/usr/include/dlib/svm/kcentroid_abstract.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_KCENTROId_ABSTRACT_
#ifdef DLIB_KCENTROId_ABSTRACT_
#include "../algs.h"
#include "../serialize.h"
#include "kernel_abstract.h"
namespace dlib
{
template <
typename kernel_type
>
class kcentroid
{
/*!
REQUIREMENTS ON kernel_type
is a kernel function object as defined in dlib/svm/kernel_abstract.h
INITIAL VALUE
- dictionary_size() == 0
- samples_trained() == 0
WHAT THIS OBJECT REPRESENTS
This object represents a weighted sum of sample points in a kernel induced
feature space. It can be used to kernelize any algorithm that requires only
the ability to perform vector addition, subtraction, scalar multiplication,
and inner products.
An example use of this object is as an online algorithm for recursively estimating
the centroid of a sequence of training points. This object then allows you to
compute the distance between the centroid and any test points. So you can use
this object to predict how similar a test point is to the data this object has
been trained on (larger distances from the centroid indicate dissimilarity/anomalous
points).
Also note that the algorithm internally keeps a set of "dictionary vectors"
that are used to represent the centroid. You can force the algorithm to use
no more than a set number of vectors by setting the 3rd constructor argument
to whatever you want.
This object uses the sparsification technique described in the paper The
Kernel Recursive Least Squares Algorithm by Yaakov Engel. This technique
allows us to keep the number of dictionary vectors down to a minimum. In fact,
the object has a user selectable tolerance parameter that controls the trade off
between accuracy and number of stored dictionary vectors.
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
kcentroid (
);
/*!
ensures
- this object is properly initialized
- #tolerance() == 0.001
- #get_kernel() == kernel_type() (i.e. whatever the kernel's default value is)
- #max_dictionary_size() == 1000000
- #remove_oldest_first() == false
!*/
explicit kcentroid (
const kernel_type& kernel_,
scalar_type tolerance_ = 0.001,
unsigned long max_dictionary_size_ = 1000000,
bool remove_oldest_first_ = false
);
/*!
requires
- tolerance > 0
- max_dictionary_size_ > 1
ensures
- this object is properly initialized
- #tolerance() == tolerance_
- #get_kernel() == kernel_
- #max_dictionary_size() == max_dictionary_size_
- #remove_oldest_first() == remove_oldest_first_
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a const reference to the kernel used by this object
!*/
unsigned long max_dictionary_size(
) const;
/*!
ensures
- returns the maximum number of dictionary vectors this object will
use at a time. That is, dictionary_size() will never be greater
than max_dictionary_size().
!*/
bool remove_oldest_first (
) const;
/*!
ensures
- When the maximum dictionary size is reached this object sometimes
needs to discard dictionary vectors when new samples are added via
one of the train functions. When this happens this object chooses
the dictionary vector to discard based on the setting of the
remove_oldest_first() parameter.
- if (remove_oldest_first() == true) then
- This object discards the oldest dictionary vectors when necessary.
This is an appropriate mode when using this object in an online
setting and the input training samples come from a slowly
varying distribution.
- else (remove_oldest_first() == false) then
- This object discards the most linearly dependent dictionary vectors
when necessary. This it the default behavior and should be used
in most cases.
!*/
unsigned long dictionary_size (
) const;
/*!
ensures
- returns the number of basis vectors in the dictionary. These are
the basis vectors used by this object to represent a point in kernel
feature space.
!*/
scalar_type samples_trained (
) const;
/*!
ensures
- returns the number of samples this object has been trained on so far
!*/
scalar_type tolerance(
) const;
/*!
ensures
- returns the tolerance to use for the approximately linearly dependent
test used for sparsification (see the KRLS paper for details). This is
a number which governs how accurately this object will approximate the
centroid it is learning. Smaller values generally result in a more
accurate estimate while also resulting in a bigger set of vectors in
the dictionary. Bigger tolerances values result in a less accurate
estimate but also in less dictionary vectors. (Note that in any case,
the max_dictionary_size() limits the number of dictionary vectors no
matter the setting of the tolerance)
- The exact meaning of the tolerance parameter is the following:
Imagine that we have an empirical_kernel_map that contains all
the current dictionary vectors. Then the tolerance is the minimum
projection error (as given by empirical_kernel_map::project()) required
to cause us to include a new vector in the dictionary. So each time
you call train() the kcentroid basically just computes the projection
error for that new sample and if it is larger than the tolerance
then that new sample becomes part of the dictionary.
!*/
void clear_dictionary (
);
/*!
ensures
- clears out all learned data (e.g. #dictionary_size() == 0)
- #samples_seen() == 0
!*/
scalar_type operator() (
const kcentroid& x
) const;
/*!
requires
- x.get_kernel() == get_kernel()
ensures
- returns the distance in kernel feature space between this centroid and the
centroid represented by x.
!*/
scalar_type operator() (
const sample_type& x
) const;
/*!
ensures
- returns the distance in kernel feature space between the sample x and the
current estimate of the centroid of the training samples given
to this object so far.
!*/
scalar_type inner_product (
const sample_type& x
) const;
/*!
ensures
- returns the inner product of the given x point and the current
estimate of the centroid of the training samples given to this object
so far.
!*/
scalar_type inner_product (
const kcentroid& x
) const;
/*!
requires
- x.get_kernel() == get_kernel()
ensures
- returns the inner product between x and this centroid object.
!*/
scalar_type squared_norm (
) const;
/*!
ensures
- returns the squared norm of the centroid vector represented by this
object. I.e. returns this->inner_product(*this)
!*/
void train (
const sample_type& x
);
/*!
ensures
- adds the sample x into the current estimate of the centroid
- also note that calling this function is equivalent to calling
train(x, samples_trained()/(samples_trained()+1.0, 1.0/(samples_trained()+1.0).
That is, this function finds the normal unweighted centroid of all training points.
!*/
void train (
const sample_type& x,
scalar_type cscale,
scalar_type xscale
);
/*!
ensures
- adds the sample x into the current estimate of the centroid but
uses a user given scale. That is, this function performs:
- new_centroid = cscale*old_centroid + xscale*x
- This function allows you to weight different samples however
you want.
!*/
void scale_by (
scalar_type cscale
);
/*!
ensures
- multiplies the current centroid vector by the given scale value.
This function is equivalent to calling train(some_x_value, cscale, 0).
So it performs:
- new_centroid == cscale*old_centroid
!*/
scalar_type test_and_train (
const sample_type& x
);
/*!
ensures
- calls train(x)
- returns (*this)(x)
- The reason this function exists is because train() and operator()
both compute some of the same things. So this function is more efficient
than calling both individually.
!*/
scalar_type test_and_train (
const sample_type& x,
scalar_type cscale,
scalar_type xscale
);
/*!
ensures
- calls train(x,cscale,xscale)
- returns (*this)(x)
- The reason this function exists is because train() and operator()
both compute some of the same things. So this function is more efficient
than calling both individually.
!*/
void swap (
kcentroid& item
);
/*!
ensures
- swaps *this with item
!*/
distance_function<kernel_type> get_distance_function (
) const;
/*!
ensures
- returns a distance function F that represents the point learned
by this object so far. I.e. it is the case that:
- for all x: F(x) == (*this)(x)
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename kernel_type
>
void swap(
kcentroid<kernel_type>& a,
kcentroid<kernel_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename kernel_type
>
void serialize (
const kcentroid<kernel_type>& item,
std::ostream& out
);
/*!
provides serialization support for kcentroid objects
!*/
template <
typename kernel_type
>
void deserialize (
kcentroid<kernel_type>& item,
std::istream& in
);
/*!
provides serialization support for kcentroid objects
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_KCENTROId_ABSTRACT_
|