;
typedef DenseField<V3f>    DenseField3f;
typedef DenseField<V3d>    DenseField3d;

//----------------------------------------------------------------------------//
// DenseField::const_iterator
//----------------------------------------------------------------------------//

template <class Data_T>
class DenseField<Data_T>::const_iterator
{
public:
#if defined(WIN32) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 1090
  typedef std::forward_iterator_tag iterator_category;
  typedef Data_T value_type;
  typedef ptrdiff_t difference_type;
  typedef ptrdiff_t distance_type;
  typedef const Data_T *pointer;
  typedef const Data_T& reference;
#endif

  // Typedefs ------------------------------------------------------------------

  typedef DenseField<Data_T> class_type;

  // Constructors --------------------------------------------------------------

  const_iterator(const class_type &field, const Box3i &window,
                 const V3i &currentPos)
    : x(currentPos.x), y(currentPos.y), z(currentPos.z), 
      m_window(window), m_field(field)
  { 
    if (window.intersects(currentPos))
      m_p = m_field.ptr(x, y, z); 
    else
      m_p = 0;
  }

  // Operators -----------------------------------------------------------------

  const const_iterator& operator ++ ()
  {
    if (x == m_window.max.x) {
      if (y == m_window.max.y) {
        if (z == m_window.max.z) {
          m_p = 0;
        } else {
          m_p = m_field.ptr(x = m_window.min.x, y = m_window.min.y, ++z);
        }
      } else {
        m_p = m_field.ptr(x = m_window.min.x, ++y, z);
      }
    } else {
      ++x;
      ++m_p;
    }
    return *this;
  }

  template <class Iter_T>
  inline bool operator == (const Iter_T &rhs) const
  {
    return m_p == &(*rhs);
  }

  template <class Iter_T>
  inline bool operator != (const Iter_T &rhs) const
  {
    return m_p != &(*rhs);
  }

  inline const Data_T& operator * () const
  {
    return *m_p;
  }

  inline const Data_T* operator -> () const
  {
    return m_p;
  }

  // Public data members -------------------------------------------------------

  //! Current position
  int x, y, z;

private:

  // Private data members ------------------------------------------------------

  //! Pointer to current element
  const Data_T *m_p;
  //! Window to traverse
  Box3i m_window;
  //! Reference to field being iterated over
  const class_type &m_field;

};

//----------------------------------------------------------------------------//
// DenseField::iterator
//----------------------------------------------------------------------------//

template <class Data_T>
class DenseField<Data_T>::iterator
{
public:
#if defined(WIN32) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 1090
  typedef std::forward_iterator_tag iterator_category;
  typedef Data_T value_type;
  typedef ptrdiff_t difference_type;
  typedef ptrdiff_t distance_type;
  typedef Data_T *pointer;
  typedef Data_T& reference;
#endif

  // Typedefs ------------------------------------------------------------------

  typedef DenseField<Data_T> class_type;

  // Constructors --------------------------------------------------------------

  iterator(class_type &field, const Box3i &window,
           const V3i &currentPos)
    : x(currentPos.x), y(currentPos.y), z(currentPos.z), 
      m_window(window), m_field(field)
  { 
    if (window.intersects(currentPos))
      m_p = m_field.ptr(x, y, z); 
    else
      m_p = 0;
  }

  // Operators -----------------------------------------------------------------

  const iterator& operator ++ ()
  {
    if (x == m_window.max.x) {
      if (y == m_window.max.y) {
        if (z == m_window.max.z) {
          m_p = 0;
        } else {
          m_p = m_field.ptr(x = m_window.min.x, y = m_window.min.y, ++z);
        }
      } else {
        m_p = m_field.ptr(x = m_window.min.x, ++y, z);
      }
    } else {
      ++x;
      ++m_p;
    }
    return *this;
  }

  template <class Iter_T>
  inline bool operator == (const Iter_T &rhs) const
  {
    return m_p == &(*rhs);
  }

  template <class Iter_T>
  inline bool operator != (const Iter_T &rhs) const
  {
    return m_p != &(*rhs);
  }

  inline Data_T& operator * () const
  {
    return *m_p;
  }

  inline Data_T* operator -> () const
  {
    return m_p;
  }

  // Public data members -------------------------------------------------------

  //! Current position
  int x, y, z;

private:

  // Private data members ------------------------------------------------------

  //! Pointer to current element
  Data_T *m_p;
  //! Window to traverse
  Box3i m_window;
  //! Reference to field being iterated over
  class_type &m_field;
};

//----------------------------------------------------------------------------//
// DenseField implementations
//----------------------------------------------------------------------------//

template <class Data_T>
DenseField<Data_T>::DenseField()
  : base(),
    m_memSize(0), m_memSizeXY(0)
{
  // Empty
}

//----------------------------------------------------------------------------//

template <class Data_T>
void DenseField<Data_T>::clear(const Data_T &value)
{
  std::fill(m_data.begin(), m_data.end(), value);
}

//----------------------------------------------------------------------------//

template <class Data_T>
size_t DenseField<Data_T>::numGrains() const
{
  // Grain resolution
  const V3i res = base::m_dataWindow.size() + V3i(1);
  // Num grains is Y * Z
  return res.y * res.z;
}

//----------------------------------------------------------------------------//

template <class Data_T>
bool DenseField<Data_T>::getGrainBounds(const size_t idx, Box3i &bounds) const
{
  // Grain resolution
  const V3i res   = base::m_dataWindow.size() + V3i(1);
  // Compute coordinate
  const int y     = idx % res.y;
  const int z     = idx / res.y;
  // Build bbox
  const V3i start = base::m_dataWindow.min + V3i(0, y, z);
  const V3i end   = base::m_dataWindow.min + V3i(res.x, y, z);
  bounds = Field3D::clipBounds(Box3i(start, end), base::m_dataWindow);
  // Done
  return true;
}

//----------------------------------------------------------------------------//

template <class Data_T>
Data_T DenseField<Data_T>::value(int i, int j, int k) const
{
  return fastValue(i, j, k);
}

//----------------------------------------------------------------------------//

template <class Data_T>
long long int DenseField<Data_T>::memSize() const
{ 
  long long int superClassMemSize = base::memSize();
  long long int vectorMemSize = m_data.capacity() * sizeof(Data_T);
  return sizeof(*this) + vectorMemSize + superClassMemSize; 
}

//----------------------------------------------------------------------------//

template <class Data_T>
Data_T& DenseField<Data_T>::lvalue(int i, int j, int k)
{
  return fastLValue(i, j, k);
}

//----------------------------------------------------------------------------//

template <class Data_T>
const Data_T& DenseField<Data_T>::fastValue(int i, int j, int k) const
{
  assert (i >= base::m_dataWindow.min.x);
  assert (i <= base::m_dataWindow.max.x);
  assert (j >= base::m_dataWindow.min.y);
  assert (j <= base::m_dataWindow.max.y);
  assert (k >= base::m_dataWindow.min.z);
  assert (k <= base::m_dataWindow.max.z);
  // Add crop window offset
  i -= base::m_dataWindow.min.x;
  j -= base::m_dataWindow.min.y;
  k -= base::m_dataWindow.min.z;
  // Access data
  return m_data[i + j * m_memSize.x + k * m_memSizeXY];
}

//----------------------------------------------------------------------------//

template <class Data_T>
Data_T& DenseField<Data_T>::fastLValue(int i, int j, int k)
{
  assert (i >= base::m_dataWindow.min.x);
  assert (i <= base::m_dataWindow.max.x);
  assert (j >= base::m_dataWindow.min.y);
  assert (j <= base::m_dataWindow.max.y);
  assert (k >= base::m_dataWindow.min.z);
  assert (k <= base::m_dataWindow.max.z);
  // Add crop window offset
  i -= base::m_dataWindow.min.x;
  j -= base::m_dataWindow.min.y;
  k -= base::m_dataWindow.min.z;
  // Access data
  return m_data[i + j * m_memSize.x + k * m_memSizeXY];
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::const_iterator 
DenseField<Data_T>::cbegin() const
{ 
  if (FieldRes::dataResolution() == V3i(0))
    return cend();
  return const_iterator(*this, base::m_dataWindow, base::m_dataWindow.min); 
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::const_iterator 
DenseField<Data_T>::cbegin(const Box3i &subset) const
{ 
  if (subset.isEmpty())
    return cend(subset);
  return const_iterator(*this, subset, subset.min); 
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::const_iterator 
DenseField<Data_T>::cend() const
{ 
  return const_iterator(*this, base::m_dataWindow, 
                        V3i(base::m_dataWindow.min.x, 
                            base::m_dataWindow.min.y,
                            base::m_dataWindow.max.z + 1));
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::const_iterator 
DenseField<Data_T>::cend(const Box3i &subset) const
{ 
  return const_iterator(*this, subset, 
                        V3i(subset.min.x, subset.min.y, subset.max.z + 1));
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::iterator 
DenseField<Data_T>::begin()
{ 
  if (FieldRes::dataResolution() == V3i(0))
    return end();
  return iterator(*this, base::m_dataWindow, base::m_dataWindow.min); }

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::iterator 
DenseField<Data_T>::begin(const Box3i &subset)
{ 
  if (subset.isEmpty())
    return end(subset);
  return iterator(*this, subset, subset.min); 
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::iterator 
DenseField<Data_T>::end()
{ 
  return iterator(*this, base::m_dataWindow, 
                  V3i(base::m_dataWindow.min.x, 
                      base::m_dataWindow.min.y,
                      base::m_dataWindow.max.z + 1));
}

//----------------------------------------------------------------------------//

template <class Data_T>
typename DenseField<Data_T>::iterator 
DenseField<Data_T>::end(const Box3i &subset)
{ 
  return iterator(*this, subset, 
                  V3i(subset.min.x, subset.min.y, subset.max.z + 1));
}

//----------------------------------------------------------------------------//

template <class Data_T>
void DenseField<Data_T>::sizeChanged() 
{
  // Call base class
  base::sizeChanged();

  // Calculate offsets
  m_memSize = base::m_dataWindow.max - base::m_dataWindow.min + V3i(1);
  m_memSizeXY = m_memSize.x * m_memSize.y;

  // Check that mem size is >= 0 in all dimensions
  if (base::m_dataWindow.max.x < base::m_dataWindow.min.x ||
      base::m_dataWindow.max.y < base::m_dataWindow.min.y ||
      base::m_dataWindow.max.z < base::m_dataWindow.min.z)
    throw Exc::ResizeException("Attempt to resize ResizableField object "
                               "using negative size. Data window was: " +
                               boost::lexical_cast<std::string>(
                                 base::m_dataWindow.min) + " - " +
                               boost::lexical_cast<std::string>(
                                 base::m_dataWindow.max));

  // Allocate memory
  try {
    std::vector<Data_T>().swap(m_data);
    m_data.resize(m_memSize.x * m_memSize.y * m_memSize.z);
  }
  catch (std::bad_alloc &) {
    throw Exc::MemoryException("Couldn't allocate DenseField of size " + 
                               boost::lexical_cast<std::string>(m_memSize));
  }
}

//----------------------------------------------------------------------------//

template <class Data_T>
inline Data_T* DenseField<Data_T>::ptr(int i, int j, int k)
{
  // Add crop window offset
  i -= base::m_dataWindow.min.x;
  j -= base::m_dataWindow.min.y;
  k -= base::m_dataWindow.min.z;
  // Access data
  return &m_data[i + j * m_memSize.x + k * m_memSizeXY];      
}

//----------------------------------------------------------------------------//

template <class Data_T>
inline const Data_T* DenseField<Data_T>::ptr(int i, int j, int k) const
{
  // Add crop window offset
  i -= base::m_dataWindow.min.x;
  j -= base::m_dataWindow.min.y;
  k -= base::m_dataWindow.min.z;
  // Access data
  return &m_data[i + j * m_memSize.x + k * m_memSizeXY];
}

//----------------------------------------------------------------------------//
// Static data member instantiation
//----------------------------------------------------------------------------//

FIELD3D_CLASSTYPE_TEMPL_INSTANTIATION(DenseField);

//----------------------------------------------------------------------------//

FIELD3D_NAMESPACE_HEADER_CLOSE

//----------------------------------------------------------------------------//

#endif // Include guard