This file is indexed.

/usr/include/dune/grid/utility/tensorgridfactory.hh is in libdune-grid-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#ifndef DUNE_GRID_UTILITY_TENSORGRIDFACTORY_HH
#define DUNE_GRID_UTILITY_TENSORGRIDFACTORY_HH

/** \file
 *  \brief This file provides a factory class for tensorproduct
 *  grids. This is a collection of methods to generate monotonous
 *  sequences as needed for a tensorproduct grid. Apart
 *  from easy ones for locally equidistant grids, there are also
 *  more involved methods like splitting a range according to a
 *  geometric series.
 *
 *  The grid generation process is implemented for unstructured grids
 *  and for YaspGrid.
 *
 *  \author Dominic Kempf
 */

#include<array>
#include<memory>
#include<vector>

#include <dune/common/fvector.hh>
#include <dune/grid/common/gridfactory.hh>
#include <dune/grid/yaspgrid.hh>
#include<dune/grid/utility/multiindex.hh>

namespace Dune
{
  // forward declaration of TensorGridFactoryCreator, which is the real factory
  // that should be specialized for each grid.
  template<typename Grid>
  class TensorGridFactoryCreator;

  /** \brief A factory class for conveniently creating tensorproduct grids
   *
   * \tparam Grid the grid type
   */
  template<typename Grid>
  class TensorGridFactory
  {
  public:
    typedef typename Grid::Traits::CollectiveCommunication Comm;
    typedef typename Grid::ctype ctype;
    static const int dim = Grid::dimension;

    std::shared_ptr<Grid> createGrid(Comm comm = Comm())
    {
      TensorGridFactoryCreator<Grid> creator(*this);
      return creator.createGrid(comm);
    }

    std::array<std::vector<ctype> , dim> coords() const
    {
      return _coords;
    }

    //! allow to manually tune the factory by overloading operator[] to export the coordinate vectors in the coordinate directories.
    std::vector<ctype>& operator[](std::size_t d)
    {
      return _coords[d];
    }

    //! allow to manually tune the factory by overloading operator[] to export the coordinate vectors in the coordinate directories.
    const std::vector<ctype>& operator[](std::size_t d) const
    {
      return _coords[d];
    }

    /** \brief set a starting value in a given direction d
     * \param d the coordinate direction
     * \param value the value to set
     *
     * This resizes the coordinate vector for the given direction to 1.
     * Not using this function will result in 0.0 to be used as a lower
     * bound of the coordinate range.
     */
    void setStart (int d, ctype value)
    {
      _coords[d].resize(1);
      _coords[d][0] = value;
    }

    /** \brief pushs n intervals of length h in direction d
     * \param d the coordinate direction
     * \param n the number of intervals to add
     * \param h the interval length
     *
     * Given a vector with last element \f$x_0\f$, this will add elements
     * \f$x_1,\dots ,x_n\f$ such that \f$x_i=x_0+i*h\f$.
     */
    void fillIntervals (int d, int n, ctype h)
    {
      emptyCheck (d);
      for (int i = 0; i < n; i++)
        _coords[d].push_back (_coords[d].back () + h);
    }

    /** \brief fills the range to end with n intervals in direction d
     * \param d the coordinate direction
     * \param n the number of intervals to add
     * \param end the coordinate on the upper border of the range
     *
     * Given a vector with last element \f$x_0\f$, this will add elements
     * \f$x_1,\dots ,x_n\f$ such that \f$x_i=x_0+i*\frac{end-x_0}{n}\f$.
     */
    void fillRange (int d, int n, ctype end)
    {
      emptyCheck (d);
      const ctype h = (end - _coords[d].back ()) / n;
      for (int i = 0; i < n - 1; i++)
        _coords[d].push_back (_coords[d].back () + h);
      _coords[d].push_back (end);
    }

    /** \brief adds intervals in direction d until a given coordinate is reached
     * \param d the coordinate direction
     * \param h the interval length
     * \param end the coordinate on the upper border of the range
     *
     *  Given a vector with last element \f$x_0\f$, this will add elements
     * \f$x_1,\dots ,x_n\f$ such that \f$x_n < end < x_n + h\f$ and \f$x_{i+1}-x_i = h\f$.
     */
    void fillUntil (int d, ctype h, ctype end)
    {
      emptyCheck (d);
      while (_coords[d].back () < end)
        _coords[d].push_back (_coords[d].back () + h);
    }

    /** \brief adds n intervals in direction d with a given length ratio and a given starting interval length.
     *  \param d the coordinate direction
     *  \param n the number of intervals to add
     *  \param ratio the ratio of \f$ h_{i+1}\f$ to \f$h_i\f$
     *  \param h0 the starting interval length (optional)
     *
     *  Given a vector with last element \f$x_0\f$, this will add elements
     *  \f$x_1,\dots ,x_n\f$ such that \f$h_{i+1}=qh_i\f$ for a given ratio
     *  \f$q\f$ and interval length \f$h_i=x_{i+1}-x_i\f$. The first interval length
     *  can either be explicitly given or be deduced by multiplying the ratio
     *  with the last interval length in the container.
     */
    void geometricFillIntervals (int d, int n, ctype ratio, ctype h0 =
        static_cast<ctype> (0))
    {
      emptyCheck (d);
      ctype h = h0;
      if (h0 == static_cast<ctype>(0))
        h = lastInterval (d) * ratio;
      for (int i = 0; i < n; i++)
      {
        _coords[d].push_back (_coords[d].back () + h);
        h *= ratio;
      }
    }

    /** \brief adds intervals in direction d according with a given length ratio until a given coordinate is reached
     * \param d the coordinate direction
     * \param ratio the ratio of \f$h_{i+1}\f$ to \f$h_i\f$
     * \param end the coordinate on the right border of the range
     * \param h0 the starting interval length (optional)
     *
     *  Given a vector with last element \f$x_0\f$, this will add elements
     *  \f$x_1,\dots ,x_n\f$ such that - with \f$h_i=x_{i+1}-x_i\f$ - \f$h_{i+1}=qh_i\f$
     *  for a given ratio \f$q\f$ and that \f$x_n < end < x_n + h\f$. The first interval
     *  length can either be explicitly given or be deduced by multiplying the ratio with
     *  the last interval length in the container.
     */
    void geometricFillUntil (int d, ctype ratio, ctype end, ctype h0 = static_cast<ctype> (0))
    {
      emptyCheck (d);
      ctype h = h0;
      if (h0 == static_cast<ctype>(0))
        h = lastInterval (d) * ratio;
      while (_coords[d].back () < end)
      {
        _coords[d].push_back (_coords[d].back () + h);
        h *= ratio;
      }
    }

    /** \brief fills a coordinate range in direction d with n intervals according to a geometric series
     * \param d the coordinate direction
     * \param n the number of intervals to add
     * \param end the coordinate of the upper border of the range
     * \param h the interval length to start or end with (see below) (optional)
     * \param first true if the given h is to be the first interval, false if last one
     *
     * Given a vector with last element \f$x_0\f$, this will add elements
     * \f$x_1,\dots ,x_n\f$ such that the ratio \f$h_{i+1} / h_i\f$ is fixed throughout
     * the range and \f$x_n=end\f$, while \f$h_i=x_{i+1}-x_i\f$ is the interval length.
     * The first interval length can either be explicitly given or be deduced by taking
     * the last interval length in the container. By setting the optional parameter first
     * to false, the given h can instead be used as last interval length in the range.
     */
    void geometricFillRange (int d, int n, ctype end, ctype h =
        static_cast<ctype> (0),
        bool first = true)
    {
      emptyCheck (d);
      if (h < 1e-8)
        h = lastInterval (d);
      ctype ratio = newton (n, _coords[d].back (), end, h);
      if (!first)
      {
        h = h * pow (ratio, n - 1);
        ratio = 1 / ratio;
      }
      for (int i = 0; i < n - 1; i++)
      {
        _coords[d].push_back (_coords[d].back () + h);
        h *= ratio;
      }
      _coords[d].push_back (end);
    }

    //! print the coordinate information given to the factory so far
    void print()
    {
      for (int i=0; i<dim; i++)
      {
        std::cout << "Container in direction " << i << ":" << std::endl << "Coordinates: ";
        for (auto it = _coords[i].begin(); it != _coords[i].end(); ++it)
          std::cout << *it << "  ";
        std::cout << std::endl << "Interval lengths: ";

        std::vector<ctype> meshsize;
        for (auto it = _coords[i].begin(); it != _coords[i].end()-1;)
        {
          meshsize.push_back(-1.*(*it));
          ++it;
          meshsize.back() += *it;
        }

        for (auto it = meshsize.begin(); it != meshsize.end(); ++it)
          std::cout << *it << "  ";
        std::cout << std::endl << "Ratios between interval lengths: ";

        std::vector<ctype> ratios;
        for (auto it = meshsize.begin(); it != meshsize.end() - 1 ;)
          ratios.push_back((1./(*it)) * *(++it));

        for (auto it = ratios.begin(); it != ratios.end(); ++it)
          std::cout << *it << "  ";
        std::cout << std::endl << std::endl << std::endl;
      }
    }

  private:
    // check whether the ith component is empty and add a 0.0 entry if so
    void emptyCheck (int i)
    {
      if (_coords[i].empty ())
        _coords[i].push_back (static_cast<ctype> (0));
    }

    // returns the last interval length in direction d
    ctype lastInterval (int d)
    {
      if (_coords[d].size () < 2)
        DUNE_THROW(
            GridError,
            "Not enough elements in coordinate container to deduce interval length in TensorYaspFactory");
      else
        return _coords[d].back () - _coords[d][_coords[d].size () - 2];
    }

    /** this implements a simple newton iteration for the function
     *  \f$f(x) = -x^n+\frac{x_e-x_s}{h} (x-1)+1\f$
     */
    ctype newton (int n, ctype x_s, ctype x_e, ctype h)
    {
      ctype m = (x_e - x_s) / h;
      ctype xold = 0.0;
      ctype xnew = x_e - x_s;
      while (std::abs (xnew - xold) > 1E-8)
      {
        xold = xnew;
        xnew = xold
            - (-pow (xold, n) + m * xold - m + 1)
            / (-n * pow (xold, n - 1) + m);
      }
      if (std::abs (xnew - 1) < 1E-6)
      {
        xold = x_e - x_s;
        xnew = 0.0;
        while (std::abs (xnew - xold) > 1E-8)
        {
          xold = xnew;
          xnew = xold
              - (-pow (xold, n) + m * xold - m + 1)
              / (-n * pow (xold, n - 1) + m);
        }
      }
      return xnew;
    }

    std::array<std::vector<ctype>, dim> _coords;
  };

  // class that implements the actual grid creation process. The default is implementing
  // standard creation for unstructured grids. Provide a specialization for other grids.
  template<typename Grid>
  class TensorGridFactoryCreator
  {
  public:
    typedef typename Grid::Traits::CollectiveCommunication Comm;
    typedef typename Grid::ctype ctype;
    static const int dim = Grid::dimension;

    TensorGridFactoryCreator(const TensorGridFactory<Grid>& factory) : _factory(factory) {}

    std::shared_ptr<Grid> createGrid(Comm comm)
    {
      // The grid factory
      GridFactory<Grid> fac;

      if (comm.rank() == 0)
      {
        // determine the size of the grid
        std::array<unsigned int, dim> vsizes, esizes;
        std::size_t size = 1;
        for (std::size_t i = 0; i<dim; ++i)
        {
          vsizes[i] = _factory[i].size();
          esizes[i] = vsizes[i] - 1;
          size *= vsizes[i];
        }

        // insert all vertices
        FactoryUtilities::MultiIndex<dim> index(vsizes);
        for (std::size_t i=0; i<size; ++i, ++index)
        {
          Dune::FieldVector<ctype, dim> position;
          for (std::size_t j = 0; j<dim; ++j)
            position[j] = _factory[j][index[j]];
          fac.insertVertex(position);
        }

        // compute the offsets
        std::array<std::size_t, dim> offsets;
        offsets[0] = 1;
        for (std::size_t i=1; i<dim; i++)
          offsets[i] = offsets[i-1] * vsizes[i-1];

        // Compute an element template (the cube at (0,...,0).  All
        // other cubes are constructed by moving this template around
        unsigned int nCorners = 1<<dim;

        std::vector<unsigned int> cornersTemplate(nCorners,0);

        for (size_t i=0; i<nCorners; i++)
          for (int j=0; j<dim; j++)
            if ( i & (1<<j) )
              cornersTemplate[i] += offsets[j];

        // Insert elements
        FactoryUtilities::MultiIndex<dim> eindex(esizes);

        // Compute the total number of elements to be created
        int numElements = eindex.cycle();

        for (int i=0; i<numElements; i++, ++eindex)
        {
          // 'base' is the index of the lower left element corner
          unsigned int base = 0;
          for (int j=0; j<dim; j++)
            base += eindex[j] * offsets[j];

          // insert new element
          std::vector<unsigned int> corners = cornersTemplate;
          for (size_t j=0; j<corners.size(); j++)
            corners[j] += base;

          fac.insertElement(GeometryType(GeometryType::cube, dim), corners);
        }
      }

      return std::shared_ptr<Grid>(fac.createGrid());
    }

  private:
    const TensorGridFactory<Grid>& _factory;
  };

  template<typename ctype, int dim>
  class TensorGridFactoryCreator<YaspGrid<dim, TensorProductCoordinates<ctype, dim> > >
  {
  public:
    typedef YaspGrid<dim, TensorProductCoordinates<ctype, dim> > Grid;
    typedef typename Grid::CollectiveCommunication Comm;

    TensorGridFactoryCreator(const TensorGridFactory<Grid>& factory) : _factory(factory) {}

    std::shared_ptr<Grid> createGrid(Comm comm)
    {
      return std::make_shared<Grid>(_factory.coords(), std::bitset<dim>(0ULL), 1, comm);
    }
  private:
    const TensorGridFactory<Grid>& _factory;
  };
}

#endif