This file is indexed.

/usr/include/dune/grid/yaspgrid/coordinates.hh is in libdune-grid-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GRID_YASPGRID_COORDINATES_HH
#define DUNE_GRID_YASPGRID_COORDINATES_HH

#include <array>
#include <bitset>
#include <vector>

#include <dune/common/fvector.hh>

/** \file
 *  \brief This provides container classes for the coordinates to be used in YaspGrid
 *  Upon implementation of the tensorproduct feature, the coordinate information has
 *  been encapsulated to keep performance for the equidistant grid. Containers for
 *  equidistant and tensorproduct grids are provided here.
 */

namespace Dune
{
  /** \brief Container for equidistant coordinates in a YaspGrid
   *  @tparam ct the coordinate type
   *  @tparam dim the dimension of the grid
   */
  template<class ct, int dim>
  class EquidistantCoordinates
  {
    public:
    //! export the coordinate type
    typedef ct ctype;
    //! export dimension
    static const int dimension = dim;

    /** \brief default constructor */
    EquidistantCoordinates() {}

    /** \brief construct a container with all necessary information
     *  \param h the meshsize in all directions
     *  \param s the size (in codim 0 elements) of the grid on this processor
     *  the size information is kept with this container, because this is the natural
     *  way to handle this for a tensorproduct grid.
     */
    EquidistantCoordinates(const Dune::FieldVector<ct,dim>& h, const std::array<int,dim>& s)
      : _h(h), _s(s) {}

    /** \returns the meshsize in given direction at given position
     *  \param d the direction to be used
     *  \param i the global coordinate index where to return the meshsize
     */
    inline ct meshsize(int d, int i) const
    {
      return _h[d];
    }

    /** \returns a coordinate given a direction and an index
     *  \param d the direction to be used
     *  \param i the global coordinate index
     */
    inline ct coordinate(int d, int i) const
    {
      return i*_h[d];
    }

    /** \returns the size in given direction
     *  \param d the direction to be used
     */
    inline int size(int d) const
    {
      return _s[d];
    }

    /** \returns a container that represents the same grid after one step of uniform refinement
     *  \param ovlp_low whether we have an overlap area at the lower processor boundary
     *  \param ovlp_up whether we have an overlap area at the upper processor boundary
     *  \param overlap the size of the overlap region
     *  \param keep_ovlp the refinement option parameter to be used
     */
    EquidistantCoordinates<ct,dim> refine(std::bitset<dim> ovlp_low, std::bitset<dim> ovlp_up, int overlap, bool keep_ovlp) const
    {
      //determine new size and meshsize
      std::array<int,dim> news;
      Dune::FieldVector<ct,dim> newh;

      for (int i=0; i<dim; i++)
      {
        news[i] = 2 * _s[i];
        if (!keep_ovlp)
        {
          if (ovlp_low[i])
            news[i] -= overlap;
          if (ovlp_up[i])
            news[i] -= overlap;
        }

        newh[i] = _h[i] / 2.;
      }
      return EquidistantCoordinates<ct,dim>(newh,news);
    }

    /** \brief print information on this container */
    void print(std::ostream& s) const
    {
      s << "Printing equidistant coordinate information:" << std::endl;
      s << "Meshsize: " << _h << std::endl << "Size: " << _s << std::endl;
    }

    private:
    Dune::FieldVector<ct,dim> _h;
    std::array<int,dim> _s;
  };

  template<class ct, int dim>
  inline std::ostream& operator<< (std::ostream& s, EquidistantCoordinates<ct,dim>& c)
  {
    c.print(s);
    return s;
  }

  /** \brief Container for equidistant coordinates in a YaspGrid with non-trivial origin
    *  @tparam ct the coordinate type
    *  @tparam dim the dimension of the grid
    */
   template<class ct, int dim>
   class EquidistantOffsetCoordinates
   {
     public:
     //! export the coordinate type
     typedef ct ctype;
     //! export dimension
     static const int dimension = dim;

     /** \brief default constructor */
     EquidistantOffsetCoordinates() {}

     /** \brief construct a container with all necessary information
      *  \param h the meshsize in all directions
      *  \param s the size (in codim 0 elements) of the grid on this processor
      *  \param origin the coordinate of the lowerleft corner of this grid
      *  the size information is kept with this container, because this is the natural
      *  way to handle this for a tensorproduct grid.
      */
     EquidistantOffsetCoordinates(const Dune::FieldVector<ct,dim>& origin, const Dune::FieldVector<ct,dim>& h, const std::array<int,dim>& s)
       : _origin(origin), _h(h), _s(s) {}

     /** \returns the meshsize in given direction at given position
      *  \param d the direction to be used
      *  \param i the global coordinate index where to return the meshsize
      */
     inline ct meshsize(int d, int i) const
     {
       return _h[d];
     }

     /** \returns a coordinate given a direction and an index
      *  \param d the direction to be used
      *  \param i the global coordinate index
      */
     inline ct coordinate(int d, int i) const
     {
       return _origin[d] + i*_h[d];
     }

     /** \returns the size in given direction
      *  \param d the direction to be used
      */
     inline int size(int d) const
     {
       return _s[d];
     }

     /** \returns the dth component of the origin
      *  \param d the direction to be used
      */
     inline ct origin(int d) const
     {
       return _origin[d];
     }

     /** \returns a container that represents the same grid after one step of uniform refinement
      *  \param ovlp_low whether we have an overlap area at the lower processor boundary
      *  \param ovlp_up whether we have an overlap area at the upper processor boundary
      *  \param overlap the size of the overlap region
      *  \param keep_ovlp the refinement option parameter to be used
      */
     EquidistantOffsetCoordinates<ct,dim> refine(std::bitset<dim> ovlp_low, std::bitset<dim> ovlp_up, int overlap, bool keep_ovlp) const
     {
       //determine new size and meshsize
       std::array<int,dim> news;
       Dune::FieldVector<ct,dim> newh;

       for (int i=0; i<dim; i++)
       {
         news[i] = 2 * _s[i];
         if (!keep_ovlp)
         {
           if (ovlp_low[i])
             news[i] -= overlap;
           if (ovlp_up[i])
             news[i] -= overlap;
         }

         newh[i] = _h[i] / 2.;
       }
       return EquidistantOffsetCoordinates<ct,dim>(_origin,newh,news);
     }

     /** \brief print information on this container */
     void print(std::ostream& s) const
     {
       s << "Printing equidistant coordinate information:" << std::endl;
       s << "Meshsize: " << _h << std::endl << "Size: " << _s << std::endl;
       s << "Offset to origin: " << _origin << std::endl;
     }

     private:
     Dune::FieldVector<ct,dim> _origin;
     Dune::FieldVector<ct,dim> _h;
     std::array<int,dim> _s;
   };

   template<class ct, int dim>
   inline std::ostream& operator<< (std::ostream& s, EquidistantOffsetCoordinates<ct,dim>& c)
   {
     c.print(s);
     return s;
   }

  /** \brief Coordinate container for a tensor product YaspGrid
   *  @tparam ct the coordinate type
   *  @tparam dim the dimension of the grid
   */
  template<class ct, int dim>
  class TensorProductCoordinates
  {
    public:
    //! export the coordinate type
    typedef ct ctype;
    //! export dimension
    static const int dimension = dim;

    /** \brief the default constructor */
    TensorProductCoordinates() {}

    /** \brief construct a container with all necessary information
     *  \param c the array of coordinate vectors
     *  \param offset the offset between global origin and processor origin
     *  the size information is deduced from c. Storing offset allows for use of
     *  global coordinates in the YaspGrid code.
     */
    TensorProductCoordinates(const std::array<std::vector<ct>,dim>& c, const std::array<int,dim>& offset)
      : _c(c),_offset(offset)
    {}

    /** \returns the meshsize in given direction at given position
     *  \param d the direction to be used
     *  \param i the global coordinate index where to return the meshsize
     */
    inline ct meshsize(int d, int i) const
    {
      return _c[d][i+1-_offset[d]] - _c[d][i-_offset[d]];
    }

    /** \returns a coordinate given a direction and an index
     *  \param d the direction to be used
     *  \param i the global coordinate index
     */
    inline ct coordinate(int d, int i) const
    {
      return _c[d][i-_offset[d]];
    }

    /** \returns the size in given direction
     *  \param d the direction to be used
     */
    inline int size(int d) const
    {
      return _c[d].size() - 1;
    }

    /** \returns a container that represents the same grid after one step of uniform refinement
     *  \param ovlp_low whether we have an overlap area at the lower processor boundary
     *  \param ovlp_up whether we have an overlap area at the upper processor boundary
     *  \param overlap the size of the overlap region
     *  \param keep_ovlp the refinement option parameter to be used
     */
    TensorProductCoordinates<ct,dim> refine(std::bitset<dim> ovlp_low, std::bitset<dim> ovlp_up, int overlap, bool keep_ovlp) const
    {
      std::array<std::vector<ct>,dim> newcoords;
      std::array<int,dim> newoffset(_offset);
      for (int i=0; i<dim; i++)
      {
        newoffset[i] *= 2;

        //determine new size
        int newsize = 2 * _c[i].size() - 1;
        if (!keep_ovlp)
        {
          if (ovlp_low[i])
          {
            newoffset[i] += overlap;
            newsize -= overlap;
          }
          if (ovlp_up[i])
            newsize -= overlap;
        }
        newcoords[i].resize(newsize);

        typename std::vector<ct>::const_iterator it = _c[i].begin();
        typename std::vector<ct>::const_iterator end = _c[i].end()-1;
        typename std::vector<ct>::iterator iit = newcoords[i].begin() - 1;
        if (!keep_ovlp)
        {
          if (ovlp_low[i])
          {
            it += overlap/2;
            if (overlap%2)
              *(++iit) = (*it + *(++it)) / 2.;
          }
          if (ovlp_up[i])
            end -= overlap/2;
        }

        for (;it!=end;)
        {
          *(++iit) = *it;
          *(++iit) = (*it + *(++it)) / 2.;
        }

        if (++iit != newcoords[i].end())
          *iit = *it;
      }
      return TensorProductCoordinates<ct,dim>(newcoords, newoffset);
    }

    /** \brief print information on this container */
    void print(std::ostream& s) const
    {
      s << "Printing TensorProduct Coordinate information:" << std::endl;
      for (int i=0; i<dim; i++)
      {
        s << "Direction " << i << ": " << _c[i].size() << " coordinates" << std::endl;
        for (std::size_t j=0; j<_c[i].size(); j++)
          s << _c[i][j] << std::endl;
      }
    }

    private:
    std::array<std::vector<ct>,dim> _c;
    std::array<int,dim> _offset;
  };

  template<class ct, int dim>
  inline std::ostream& operator<< (std::ostream& s, TensorProductCoordinates<ct,dim>& c)
  {
    c.print(s);
    return s;
  }

 namespace Yasp {
  template<class ctype, std::size_t dim>
  bool checkIfMonotonous(const std::array<std::vector<ctype>, dim>& coords)
  {
    for (std::size_t i=0; i<dim; i++)
    {
      if (coords[i].size() <= 1)
        return false;
      for (std::size_t j=1; j<coords[i].size(); j++)
        if (coords[i][j] < coords[i][j-1])
          return false;
    }
    return true;
  }
 } // namespace Yasp
} // namespace Dune

#endif