This file is indexed.

/usr/include/dune/common/tupleutility.hh is in libdune-common-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_TUPLE_UTILITY_HH
#define DUNE_TUPLE_UTILITY_HH

#include <cstddef>
#include <tuple>
#include <type_traits>

#include <dune/common/hybridutilities.hh>
#include <dune/common/std/type_traits.hh>
#include <dune/common/std/utility.hh>

namespace Dune {

  /** @addtogroup TupleUtilities
   *
   * @{
   */

  /**
   * @file
   * @brief Contains utility classes which can be used with std::tuple.
   */

  template<class T>
  struct TupleAccessTraits
  {
    typedef typename std::add_const<T>::type& ConstType;
    typedef T& NonConstType;
    typedef const typename std::remove_const<T>::type& ParameterType;
  };

  template<class T>
  struct TupleAccessTraits<T*>
  {
    typedef typename std::add_const<T>::type* ConstType;
    typedef T* NonConstType;
    typedef T* ParameterType;
  };

  template<class T>
  struct TupleAccessTraits<T&>
  {
    typedef T& ConstType;
    typedef T& NonConstType;
    typedef T& ParameterType;
  };

  /**
   * @brief A helper template that initializes a std::tuple consisting of pointers
   * to nullptr.
   *
   * A std::tuple of nullptr may be useful when you use a std::tuple of pointers
   * in a class which you can only initialise in a later stage.
   */
  template<class T>
  struct NullPointerInitialiser;

  template<class... Args>
  struct NullPointerInitialiser<std::tuple<Args...> >
  {
    typedef std::tuple<Args...> ResultType;
    static ResultType apply()
    {
      return ResultType(static_cast<Args>(nullptr)...);
    }
  };

  /**
   * @brief Helper template to clone the type definition of a std::tuple with the
   * storage types replaced by a user-defined rule.
   *
   * Suppose all storage types A_i in a std::tuple define a type A_i::B. You can
   * build up a pair consisting of the types defined by A_i::B in the following
   * way:
   *
   * \code
   * template <class A>
   * struct MyEvaluator
   * {
   *   typedef typename A::B Type;
   * };
   *
   * typedef ForEachType<MyEvaluator, ATuple>::Type BTuple;
   * \endcode
   *
   * Here, MyEvaluator is a helper struct that extracts the correct type from
   * the storage types of the tuple defined by the tuple ATuple.
   *
   * \sa AddRefTypeEvaluator, AddPtrTypeEvaluator, genericTransformTuple(),
   *     and transformTuple().
   */
  template<template <class> class TE, class T>
  struct ForEachType;

  template<template <class> class TE, class... Args>
  struct ForEachType<TE, std::tuple<Args...> >
  {
    typedef std::tuple<typename TE<Args>::Type...> Type;
  };

#ifndef DOXYGEN
  template<class Tuple, class Functor, std::size_t... I>
  inline auto genericTransformTupleBackendImpl(Tuple& t, Functor& f, const Std::index_sequence<I...>& )
    -> std::tuple<decltype(f(std::get<I>(t)))...>
  {
    return std::tuple<decltype(f(std::get<I>(t)))...>(f(std::get<I>(t))...);
  }

  template<class... Args, class Functor>
  auto genericTransformTupleBackend(std::tuple<Args...>& t, Functor& f) ->
    decltype(genericTransformTupleBackendImpl(t, f,Std::index_sequence_for<Args...>{}))
  {
    return genericTransformTupleBackendImpl(t, f,Std::index_sequence_for<Args...>{});
  }

  template<class... Args, class Functor>
  auto genericTransformTupleBackend(const std::tuple<Args...>& t, Functor& f) ->
    decltype(genericTransformTupleBackendImpl(t, f, Std::index_sequence_for<Args...>{}))
  {
    return genericTransformTupleBackendImpl(t, f, Std::index_sequence_for<Args...>{});
  }
#endif

  /**
   * This function does for the value of a std::tuple what ForEachType does for the
   * type of a std::tuple: it transforms the value using a user-provided policy
   * functor.
   *
   * \param t The std::tuple value to transform.
   * \param f The functor to use to transform the values.
   *
   * The functor should have the following form:
   *
   * \code
   * struct Functor
   * {
   *   template<class>
   *   struct TypeEvaluator
   *   {
   *     typedef user-defined Type;
   *   };
   *
   *   template<class T>
   *   typename TypeEvaluator<T>::Type operator()(T& val);
   *
   *   template<class T>
   *   typename TypeEvaluator<T>::Type operator()(T& val) const;
   *
   *   template<class T>
   *   typename TypeEvaluator<T>::Type operator()(const T& val);
   *
   *   template<class T>
   *   typename TypeEvaluator<T>::Type operator()(const T& val) const;
   * };
   * \endcode
   *
   * The member class template \c TypeEvaluator should be a class template
   * suitable as the \c TypeEvaluator template parameter for ForEachType.  The
   * function call operator \c operator() is used to transform the value; only
   * the signatures of \c operator() which are actually used must be present.
   */
  template<class Tuple, class Functor>
  auto genericTransformTuple(Tuple&& t, Functor&& f) ->
    decltype(genericTransformTupleBackend(t, f))
  {
    return genericTransformTupleBackend(t, f);
  }

  /**
   * \tparam TE TypeEvaluator class template.
   * \tparam An Type of extra arguments to pass to \c TE<T>::apply().  \c void
   *            means "no argument".  Only trailing arguments may be void.
   *
   * This class stores references to a number of arguments it receives in the
   * constructor.  Later, its function call operator \c operator() may be
   * called with a parameter \c t of type \c T.  \c operator() will then call
   * the static method \c TE<T>::apply(t,args...), where \c args... is the
   * sequence of arguments the object was constructed with.  \c operator()
   * will convert the result to type \c TE<T>::Type and return it.
   *
   * \c TE should be an extended version of the \c TypeEvaluator class
   * template parameter of ForEachType, for instance:
   *
   * \code
   * template <class T>
   * struct TypeEvaluator
   * {
   *   typedef T* Type;
   *   static Type apply(T& t, void* a0)
   *   {
   *     return t ? &t : static_cast<T*>(a0);
   *   }
   * };
   * \endcode
   *
   * In this example, for the value transformation, it takes a reference to a value
   * of type T and return the pointer to that value, unless the value evaluates to false
   * in boolean context.  If the value evaluates to false, it will instead return the
   * pointer from the extra argument.
   */
  template<template<class> class TE, class... Args>
  class TransformTupleFunctor
  {
    mutable std::tuple<Args&...> tup;

    template<class T, std::size_t... I>
    inline auto apply(T&& t, const Std::index_sequence<I...>& ) ->
      decltype(TE<T>::apply(t,std::get<I>(tup)...)) const
    {
      return TE<T>::apply(t,std::get<I>(tup)...);
    }

  public:
    template<class T>
    struct TypeEvaluator : public TE<T>
    {};

    TransformTupleFunctor(Args&&... args)
      : tup(args...)
    { }

    template<class T>
    inline auto operator()(T&& t) ->
      decltype(this->apply(t,Std::index_sequence_for<Args...>{})) const
    {
      return apply(t,Std::index_sequence_for<Args...>{});
    }
  };

  template<template<class> class TE, class... Args>
  TransformTupleFunctor<TE, Args...> makeTransformTupleFunctor(Args&&... args)
  {
    return TransformTupleFunctor<TE, Args...>(args...);
  }

  /**
   * This function provides functionality similar to genericTransformTuple(),
   * although less general and closer in spirit to ForEachType.
   *
   * \tparam TypeEvaluator Used as the \c TE template argument to
   *                       TransformTupleFunctor internally.
   * \tparam Tuple         Type of the std::tuple to transform.
   * \tparam Args          Types of extra argument to call the transformation
   *                       function with.
   *
   * \param orig Tuple value to be transformed.
   * \param args Extra arguments values to provide to the transformation
   *             function.
   *
   * The \c TypeEvaluator class template should be suitable as the \c TE
   * template argument for TransformTupleFunctor.  It has the following form
   * (an extension of the \c TypeEvaluator template argument of ForEachType):
   *
   * \code
   * template <class T>
   * struct TypeEvaluator
   * {
   *   typedef UserDefined Type;
   *
   *   template<class... Args>
   *   static Type apply(T& t, Args&... args);
   * };
   * \endcode
   *
   * \sa genericTransforTuple(), ForEachType, AddRefTypeEvaluator, and
   *     AddPtrTypeEvaluator.
   */
  template<template<class> class TypeEvaluator, class Tuple, class... Args>
  auto transformTuple(Tuple&& orig, Args&&... args) ->
    decltype(genericTransformTuple(orig, makeTransformTupleFunctor<TypeEvaluator>(args...)))
  {
    return genericTransformTuple(orig, makeTransformTupleFunctor<TypeEvaluator>(args...));
  }

  //! \c TypeEvaluator to turn a type \c T into a reference to \c T
  /**
   * This is suitable as the \c TypeEvaluator template parameter for
   * ForEachType and transformTuple().
   */
  template<class T>
  struct AddRefTypeEvaluator
  {
    typedef T& Type;
    static Type apply(T& t)
    {
      return t;
    }
  };

  //! \c TypeEvaluator to turn a type \c T into a pointer to \c T
  /**
   * This is suitable as the \c TypeEvaluator template parameter for
   * ForEachType and transformTuple().
   */
  template<class T>
  struct AddPtrTypeEvaluator
  {
    typedef typename std::remove_reference<T>::type* Type;
    static Type apply(T& t)
    {
      return &t;
    }
  };

  // Specialization, in case the type is already a reference
  template<class T>
  struct AddPtrTypeEvaluator<T&>
  {
    typedef typename std::remove_reference<T>::type* Type;
    static Type apply(T& t)
    {
      return &t;
    }
  };

  /**
   * @brief Helper template which implements iteration over all storage
   * elements in a std::tuple.
   *
   * Compile-time constructs that allows one to process all elements in a std::tuple.
   * The exact operation performed on an element is defined by a function
   * object, which needs to implement a visit method which is applicable to
   * all storage elements of a std::tuple.  Each std::tuple element is visited once, and
   * the iteration is done in ascending order.
   *
   * The following example implements a function object which counts the
   * elements in a std::tuple
   *
   * \code
   * template <class T>
   * struct Counter
   * {
   *   Counter() :
   *     result_(0)
   *   {}
   *
   *   template <class T>
   *   void visit(T& elem)
   *   {
   *     ++result_;
   *   }
   *
   *   int result_;
   * };
   * \endcode
   *
   * The number of elements in the std::tuple are stored in the member variable
   * result_. The Counter can be used as follows, assuming a std::tuple t of type
   * MyTuple is given:
   *
   * \code
   * Counter c;
   * ForEachValue<MyTuple> forEach(t);
   *
   * forEach.apply(c);
   * std::cout << "Number of elements is: " << c.result_ << std::endl;
   * \endcode
   */
  template<class Tuple>
  class ForEachValue
  {
  public:
    //! \brief Constructor
    //! \param t The std::tuple which we want to process.
    ForEachValue(Tuple& t) :
      t_(t)
    {}

    //! \brief Applies a function object to each storage element of the std::tuple.
    //! \param f Function object.
    template<class Functor>
    void apply(Functor& f) const
    {
      Hybrid::forEach(Std::make_index_sequence<std::tuple_size<Tuple>::value>{},
        [&](auto i){f.visit(std::get<i>(t_));});
    }
  private:
    Tuple& t_;
  };

  /**
   * @brief Extension of ForEachValue to two std::tuple's.
   *
   * This class provides the framework to process two std::tuple's at once. It works
   * the same as ForEachValue, just that the corresponding function object
   * takes one argument from the first std::tuple and one argument from the second.
   *
   * \note You have to ensure that the two std::tuple's you provide are compatible
   * in the sense that they have the same length and that the objects passed
   * to the function objects are related in meaningful way. The best way to
   * enforce it is to build the second std::tuple from the existing first std::tuple
   * using ForEachType.
   */
  template<class Tuple1, class Tuple2>
  class ForEachValuePair
  {
  public:
    //! Constructor
    //! \param t1 First std::tuple.
    //! \param t2 Second std::tuple.
    ForEachValuePair(Tuple1& t1, Tuple2& t2) :
      t1_(t1),
      t2_(t2)
    {}

    //! Applies the function object f to the pair of std::tuple's.
    //! \param f The function object to apply on the pair of std::tuple's.
    template<class Functor>
    void apply(Functor& f)
    {
      Hybrid::forEach(Std::make_index_sequence<std::tuple_size<Tuple1>::value>{},
        [&](auto i){f.visit(std::get<i>(t1_), std::get<i>(t2_));});
    }
  private:
    Tuple1& t1_;
    Tuple2& t2_;
  };

  /**
   * @brief Type for reverse element access.
   *
   * Counterpart to ElementType for reverse element access.
   */
  template<int N, class Tuple>
  struct AtType
  {
    typedef typename std::tuple_element<std::tuple_size<Tuple>::value - N - 1, Tuple>::type Type;
  };

  /**
   * @brief Reverse element access.
   *
   * While Element<...> gives you the arguments beginning at the front of a
   * std::tuple, At<...> starts at the end, which may be more convenient, depending
   * on how you built your std::tuple.
   */
  template<int N>
  struct At
  {
    template<typename Tuple>
    static typename TupleAccessTraits<typename AtType<N, Tuple>::Type>::NonConstType
    get(Tuple& t)
    {
      return std::get<std::tuple_size<Tuple>::value - N - 1>(t);
    }

    template<typename Tuple>
    static typename TupleAccessTraits<typename AtType<N, Tuple>::Type>::ConstType
    get(const Tuple& t)
    {
      return std::get<std::tuple_size<Tuple>::value - N - 1>(t);
    }
  };

  /**
   * @brief Deletes all objects pointed to in a std::tuple of pointers.
   */
  template<class Tuple>
  struct PointerPairDeletor
  {
    template<typename... Ts>
    static void apply(std::tuple<Ts...>& t)
    {
      Hybrid::forEach(t,[&](auto&& ti){delete ti; ti=nullptr;});
    }
  };

  /**
   * @brief Finding the index of a certain type in a std::tuple
   *
   * \tparam Tuple     The std::tuple type to search in.
   * \tparam Predicate Predicate which tells FirstPredicateIndex which types
   *                   in Tuple to accept.  This should be a class template
   *                   taking a single type template argument.  When
   *                   instantiated, it should contain a static member
   *                   constant \c value which should be convertible to bool.
   *                   A type is accepted if \c value is \c true, otherwise it
   *                   is rejected and the next type is tried.  Look at IsType
   *                   for a sample implementation.
   * \tparam start     First index to try.  This can be adjusted to skip
   *                   leading tuple elements.
   * \tparam size      This parameter is an implementation detail and should
   *                   not be adjusted by the users of this class.  It should
   *                   always be equal to the size of the std::tuple.
   *
   * This class can search for a type in std::tuple. It will apply the predicate
   * to each type in std::tuple in turn, and set its member constant \c value to
   * the index of the first type that was accepted by the predicate.  If none
   * of the types are accepted by the predicate, a static_assert is triggered.
   */
  template<class Tuple, template<class> class Predicate, std::size_t start = 0,
      std::size_t size = std::tuple_size<Tuple>::value>
  class FirstPredicateIndex :
    public std::conditional<Predicate<typename std::tuple_element<start,
                Tuple>::type>::value,
        std::integral_constant<std::size_t, start>,
        FirstPredicateIndex<Tuple, Predicate, start+1> >::type
  {
    static_assert(std::tuple_size<Tuple>::value == size, "The \"size\" "
                       "template parameter of FirstPredicateIndex is an "
                       "implementation detail and should never be set "
                       "explicitly!");
  };

#ifndef DOXYGEN
  template<class Tuple, template<class> class Predicate, std::size_t size>
  class FirstPredicateIndex<Tuple, Predicate, size, size>
  {
    static_assert(Std::to_false_type<Tuple>::value, "None of the std::tuple element "
                       "types matches the predicate!");
  };
#endif // !DOXYGEN

  /**
   * @brief Generator for predicates accepting one particular type
   *
   * \tparam T The type to accept.
   *
   * The generated predicate class is useful together with
   * FirstPredicateIndex.  It will accept exactly the type that is given as
   * the \c T template parameter.
   */
  template<class T>
  struct IsType
  {
    //! @brief The actual predicate
    template<class U>
    struct Predicate : public std::is_same<T, U> {};
  };

  /**
   * @brief Find the first occurrence of a type in a std::tuple
   *
   * \tparam Tuple The std::tuple type to search in.
   * \tparam T     Type to search for.
   * \tparam start First index to try.  This can be adjusted to skip leading
   *               std::tuple elements.
   *
   * This class can search for a particular type in std::tuple. It will check each
   * type in the std::tuple in turn, and set its member constant \c value to the
   * index of the first occurrence of type was found.  If the type was not
   * found, a static_assert is triggered.
   */
  template<class Tuple, class T, std::size_t start = 0>
  struct FirstTypeIndex :
    public FirstPredicateIndex<Tuple, IsType<T>::template Predicate, start>
  { };

  /**
   * \brief Helper template to append a type to a std::tuple
   *
   * \tparam Tuple The std::tuple type to extend
   * \tparam T     The type to be appended to the std::tuple
   */
  template<class Tuple, class T>
  struct PushBackTuple;

  template<class... Args, class T>
  struct PushBackTuple<typename std::tuple<Args...>, T>
  {
    typedef typename std::tuple<Args..., T> type;
  };

  /**
   * \brief Helper template to prepend a type to a std::tuple
   *
   * \tparam Tuple The std::tuple type to extend
   * \tparam T     The type to be prepended to the std::tuple
   */
  template<class Tuple, class T>
  struct PushFrontTuple;

  template<class... Args, class T>
  struct PushFrontTuple<typename std::tuple<Args...>, T>
  {
    typedef typename std::tuple<T, Args...> type;
  };

  /**
   * \brief Apply reduce with meta binary function to template
   *
   * For a tuple\<T0,T1,...,TN-1,TN,...\> the exported result is
   *
   * F\< ... F\< F\< F\<Seed,T0\>\::type, T1\>\::type, T2\>\::type,  ... TN-1\>\::type
   *
   * \tparam F Binary meta function
   * \tparam Tuple Apply reduce operation to this std::tuple
   * \tparam Seed Initial value for reduce operation
   * \tparam N Reduce the first N std::tuple elements
   */
  template<
      template <class, class> class F,
      class Tuple,
      class Seed=std::tuple<>,
      int N=std::tuple_size<Tuple>::value>
  struct ReduceTuple
  {
    typedef typename ReduceTuple<F, Tuple, Seed, N-1>::type Accumulated;
    typedef typename std::tuple_element<N-1, Tuple>::type Value;

    //! Result of the reduce operation
    typedef typename F<Accumulated, Value>::type type;
  };

  /**
   * \brief Apply reduce with meta binary function to template
   *
   * Specialization for reduction of 0 elements.
   * The exported result type is Seed.
   *
   * \tparam F Binary meta function
   * \tparam Tuple Apply reduce operation to this std::tuple
   * \tparam Seed Initial value for reduce operation
   */
  template<
      template <class, class> class F,
      class Tuple,
      class Seed>
  struct ReduceTuple<F, Tuple, Seed, 0>
  {
    //! Result of the reduce operation
    typedef Seed type;
  };

  /**
   * \brief Join two std::tuple's
   *
   * For Head=std::tuple<T0,...,TN> and Tail=std::tuple<S0,...,SM>
   * the exported result is std::tuple<T0,..,TN,S0,...,SM>.
   *
   * \tparam Head Head of resulting std::tuple
   * \tparam Tail Tail of resulting std::tuple
   */
  template<class Head, class Tail>
  struct JoinTuples
  {
    //! Result of the join operation
    typedef typename ReduceTuple<PushBackTuple, Tail, Head>::type type;
  };

  /**
   * \brief Flatten a std::tuple of std::tuple's
   *
   * This flattens a std::tuple of tuples std::tuple<std::tuple<T0,...,TN>, std::tuple<S0,...,SM> >
   * and exports std::tuple<T0,..,TN,S0,...,SM>.
   *
   * \tparam TupleTuple A std::tuple of std::tuple's
   */
  template<class Tuple>
  struct FlattenTuple
  {
    //! Result of the flatten operation
    typedef typename ReduceTuple<JoinTuples, Tuple>::type type;
  };

  /** }@ */
}

#endif