/usr/include/dlib/statistics/statistics_abstract.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | // Copyright (C) 2008 Davis E. King (davis@dlib.net), Steve Taylor
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_STATISTICs_ABSTRACT_
#ifdef DLIB_STATISTICs_ABSTRACT_
#include <limits>
#include <cmath>
#include "../matrix/matrix_abstract.h"
#include "../svm/sparse_vector_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename T,
typename alloc
>
double mean_sign_agreement (
const std::vector<T,alloc>& a,
const std::vector<T,alloc>& b
);
/*!
requires
- a.size() == b.size()
ensures
- returns the number of times a[i] has the same sign as b[i] divided by
a.size(). So we return the probability that elements of a and b have
the same sign.
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename alloc
>
double correlation (
const std::vector<T,alloc>& a,
const std::vector<T,alloc>& b
);
/*!
requires
- a.size() == b.size()
- a.size() > 1
ensures
- returns the correlation coefficient between all the elements of a and b.
(i.e. how correlated is a(i) with b(i))
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename alloc
>
double covariance (
const std::vector<T,alloc>& a,
const std::vector<T,alloc>& b
);
/*!
requires
- a.size() == b.size()
- a.size() > 1
ensures
- returns the covariance between all the elements of a and b.
(i.e. how does a(i) vary with b(i))
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename alloc
>
double r_squared (
const std::vector<T,alloc>& a,
const std::vector<T,alloc>& b
);
/*!
requires
- a.size() == b.size()
- a.size() > 1
ensures
- returns the R^2 coefficient of determination between all the elements of a and b.
This value is just the square of correlation(a,b).
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename alloc
>
double mean_squared_error (
const std::vector<T,alloc>& a,
const std::vector<T,alloc>& b
);
/*!
requires
- a.size() == b.size()
ensures
- returns the mean squared error between all the elements of a and b.
(i.e. mean(squared(mat(a)-mat(b))))
!*/
// ----------------------------------------------------------------------------------------
template <
typename T
>
class running_stats
{
/*!
REQUIREMENTS ON T
- T must be a float, double, or long double type
INITIAL VALUE
- mean() == 0
- current_n() == 0
WHAT THIS OBJECT REPRESENTS
This object represents something that can compute the running mean,
variance, skewness, and excess kurtosis of a stream of real numbers.
!*/
public:
running_stats(
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- this object has its initial value
- clears all memory of any previous data points
!*/
T current_n (
) const;
/*!
ensures
- returns the number of points given to this object so far.
!*/
void add (
const T& val
);
/*!
ensures
- updates the mean, variance, skewness, and kurtosis stored in this object
so that the new value is factored into them.
- #mean() == mean()*current_n()/(current_n()+1) + val/(current_n()+1).
(i.e. the updated mean value that takes the new value into account)
- #variance() == the updated variance that takes this new value into account.
- #skewness() == the updated skewness that takes this new value into account.
- #ex_kurtosis() == the updated kurtosis that takes this new value into account.
- #current_n() == current_n() + 1
!*/
T mean (
) const;
/*!
ensures
- returns the mean of all the values presented to this object
so far.
!*/
T variance (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample variance of all the values presented to this
object so far.
!*/
T stddev (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sampled standard deviation of all the values
presented to this object so far.
!*/
T skewness (
) const;
/*!
requires
- current_n() > 2
ensures
- returns the unbiased sample skewness of all the values presented
to this object so far.
!*/
T ex_kurtosis(
) const;
/*!
requires
- current_n() > 3
ensures
- returns the unbiased sample kurtosis of all the values presented
to this object so far.
!*/
T max (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the largest value presented to this object so far.
!*/
T min (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the smallest value presented to this object so far.
!*/
T scale (
const T& val
) const;
/*!
requires
- current_n() > 1
ensures
- return (val-mean())/stddev();
!*/
running_stats operator+ (
const running_stats& rhs
) const;
/*!
ensures
- returns a new running_stats object that represents the combination of all
the values given to *this and rhs. That is, this function returns a
running_stats object, R, that is equivalent to what you would obtain if
all calls to this->add() and rhs.add() had instead been done to R.
!*/
};
template <typename T>
void serialize (
const running_stats<T>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
template <typename T>
void deserialize (
running_stats<T>& item,
std::istream& in
);
/*!
provides serialization support
!*/
// ----------------------------------------------------------------------------------------
template <
typename T
>
class running_scalar_covariance
{
/*!
REQUIREMENTS ON T
- T must be a float, double, or long double type
INITIAL VALUE
- mean_x() == 0
- mean_y() == 0
- current_n() == 0
WHAT THIS OBJECT REPRESENTS
This object represents something that can compute the running covariance
of a stream of real number pairs.
!*/
public:
running_scalar_covariance(
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- this object has its initial value
- clears all memory of any previous data points
!*/
void add (
const T& x,
const T& y
);
/*!
ensures
- updates the statistics stored in this object so that
the new pair (x,y) is factored into them.
- #current_n() == current_n() + 1
!*/
T current_n (
) const;
/*!
ensures
- returns the number of points given to this object so far.
!*/
T mean_x (
) const;
/*!
ensures
- returns the mean value of all x samples presented to this object
via add().
!*/
T mean_y (
) const;
/*!
ensures
- returns the mean value of all y samples presented to this object
via add().
!*/
T covariance (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the covariance between all the x and y samples presented
to this object via add()
!*/
T correlation (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the correlation coefficient between all the x and y samples
presented to this object via add()
!*/
T variance_x (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample variance value of all x samples presented
to this object via add().
!*/
T variance_y (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample variance value of all y samples presented
to this object via add().
!*/
T stddev_x (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample standard deviation of all x samples
presented to this object via add().
!*/
T stddev_y (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample standard deviation of all y samples
presented to this object via add().
!*/
running_scalar_covariance operator+ (
const running_covariance& rhs
) const;
/*!
ensures
- returns a new running_scalar_covariance object that represents the
combination of all the values given to *this and rhs. That is, this
function returns a running_scalar_covariance object, R, that is
equivalent to what you would obtain if all calls to this->add() and
rhs.add() had instead been done to R.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class running_covariance
{
/*!
REQUIREMENTS ON matrix_type
Must be some type of dlib::matrix.
INITIAL VALUE
- in_vector_size() == 0
- current_n() == 0
WHAT THIS OBJECT REPRESENTS
This object is a simple tool for computing the mean and
covariance of a sequence of vectors.
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
running_covariance(
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- this object has its initial value
- clears all memory of any previous data points
!*/
long current_n (
) const;
/*!
ensures
- returns the number of samples that have been presented to this object
!*/
long in_vector_size (
) const;
/*!
ensures
- if (this object has been presented with any input vectors or
set_dimension() has been called) then
- returns the dimension of the column vectors used with this object
- else
- returns 0
!*/
void set_dimension (
long size
);
/*!
requires
- size > 0
ensures
- #in_vector_size() == size
- #current_n() == 0
!*/
template <typename T>
void add (
const T& val
);
/*!
requires
- val must represent a column vector. It can either be a dlib::matrix
object or some kind of unsorted sparse vector type. See the top of
dlib/svm/sparse_vector_abstract.h for a definition of unsorted sparse vector.
- val must have a number of dimensions which is compatible with the current
setting of in_vector_size(). In particular, this means that the
following must hold:
- if (val is a dlib::matrix) then
- in_vector_size() == 0 || val.size() == val_vector_size()
- else
- max_index_plus_one(val) <= in_vector_size()
- in_vector_size() > 0
(i.e. you must call set_dimension() prior to calling add() if
you want to use sparse vectors.)
ensures
- updates the mean and covariance stored in this object so that
the new value is factored into them.
- if (val is a dlib::matrix) then
- #in_vector_size() == val.size()
!*/
const column_matrix mean (
) const;
/*!
requires
- in_vector_size() != 0
ensures
- returns the mean of all the vectors presented to this object
so far.
!*/
const general_matrix covariance (
) const;
/*!
requires
- in_vector_size() != 0
- current_n() > 1
ensures
- returns the unbiased sample covariance matrix for all the vectors
presented to this object so far.
!*/
const running_covariance operator+ (
const running_covariance& item
) const;
/*!
requires
- in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()
(i.e. the in_vector_size() of *this and item must match or one must be zero)
ensures
- returns a new running_covariance object that represents the combination of all
the vectors given to *this and item. That is, this function returns a
running_covariance object, R, that is equivalent to what you would obtain if all
calls to this->add() and item.add() had instead been done to R.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class running_cross_covariance
{
/*!
REQUIREMENTS ON matrix_type
Must be some type of dlib::matrix.
INITIAL VALUE
- x_vector_size() == 0
- y_vector_size() == 0
- current_n() == 0
WHAT THIS OBJECT REPRESENTS
This object is a simple tool for computing the mean and cross-covariance
matrices of a sequence of pairs of vectors.
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
running_cross_covariance(
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- This object has its initial value.
- Clears all memory of any previous data points.
!*/
long x_vector_size (
) const;
/*!
ensures
- if (this object has been presented with any input vectors or
set_dimensions() has been called) then
- returns the dimension of the x vectors given to this object via add().
- else
- returns 0
!*/
long y_vector_size (
) const;
/*!
ensures
- if (this object has been presented with any input vectors or
set_dimensions() has been called) then
- returns the dimension of the y vectors given to this object via add().
- else
- returns 0
!*/
void set_dimensions (
long x_size,
long y_size
);
/*!
requires
- x_size > 0
- y_size > 0
ensures
- #x_vector_size() == x_size
- #y_vector_size() == y_size
- #current_n() == 0
!*/
long current_n (
) const;
/*!
ensures
- returns the number of samples that have been presented to this object.
!*/
template <typename T, typename U>
void add (
const T& x,
const U& y
);
/*!
requires
- x and y must represent column vectors. They can either be dlib::matrix
objects or some kind of unsorted sparse vector type. See the top of
dlib/svm/sparse_vector_abstract.h for a definition of unsorted sparse vector.
- x and y must have a number of dimensions which is compatible with the
current setting of x_vector_size() and y_vector_size(). In particular,
this means that the following must hold:
- if (x or y is a sparse vector type) then
- x_vector_size() > 0 && y_vector_size() > 0
(i.e. you must call set_dimensions() prior to calling add() if
you want to use sparse vectors.)
- if (x is a dlib::matrix) then
- x_vector_size() == 0 || x.size() == x_vector_size()
- else
- max_index_plus_one(x) <= x_vector_size()
- if (y is a dlib::matrix) then
- y_vector_size() == 0 || y.size() == y_vector_size()
- else
- max_index_plus_one(y) <= y_vector_size()
ensures
- updates the mean and cross-covariance matrices stored in this object so
that the new (x,y) vector pair is factored into them.
- if (x is a dlib::matrix) then
- #x_vector_size() == x.size()
- if (y is a dlib::matrix) then
- #y_vector_size() == y.size()
!*/
const column_matrix mean_x (
) const;
/*!
requires
- current_n() != 0
ensures
- returns the mean of all the x vectors presented to this object so far.
- The returned vector will have x_vector_size() dimensions.
!*/
const column_matrix mean_y (
) const;
/*!
requires
- current_n() != 0
ensures
- returns the mean of all the y vectors presented to this object so far.
- The returned vector will have y_vector_size() dimensions.
!*/
const general_matrix covariance_xy (
) const;
/*!
requires
- current_n() > 1
ensures
- returns the unbiased sample cross-covariance matrix for all the vector
pairs presented to this object so far. In particular, returns a matrix
M such that:
- M.nr() == x_vector_size()
- M.nc() == y_vector_size()
- M == the cross-covariance matrix of the data given to add().
!*/
const running_cross_covariance operator+ (
const running_cross_covariance& item
) const;
/*!
requires
- x_vector_size() == 0 || item.x_vector_size() == 0 || x_vector_size() == item.x_vector_size()
(i.e. the x_vector_size() of *this and item must match or one must be zero)
- y_vector_size() == 0 || item.y_vector_size() == 0 || y_vector_size() == item.y_vector_size()
(i.e. the y_vector_size() of *this and item must match or one must be zero)
ensures
- returns a new running_cross_covariance object that represents the
combination of all the vectors given to *this and item. That is, this
function returns a running_cross_covariance object, R, that is equivalent
to what you would obtain if all calls to this->add() and item.add() had
instead been done to R.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class vector_normalizer
{
/*!
REQUIREMENTS ON matrix_type
- must be a dlib::matrix object capable of representing column
vectors
INITIAL VALUE
- in_vector_size() == 0
- out_vector_size() == 0
- means().size() == 0
- std_devs().size() == 0
WHAT THIS OBJECT REPRESENTS
This object represents something that can learn to normalize a set
of column vectors. In particular, normalized column vectors should
have zero mean and a variance of one.
Also, if desired, this object can use principal component
analysis for the purposes of reducing the number of elements in a
vector.
THREAD SAFETY
Note that this object contains a cached matrix object it uses
to store intermediate results for normalization. This avoids
needing to reallocate it every time this object performs normalization
but also makes it non-thread safe. So make sure you don't share
instances of this object between threads.
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef matrix_type result_type;
template <typename vector_type>
void train (
const vector_type& samples
);
/*!
requires
- samples.size() > 0
- samples == a column matrix or something convertible to a column
matrix via mat(). Also, x should contain
matrix_type objects that represent nonempty column vectors.
- samples does not contain any infinite or NaN values
ensures
- #in_vector_size() == samples(0).nr()
- #out_vector_size() == samples(0).nr()
- This object has learned how to normalize vectors that look like
vectors in the given set of samples.
- #means() == mean(samples)
- #std_devs() == reciprocal(sqrt(variance(samples)));
!*/
long in_vector_size (
) const;
/*!
ensures
- returns the number of rows that input vectors are
required to contain if they are to be normalized by
this object.
!*/
long out_vector_size (
) const;
/*!
ensures
- returns the number of rows in the normalized vectors
that come out of this object.
!*/
const matrix_type& means (
) const;
/*!
ensures
- returns a matrix M such that:
- M.nc() == 1
- M.nr() == in_vector_size()
- M(i) == the mean of the ith input feature shown to train()
!*/
const matrix_type& std_devs (
) const;
/*!
ensures
- returns a matrix SD such that:
- SD.nc() == 1
- SD.nr() == in_vector_size()
- SD(i) == the reciprocal of the standard deviation of the ith
input feature shown to train()
!*/
const result_type& operator() (
const matrix_type& x
) const;
/*!
requires
- x.nr() == in_vector_size()
- x.nc() == 1
ensures
- returns a normalized version of x, call it Z, that has the
following properties:
- Z.nr() == out_vector_size()
- Z.nc() == 1
- the mean of each element of Z is 0
- the variance of each element of Z is 1
- Z == pointwise_multiply(x-means(), std_devs());
!*/
void swap (
vector_normalizer& item
);
/*!
ensures
- swaps *this and item
!*/
};
template <
typename matrix_type
>
inline void swap (
vector_normalizer<matrix_type>& a,
vector_normalizer<matrix_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename matrix_type,
>
void deserialize (
vector_normalizer<matrix_type>& item,
std::istream& in
);
/*!
provides deserialization support
!*/
template <
typename matrix_type,
>
void serialize (
const vector_normalizer<matrix_type>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class vector_normalizer_pca
{
/*!
REQUIREMENTS ON matrix_type
- must be a dlib::matrix object capable of representing column
vectors
INITIAL VALUE
- in_vector_size() == 0
- out_vector_size() == 0
- means().size() == 0
- std_devs().size() == 0
- pca_matrix().size() == 0
WHAT THIS OBJECT REPRESENTS
This object represents something that can learn to normalize a set
of column vectors. In particular, normalized column vectors should
have zero mean and a variance of one.
Also, this object uses principal component analysis for the purposes
of reducing the number of elements in a vector.
THREAD SAFETY
Note that this object contains a cached matrix object it uses
to store intermediate results for normalization. This avoids
needing to reallocate it every time this object performs normalization
but also makes it non-thread safe. So make sure you don't share
instances of this object between threads.
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef matrix<scalar_type,0,1,mem_manager_type> result_type;
template <typename vector_type>
void train (
const vector_type& samples,
const double eps = 0.99
);
/*!
requires
- 0 < eps <= 1
- samples.size() > 0
- samples == a column matrix or something convertible to a column
matrix via mat(). Also, x should contain
matrix_type objects that represent nonempty column vectors.
- samples does not contain any infinite or NaN values
ensures
- This object has learned how to normalize vectors that look like
vectors in the given set of samples.
- Principal component analysis is performed to find a transform
that might reduce the number of output features.
- #in_vector_size() == samples(0).nr()
- 0 < #out_vector_size() <= samples(0).nr()
- eps is a number that controls how "lossy" the pca transform will be.
Large values of eps result in #out_vector_size() being larger and
smaller values of eps result in #out_vector_size() being smaller.
- #means() == mean(samples)
- #std_devs() == reciprocal(sqrt(variance(samples)));
- #pca_matrix() == the PCA transform matrix that is out_vector_size()
rows by in_vector_size() columns.
!*/
long in_vector_size (
) const;
/*!
ensures
- returns the number of rows that input vectors are
required to contain if they are to be normalized by
this object.
!*/
long out_vector_size (
) const;
/*!
ensures
- returns the number of rows in the normalized vectors
that come out of this object.
!*/
const matrix<scalar_type,0,1,mem_manager_type>& means (
) const;
/*!
ensures
- returns a matrix M such that:
- M.nc() == 1
- M.nr() == in_vector_size()
- M(i) == the mean of the ith input feature shown to train()
!*/
const matrix<scalar_type,0,1,mem_manager_type>& std_devs (
) const;
/*!
ensures
- returns a matrix SD such that:
- SD.nc() == 1
- SD.nr() == in_vector_size()
- SD(i) == the reciprocal of the standard deviation of the ith
input feature shown to train()
!*/
const matrix<scalar_type,0,0,mem_manager_type>& pca_matrix (
) const;
/*!
ensures
- returns a matrix PCA such that:
- PCA.nr() == out_vector_size()
- PCA.nc() == in_vector_size()
- PCA == the principal component analysis transformation
matrix
!*/
const result_type& operator() (
const matrix_type& x
) const;
/*!
requires
- x.nr() == in_vector_size()
- x.nc() == 1
ensures
- returns a normalized version of x, call it Z, that has the
following properties:
- Z.nr() == out_vector_size()
- Z.nc() == 1
- the mean of each element of Z is 0
- the variance of each element of Z is 1
- Z == pca_matrix()*pointwise_multiply(x-means(), std_devs());
!*/
void swap (
vector_normalizer_pca& item
);
/*!
ensures
- swaps *this and item
!*/
};
template <
typename matrix_type
>
inline void swap (
vector_normalizer_pca<matrix_type>& a,
vector_normalizer_pca<matrix_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename matrix_type,
>
void deserialize (
vector_normalizer_pca<matrix_type>& item,
std::istream& in
);
/*!
provides deserialization support
!*/
template <
typename matrix_type,
>
void serialize (
const vector_normalizer_pca<matrix_type>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STATISTICs_ABSTRACT_
|