This file is indexed.

/usr/include/dune/grid/yaspgrid/ygrid.hh is in libdune-grid-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GRID_YASPGRID_YGRID_HH
#define DUNE_GRID_YASPGRID_YGRID_HH

#include <array>
#include <vector>
#include <bitset>
#include <deque>

#include <dune/common/fvector.hh>
#include <dune/common/power.hh>

/** \file
    \brief This provides a YGrid, the elemental component of the yaspgrid implementation
 */

namespace Dune {

 namespace Yasp {
  /** @returns an array containing the sizes of the grids associated with vectors in given array.
   *  Needed in this form due to the need of such functionality in class initializer lists.
   *  @param v the array of vectors to examine
   */
  template<int d, typename ct>
  std::array<int,d> sizeArray(const std::array<std::vector<ct>,d>& v)
  {
    std::array<int,d> tmp;
    for (int i=0; i<d; ++i)
      tmp[i] = v[i].size() - 1;
    return tmp;
  }
 } //namespace Yasp

  /**
     The YGrid considered here describes a finite set \f$d\f$-tupels of the form
     \f[ G = \{ (k_0,\ldots,k_{d-1}) | o_i \leq k_i < o_i+s_i \}  \f]

     together with an affine mapping.

     A YGrid is characterized by the following quantities:

     - The origin \f$ o=(o_0,\ldots,o_{d-1}) \in Z^d\f$,
     - the size \f$ s=(s_0,\ldots,s_{d-1}) \in Z^d\f$,
     - The shift \f$ r=(r_0,\ldots,r_{d-1}) \in R^d\f$.
     - a coordinate container, that gives the mapping of the index to global coordinates (see coordinates.hh)

     The shift can be used to interpret the points of a grid as midpoints of cells, faces, edges, etc.

     Here is a graphical illustration of a grid:

     \image html  grid.png "A YGrid."
     \image latex grid.eps "A YGrid." width=\textwidth

     A YGrid allows to iterate over all its cells with an Iterator class.

     A YGrid is always considered as being embedded in a larger grid.
     This embedding is characterized by an offset and an enclosing grid as
     shown in the following picture:

     \image html  subgrid.png "The SubYGrid is shown in red, blue is the enclosing grid."
     \image latex subgrid.eps "The SubYGrid is shown in red, blue is the enclosing grid." width=\textwidth

     The iterator provides also a mapping to the consecutive index in the enclosing grid.

     Note: as of november 2013 there are only YGrid and YGrid::Iterator. These represent
     the functionality of former SubYGrid and SubYGrid::TransformingSubIterator. All other
     classes in the hierarchy have not been used.
   */
  template<class Coordinates>
  class YGridComponent
  {
  public:
    //extract coordinate type and dimension from the coordinate container
    typedef typename Coordinates::ctype ct;
    static const int d = Coordinates::dimension;

    typedef std::array<int, d> iTupel;
    typedef FieldVector<ct,d> fTupel;

    //! make uninitialized ygrid
    YGridComponent () : _shift(0ULL)
    {
      std::fill(_origin.begin(), _origin.end(), 0);
      std::fill(_offset.begin(), _offset.end(), 0);
      std::fill(_size.begin(), _size.end(), 0);
    }

    /** @brief make ygrid without coordinate information
     *  @param origin origin of the grid in global coordinates
     *  @param size size of the grid
     *  Such grid has no coordinate information stored but can be
     *  used to determine an intersection with a grid with coordinate
     *  information. This avoids sending coordinates in the parallel case.
     */
    YGridComponent(iTupel origin, iTupel size)
      : _origin(origin), _size(size)
    {}

    /** @brief make a subgrid by taking coordinates from a larger grid
     *  @param origin origin of the grid to be constructed
     *  @param size size of the grid to be constructed
     *  @param enclosing the grid to take coordinates and shift vector from
     */
    YGridComponent (iTupel origin, iTupel size, const YGridComponent<Coordinates>& enclosing)
      :  _origin(origin), _shift(enclosing.shift()), _coords(enclosing.getCoords()), _size(size), _supersize(enclosing.supersize())
    {
      for (int i=0; i<d; i++)
        _offset[i] = origin[i] - enclosing.origin(i) + enclosing.offset(i);

      // compute superincrements
      int inc = 1;
      for (int i=0; i<d; ++i)
        {
          _superincrement[i] = inc;
          inc *= _supersize[i];
        }
    }

    /** @brief Make YGridComponent by giving all parameters
     *  @param origin the origin of the grid in global coordinates
     *  @param shift the shift vector
     *  @param coords the coordinate vectors to be used
     *  @param size the size vector
     *  @param offset the offset in the enclosing grid
     *  @param supersize size of the enclosing grid
     */
    YGridComponent (iTupel origin, std::bitset<d> shift, Coordinates* coords, iTupel size, iTupel offset, iTupel supersize)
      : _origin(origin), _shift(shift), _coords(coords), _size(size), _offset(offset), _supersize(supersize)
    {
      // compute superincrements
      int inc = 1;
      for (int i=0; i<d; ++i)
        {
          _superincrement[i] = inc;
          inc *= _supersize[i];
        }
    }

    //! Return origin in direction i
    int origin (int i) const
    {
      return _origin[i];
    }

    //! return reference to origin
    const iTupel& origin () const
    {
      return _origin;
    }

    //! Return shift in direction i
    bool shift (int i) const
    {
      return _shift[i];
    }

    //! Return shift tupel
    const std::bitset<d>& shift () const
    {
      return _shift;
    }

    Coordinates* getCoords() const
    {
      return _coords;
    }

    //! Return offset to origin of enclosing grid
    int offset (int i) const
    {
      return _offset[i];
    }

    //! Return offset to origin of enclosing grid
    const iTupel & offset () const
    {
      return _offset;
    }

    //! return size of enclosing grid
    int supersize (int i) const
    {
      return _supersize[i];
    }

    //! return size of enclosing grid
    const iTupel & supersize () const
    {
      return _supersize;
    }

    //! return size in direction i
    int size (int i) const
    {
      return _size[i];
    }

    //! retrun size
    iTupel size () const
    {
      return _size;
    }

    //! Return total size of index set which is the product of all size per direction.
    int totalsize () const
    {
      int s=1;
      for (int i=0; i<d; ++i)
        s *= size(i);
      return s;
    }

    //! Return minimum index in direction i
    int min (int i) const
    {
      return _origin[i];
    }

    //! Return maximum index in direction i
    int max (int i) const
    {
      return _origin[i] + size(i) - 1;
    }

    //! Return true if YGrid is empty, i.e. has size 0 in all directions.
    bool empty () const
    {
      for (int i=0; i<d; ++i)
      {
        if (size(i) == 0)
          return true;
      }
      return false;
    }

    //! given a coordinate, return true if it is in the grid
    bool inside (const iTupel& coord) const
    {
      for (int i=0; i<d; i++)
      {
        if ((coord[i]<_origin[i]) || (coord[i]>=_origin[i]+_size[i]))
          return false;
      }
      return true;
    }

    //! given a tupel compute its index in the lexicographic numbering
    int index (const iTupel& coord) const
    {
      int index = (coord[d-1]-_origin[d-1]);

      for (int i=d-2; i>=0; i--)
        index = index*_size[i] + (coord[i]-_origin[i]);

      return index;
    }

    //! return grid moved by the vector v
    YGridComponent<Coordinates> move (iTupel v) const
    {
      for (int i=0; i<d; i++)
        v[i] += _origin[i];
      return YGridComponent<Coordinates>(v,_size,*this);
    }

    //! Return YGridComponent of supergrid of self which is the intersection of self and another YGridComponent
    YGridComponent<Coordinates> intersection (const YGridComponent<Coordinates>& r) const
    {
      for (int i=0; i<d; i++)
      {
        //empty coordinate vectors result in empty intersections
        if (empty() || r.empty())
          return YGridComponent<Coordinates>();
      }

      iTupel neworigin;
      iTupel newsize;
      for (int i=0; i<d; ++i)
      {
        neworigin[i] = std::max(origin(i),r.origin(i));
        newsize[i] = std::min(max(i),r.max(i)) - neworigin[i] + 1;
      }

      return YGridComponent<Coordinates>(neworigin,newsize,*this);
    }


    /** Iterator class allows one to run over all cells of a grid.
     *  The cells of the grid to iterate over are numbered consecutively starting
     *  with zero. Via the index() method the iterator provides a mapping of the
     *  cells of the grid to a one-dimensional array. The number of entries
     *  in this array must be the size of the grid.
     */
    class Iterator {
    public:
      // default constructor
      Iterator () {}

      //! Make iterator pointing to first cell in a grid.
      Iterator (const YGridComponent<Coordinates>& r) : _grid(&r)
      {
        iTupel coord(r.origin());
        reinit(r,coord);
      }

      //! Make iterator pointing to given cell in a grid.
      Iterator (const YGridComponent<Coordinates>& r, const iTupel& coord)
      {
        reinit(r,coord);
      }

      //! reinitialize iterator to given position
      void reinit (const YGridComponent<Coordinates>& r, const iTupel& coord)
      {
        // initialize to given position in index set
        for (int i=0; i<d; ++i)
          _coord[i] = coord[i];

        // move superindex to first cell in subgrid
        _superindex = 0;
        for (int i=0; i<d; ++i)
          _superindex += (r.offset(i)+coord[i]-r.origin(i))*r.superincrement(i);

        _grid = &r;
      }

      //! Return true when two iterators over the same grid are equal (!).
      bool operator== (const Iterator& i) const
      {
        return _superindex == i._superindex;
      }

      //! Return true when two iterators over the same grid are not equal (!).
      bool operator!= (const Iterator& i) const
      {
        return _superindex != i._superindex;
      }

      //! Return consecutive index in enclosing grid
      int superindex () const
      {
        return _superindex;
      }

      //! Return coordinate of the cell in direction i.
      int coord (int i) const
      {
        return _coord[i];
      }

      //! Return coordinate of the cell as reference (do not modify).
      const iTupel& coord () const
      {
        return _coord;
      }

      //! move this iterator dist cells in direction i
      void move (int i, int dist)
      {
        _coord[i] += dist;
        _superindex += dist*_grid->superincrement(i);
      }

      //! move this iterator dist cells in direction i
      void move (const iTupel& dist)
      {
        for (int i = 0; i < d; ++i)
          {
            _coord[i] += dist[i];
            _superindex += dist[i]*_grid->superincrement(i);
          }
      }

      //! Increment iterator to next cell with position.
      Iterator& operator++ ()
      {
        for (int i=0; i<d; i++)         // check for wrap around
        {
          _superindex += _grid->superincrement(i);   // move on cell in direction i
          if (++_coord[i] <= _grid->max(i))
            return *this;
          else
          {
            _coord[i] = _grid->origin(i);         // move back to origin in direction i
            _superindex -= _grid->size(i) * _grid->superincrement(i);
          }
        }
        // if we wrapped around, back to to begin(), we must put the iterator to end()
        if (_coord == _grid->origin())
        {
          for (int i=0; i<d; i++)
            _superindex += (_grid->size(i)-1) * _grid->superincrement(i);
          _superindex += _grid->superincrement(0);
        }
        return *this;
      }

      //! Return ith component of lower left corner of the entity associated with the current coordinates and shift.
      ct lowerleft(int i) const
      {
        return _grid->getCoords()->coordinate(i,_coord[i]);
      }

      //! Return lower left corner of the entity associated with the current coordinates and shift.
      fTupel lowerleft() const
      {
        fTupel ll;
        for (int i=0; i<d; i++)
          ll[i] = lowerleft(i);
        return ll;
      }

      //! Return ith component of upper right corder of the entity associated with the current coordinates and shift.
      ct upperright(int i) const
      {
        int coord = _coord[i];
        if (shift(i))
          coord++;
        return _grid->getCoords()->coordinate(i,coord);
      }

      //! Return upper right corder of the entity associated with the current coordinates and shift.
      fTupel upperright() const
      {
        fTupel ur;
        for (int i=0; i<d; i++)
          ur[i] = upperright(i);
        return ur;
      }

      //! Return meshsize in direction i
      ct meshsize (int i) const
      {
        return _grid->getCoords()->meshsize(i,_coord[i]);
      }

      //! Return meshsize of current cell as reference.
      fTupel meshsize () const
      {
        fTupel h;
        for (int i=0; i<d; i++)
          h[i] = meshsize(i);
        return h;
      }

      bool shift (int i) const
      {
        return _grid->shift(i);
      }

      std::bitset<d> shift() const
      {
        return _grid->shift();
      }

      Coordinates* coordCont() const
      {
        return _grid->getCoords();
      }

    protected:
      iTupel _coord;       //!< current position in index set
      int _superindex;        //!< consecutive index in enclosing grid
      const YGridComponent<Coordinates>* _grid;
    };


    int superindex(iTupel coord) const
    {
      // move superindex to first cell in subgrid
      int si = 0;
      for (int i=0; i<d; ++i)
        si += (offset(i)+coord[i]-origin(i))*_superincrement[i];
      return si;
    }

    int superincrement(int i) const
    {
      return _superincrement[i];
    }

    //! return iterator to first element of index set
    Iterator begin () const
    {
      return Iterator(*this);
    }

    //! return iterator to given element of index set
    Iterator begin (const iTupel& co) const
    {
      return Iterator(*this,co);
    }

    //! return subiterator to last element of index set
    Iterator end () const
    {
      iTupel last;
      for (int i=0; i<d; i++)
        last[i] = max(i);
      last[0] += 1;
      return Iterator(*this,last);
    }

  private:
    iTupel _origin;
    std::bitset<d> _shift;
    Coordinates* _coords;
    iTupel _size;
    iTupel _offset;    //!< offset to origin of the enclosing grid
    iTupel _supersize; //!< size of the enclosing grid
    iTupel _superincrement; //!< moves consecutive index by one in this direction in supergrid

  };


  //! Output operator for ygrids
  template <class Coordinates>
  inline std::ostream& operator<< (std::ostream& s, YGridComponent<Coordinates> e)
  {
    s << "Printing YGridComponent structure:" << std::endl;
    s << "Origin: " << e.origin() << std::endl;
    s << "Shift: " << e.shift() << std::endl;
    s << "Size: " << e.size() << std::endl;
    s << "Offset: " << e.offset() << std::endl;
    s << "Supersize: " << e.supersize() << std::endl;
    return s;
  }

  //! Output operator for ygrids
  template <class Coordinates>
  inline std::ostream& operator<< (std::ostream& s, typename YGridComponent<Coordinates>::Iterator& e)
  {
    s << "Printing YGridComponent Iterator:" << std::endl << "Iterator at " << e.coord() << " (index ";
    s << e.index() << "), position " << e.position();
    return s;
  }

  /** \brief implements a collection of YGridComponents which form a codimension
   * Entities of given codimension c need to be represented by d choose c YgridComponents.
   * All entities in one such component share the same set of spanning unit vectors.
   * A YGrid is used to iterate over the entire set of components the codimension
   * consists of. It doesn't hold any data, but instead holds an iterator range into
   * an array of components (which is owned by YGridLevel).
   */
  template<class Coordinates>
  class YGrid
  {
    public:
    static const int dim = Coordinates::dimension;

    // define data array iterator
    typedef YGridComponent<Coordinates>* DAI;

    typedef typename std::array<int, dim> iTupel;

    //! set start iterator in the data array
    void setBegin(DAI begin)
    {
      _begin = begin;
    }

    //! get which component belongs to a given shift vector
    int shiftmapping(const std::bitset<dim>& shift) const
    {
      return _shiftmapping[shift.to_ulong()];
    }

    //! get start iterator in the data array
    DAI dataBegin() const
    {
      return _begin;
    }

    //! get end iterator in the data array
    DAI dataEnd() const
    {
      return _end;
    }

    //! decide whether a coordinate is in the grid (depending on the component)
    bool inside(const iTupel& coord, const std::bitset<dim>& shift = std::bitset<dim>()) const
    {
      return (_begin+_shiftmapping[shift.to_ulong()])->inside(coord);
    }

    /** \brief Iterator over a collection o YGrids
     * A YGrid::Iterator is the heart of an entity in YaspGrid.
     */
    class Iterator
    {
      public:

      //! default constructor
      Iterator ()
      {}

      //! construct an iterator from coordinates and component
      Iterator (const YGrid<Coordinates>& yg, const std::array<int,dim>& coords, int which = 0)
        : _which(which), _yg(&yg)
      {
        _it = typename YGridComponent<Coordinates>::Iterator(*(_yg->dataBegin()+which),coords);
      }

      //! create an iterator to start or end of the codimension
      Iterator (const YGrid<Coordinates>& yg, bool end=false) : _yg(&yg)
      {
        if (end)
        {
          _it = _yg->_itends.back();
          _which = _yg->_itends.size() - 1;
        }
        else
        {
          _it = _yg->_itbegins[0];
          _which = 0;
        }
      }

      //! reinitializes an iterator, as if it was just constructed.
      void reinit(const YGrid<Coordinates>& yg, const std::array<int,dim>& coords, int which = 0)
      {
        _yg = &yg;
        _which = which;
        _it = typename YGridComponent<Coordinates>::Iterator(*(_yg->dataBegin()+which),coords);
      }

      //! return coordinate at the current position (direction i)
      int coord (int i) const
      {
        return _it.coord(i);
      }

      //! return coordinate array at the current position
      const std::array<int, dim>& coord () const
      {
        return _it.coord();
      }

      typename Coordinates::ctype lowerleft(int i) const
      {
        return _it.lowerleft(i);
      }

      Dune::FieldVector<typename Coordinates::ctype,dim> lowerleft() const
      {
        return _it.lowerleft();
      }

      typename Coordinates::ctype upperright(int i) const
      {
        return _it.upperright(i);
      }

      Dune::FieldVector<typename Coordinates::ctype,dim> upperright() const
      {
        return _it.upperright();
      }

      //! return the current meshsize in direction i
      typename Coordinates::ctype meshsize (int i) const
      {
        return _it.meshsize(i);
      }

      //! return the current meshsize vector
      Dune::FieldVector<typename Coordinates::ctype,dim> meshsize() const
      {
        return _it.meshsize();
      }

      //! return the shift in direction i
      bool shift (int i) const
      {
        return _it.shift(i);
      }

      //! return the shift vector
      std::bitset<dim> shift () const
      {
        return _it.shift();
      }

      //! return the superindex
      int superindex() const
      {
        // the offset of the current component has to be taken into account
          return _yg->_indexOffset[_which] + _it.superindex();
      }

      //! increment to the next entity jumping to next component if necessary
      Iterator& operator++ ()
      {
        if ((++_it == _yg->_itends[_which]) && (_which < _yg->_itends.size()-1))
          _it = _yg->_itbegins[++_which];
        return *this;
      }

      //! compare two iterators: component has to match
      bool operator==(const Iterator& i) const
      {
        if (_which != i._which)
          return false;
        return _it == i._it;
      }

      //! compare two iterators: component has to match
      bool operator!=(const Iterator& i) const
      {
        if (_it != i._it)
          return true;
        return _which != i._which;
      }

      //! return the current component number
      int which() const
      {
        return _which;
      }

      //! move the grid, this is only done and needed for codim 0
      void move(int i, int dist)
      {
        _it.move(i,dist);
      }

      void move(const iTupel& dist)
      {
        _it.move(dist);
      }

      Coordinates* coordCont() const
      {
        return _it.coordCont();
      }


      private:
      unsigned int _which;
      const YGrid<Coordinates>* _yg;
      typename YGridComponent<Coordinates>::Iterator _it;
    };

    //! return begin iterator for the codimension and partition the ygrid represents
    Iterator begin() const
    {
      return Iterator(*this);
    }

    //! return iterator pointint to a specified position
    Iterator begin(const std::array<int, dim>& coord, int which = 0) const
    {
      return Iterator(*this, coord, which);
    }

    //! return end iterator for the codimension and partition the ygrid represents
    Iterator end() const
    {
      return Iterator(*this,true);
    }

    int superindex(const iTupel& coord, int which) const
    {
      return _indexOffset[which] + (dataBegin()+which)->superindex(coord);
    }


    // finalize the ygrid construction by storing component iterators
    void finalize(const DAI& end, int artificialOffset = 0)
    {
      // set the end iterator in the ygrid component array
      _end = end;

      _indexOffset.push_back(artificialOffset);
      int k = 0;
      for (DAI i=_begin; i != _end; ++i, ++k)
      {
        //store begin and end iterators
        _itbegins.push_back(i->begin());
        _itends.push_back(i->end());

        // store index offset
        _indexOffset.push_back(_indexOffset.back() + i->totalsize());

        // store shift to component mapping
        _shiftmapping[i->shift().to_ulong()] = k;
      }
      _indexOffset.resize(_itends.size());
    }

    private:

    friend class YGrid<Coordinates>::Iterator;
    DAI _begin;
    DAI _end;
    std::array<int,StaticPower<2,dim>::power> _shiftmapping;
    std::vector<typename YGridComponent<Coordinates>::Iterator> _itbegins;
    std::vector<typename YGridComponent<Coordinates>::Iterator> _itends;
    std::vector<int> _indexOffset;
  };

  //! Output operator for ygrids
  template <class Coordinates>
  inline std::ostream& operator<< (std::ostream& s, const YGrid<Coordinates>& e)
  {
    s << "Printing YGrid structure:" << std::endl;
    for (auto it = e.dataBegin(); it != e.dataEnd(); ++it)
      s << *it << std::endl;
    return s;
  }

  /** \brief implements a collection of multiple std::deque<Intersection>
   * Intersections with neighboring processors are stored as std::deque<Intersection>.
   * Eachsuch intersection only holds one YGridComponent. To do all communication
   * associated with one codimension, multiple such deques have to be concatenated.
   * YGridList manges this concatenation. As for YGrids, YGridList doesn't hold any
   * data, but an iterator range into a data array owned by YGridLevel.
   */
  template<class Coordinates>
  class YGridList
  {
    public:
    static const int dim = Coordinates::dimension;

    /** \brief type describing an intersection with a neighboring processor */
    struct Intersection
    {
      /** \brief The intersection as a subgrid of the local grid */
      YGridComponent<Coordinates> grid;
      /** \brief Rank of the process where the other grid is stored */
      int rank;
      /** \brief Manhattan distance to the other grid */
      int distance;
      /** \brief a YGrid stub, that acts wraps above YGrid Component and handels the index offset */
      YGrid<Coordinates> yg;
    };

    // define data array iterator type
    typedef typename std::array<std::deque<Intersection>, StaticPower<2,dim>::power>::iterator DAI;

    // iterator that allows to iterate over a concatenation of deques. namely those
    // that belong to the same codimension.
    class Iterator
    {
      public:

      //! return iterator to begin and end of the container
        Iterator(const YGridList<Coordinates>& ygl, bool end=false) : _end(ygl.dataEnd()), _which(ygl.dataBegin())
      {
        _it = _which->begin();

        // advance the iterator to the first element that exists.
        // some deques might be empty and should be skipped
        while ((_which != _end) && (_it == _which->end()))
        {
          ++_which;
          if (_which != _end)
            _it = _which->begin();
        }
        // the iterator is at the end if and only if _which==_end
        if (end)
        {
          _which = _end;
        }
      }

      //! increment iterator
      Iterator& operator++ ()
      {
        ++_it;
        // advance the iterator to the next element that exists.
        // some deques might be empty and should be skipped
        while ((_which != _end) && (_it == _which->end()))
        {
          ++_which;
          if (_which != _end)
            _it = _which->begin();
        }
        return *this;
      }

      //! dereference iterator
      typename std::deque<Intersection>::iterator  operator->() const
      {
        return _it;
      }

      //! dereference iterator
      typename std::deque<Intersection>::iterator  operator*() const
      {
        return _it;
      }

      //! compare two iterators
      bool operator== (const Iterator& i) const
      {
        if (_which != i._which)
          return false;
        if (_which == _end)
          return true;
        return _it == i._it;
      }

      //! compare two iterators
      bool operator!= (const Iterator& i) const
      {
        if (_which != i._which)
          return true;
        if (_which == _end)
          return false;
        return _it != i._it;
      }

      private:
      typename std::deque<Intersection>::iterator _it;
      DAI _end;
      DAI _which;
    };

    //! return iterator pointing to the begin of the container
    Iterator begin() const
    {
      return Iterator(*this);
    }

    //! return iterator pointing to the end of the container
    Iterator end() const
    {
      return Iterator(*this,true);
    }

    //! set start iterator in the data array
    void setBegin(typename std::array<std::deque<Intersection>, StaticPower<2,dim>::power>::iterator begin)
    {
      _begin = begin;
    }

    //! get start iterator in the data array
    DAI dataBegin() const
    {
      return _begin;
    }

    //! get end iterator in the data array
    DAI dataEnd() const
    {
      return _end;
    }

    //! return the size of the container, this is the sum of the sizes of all deques
    int size() const
    {
      int count = 0;
      for (DAI it = _begin; it != _end; ++it)
        count += it->size();
      return count;
    }

    //! finalize the YGridLIst
    void finalize(DAI end, const YGrid<Coordinates>& ygrid)
    {
      // Instead of directly iterating over the intersection deques, this code
      // iterates over the components of an associated ygrid and works its way
      // through the list of intersection deques in parallel.
      // The reason for this convoluted iteration technique is that there are not
      // necessarily intersections for all possible shifts, but we have to make
      // sure that we stop at each shift to update the per-component index shift.
      // This is ensured by iterating over the ygrid, which is guaranteed to have
      // a component for each shift vector.

      // set end iterator in the data array
      _end = end;

      //! set offsets allow the YGridComponents in the Intersctions to behave as YGrids
      int offset = 0;

      DAI i = _begin;

      // make sure that we have a valid deque (i.e. a non-empty one)
      while (i != _end && i->begin() == i->end())
        ++i;

      for (auto yit = ygrid.dataBegin(); yit != ygrid.dataEnd(); ++yit)
      {
        if (i == _end)
          break;
        auto it = i->begin();
        if (it->grid.shift() == yit->shift())
        {
          // iterate over the intersections in the deque and set the offset
          for (; it != i->end(); ++it)
          {
            it->yg.setBegin(&(it->grid));
            it->yg.finalize(&(it->grid)+1, offset);
          }

          // advance to next non-empty deque
          ++i;
          while (i != _end && i->begin() == i->end())
            ++i;
        }

        // update the offset from the ygrid component
        int add = 1;
        for (int j=0; j<dim; j++)
          add *= yit->supersize(j);
        offset += add;
      }
      assert (i == end);
    }

    private:
    DAI _begin;
    DAI _end;
  };

} // namespace Dune

#endif