This file is indexed.

/usr/include/dune/grid/utility/structuredgridfactory.hh is in libdune-grid-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_STRUCTURED_GRID_FACTORY_HH
#define DUNE_STRUCTURED_GRID_FACTORY_HH

/** \file
    \brief A class to construct structured cube and simplex grids using the grid factory
 */

#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdlib>
#include <memory>

#include <dune/common/classname.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/parallel/mpihelper.hh>

#include <dune/grid/common/gridfactory.hh>
#include <dune/grid/utility/multiindex.hh>

namespace Dune {

  /** \brief Construct structured cube and simplex grids in unstructured grid managers
   */
  template <class GridType>
  class StructuredGridFactory
  {
    typedef typename GridType::ctype ctype;

    static const int dim = GridType::dimension;

    static const int dimworld = GridType::dimensionworld;

    /** \brief Insert a structured set of vertices into the factory */
    static void insertVertices(GridFactory<GridType>& factory,
                               const FieldVector<ctype,dimworld>& lowerLeft,
                               const FieldVector<ctype,dimworld>& upperRight,
                               const std::array<unsigned int,dim>& vertices)
    {
      FactoryUtilities::MultiIndex<dim> index(vertices);

      // Compute the total number of vertices to be created
      int numVertices = index.cycle();

      // Create vertices
      for (int i=0; i<numVertices; i++, ++index) {

        // scale the multiindex to obtain a world position
        FieldVector<double,dimworld> pos(0);
        for (int j=0; j<dim; j++)
          pos[j] = lowerLeft[j] + index[j] * (upperRight[j]-lowerLeft[j])/(vertices[j]-1);
        for (int j=dim; j<dimworld; j++)
          pos[j] = lowerLeft[j];

        factory.insertVertex(pos);

      }

    }

    // Compute the index offsets needed to move to the adjacent vertices
    // in the different coordinate directions
    static std::array<unsigned int, dim> computeUnitOffsets(const std::array<unsigned int,dim>& vertices)
    {
      std::array<unsigned int, dim> unitOffsets;
      if (dim>0)        // paranoia
        unitOffsets[0] = 1;

      for (int i=1; i<dim; i++)
        unitOffsets[i] = unitOffsets[i-1] * vertices[i-1];

      return unitOffsets;
    }

  public:

    /** \brief Create a structured cube grid

        If the grid dimension is less than the world dimension, the coefficients (dim+1,...,dimworld) in
        the vertex coordinates are set to the corresponding values of the lowerLeft input argument.

        \param lowerLeft Lower left corner of the grid
        \param upperRight Upper right corner of the grid
        \param elements Number of elements in each coordinate direction
     */
    static std::shared_ptr<GridType> createCubeGrid(const FieldVector<ctype,dimworld>& lowerLeft,
                                               const FieldVector<ctype,dimworld>& upperRight,
                                               const std::array<unsigned int,dim>& elements)
    {
      // The grid factory
      GridFactory<GridType> factory;

      if (MPIHelper::getCollectiveCommunication().rank() == 0)
      {
        // Insert uniformly spaced vertices
        std::array<unsigned int,dim> vertices = elements;
        for( size_t i = 0; i < vertices.size(); ++i )
          vertices[i]++;

        // Insert vertices for structured grid into the factory
        insertVertices(factory, lowerLeft, upperRight, vertices);

        // Compute the index offsets needed to move to the adjacent
        // vertices in the different coordinate directions
        std::array<unsigned int, dim> unitOffsets =
          computeUnitOffsets(vertices);

        // Compute an element template (the cube at (0,...,0).  All
        // other cubes are constructed by moving this template around
        unsigned int nCorners = 1<<dim;

        std::vector<unsigned int> cornersTemplate(nCorners,0);

        for (size_t i=0; i<nCorners; i++)
          for (int j=0; j<dim; j++)
            if ( i & (1<<j) )
              cornersTemplate[i] += unitOffsets[j];

        // Insert elements
        FactoryUtilities::MultiIndex<dim> index(elements);

        // Compute the total number of elementss to be created
        int numElements = index.cycle();

        for (int i=0; i<numElements; i++, ++index) {

          // 'base' is the index of the lower left element corner
          unsigned int base = 0;
          for (int j=0; j<dim; j++)
            base += index[j] * unitOffsets[j];

          // insert new element
          std::vector<unsigned int> corners = cornersTemplate;
          for (size_t j=0; j<corners.size(); j++)
            corners[j] += base;

          factory.insertElement
            (GeometryType(GeometryType::cube, dim), corners);

        }

      }       // if(rank == 0)

      // Create the grid and hand it to the calling method
      return std::shared_ptr<GridType>(factory.createGrid());

    }

    /** \brief Create a structured simplex grid

        This works in all dimensions.  The Coxeter-Freudenthal-Kuhn triangulation is
        used, which splits each cube into dim! (i.e., dim faculty) simplices.  See Allgower and Georg,
        'Numerical Path Following' for a description.

        If the grid dimension is less than the world dimension, the coefficients (dim+1,...,dimworld) in
        the vertex coordinates are set to the corresponding values of the lowerLeft input argument.

        \param lowerLeft Lower left corner of the grid
        \param upperRight Upper right corner of the grid
        \param elements Number of elements in each coordinate direction
     */
    static std::shared_ptr<GridType> createSimplexGrid(const FieldVector<ctype,dimworld>& lowerLeft,
                                                  const FieldVector<ctype,dimworld>& upperRight,
                                                  const std::array<unsigned int,dim>& elements)
    {
      // The grid factory
      GridFactory<GridType> factory;

      if(MPIHelper::getCollectiveCommunication().rank() == 0)
      {
        // Insert uniformly spaced vertices
        std::array<unsigned int,dim> vertices = elements;
        for (std::size_t i=0; i<vertices.size(); i++)
          vertices[i]++;

        insertVertices(factory, lowerLeft, upperRight, vertices);

        // Compute the index offsets needed to move to the adjacent
        // vertices in the different coordinate directions
        std::array<unsigned int, dim> unitOffsets =
          computeUnitOffsets(vertices);

        // Loop over all "cubes", and split up each cube into dim!
        // (factorial) simplices
        FactoryUtilities::MultiIndex<dim> elementsIndex(elements);
        size_t cycle = elementsIndex.cycle();

        for (size_t i=0; i<cycle; ++elementsIndex, i++) {

          // 'base' is the index of the lower left element corner
          unsigned int base = 0;
          for (int j=0; j<dim; j++)
            base += elementsIndex[j] * unitOffsets[j];

          // each permutation of the unit vectors gives a simplex.
          std::vector<unsigned int> permutation(dim);
          for (int j=0; j<dim; j++)
            permutation[j] = j;

          do {

            // Make a simplex
            std::vector<unsigned int> corners(dim+1);
            corners[0] = base;

            for (int j=0; j<dim; j++)
              corners[j+1] =
                corners[j] + unitOffsets[permutation[j]];

            factory.insertElement
              (GeometryType(GeometryType::simplex, dim),
              corners);

          } while (std::next_permutation(permutation.begin(),
                                         permutation.end()));

        }

      }       // if(rank == 0)

      // Create the grid and hand it to the calling method
      return std::shared_ptr<GridType>(factory.createGrid());
    }

  };

}  // namespace Dune

#endif