This file is indexed.

/usr/include/dlib/statistics/statistics_abstract.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
// Copyright (C) 2008  Davis E. King (davis@dlib.net), Steve Taylor
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_STATISTICs_ABSTRACT_
#ifdef DLIB_STATISTICs_ABSTRACT_

#include <limits>
#include <cmath>
#include "../matrix/matrix_abstract.h"
#include "../svm/sparse_vector_abstract.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename T, 
        typename alloc
        >
    double mean_sign_agreement (
        const std::vector<T,alloc>& a,
        const std::vector<T,alloc>& b
    );
    /*!
        requires
            - a.size() == b.size()
        ensures
            - returns the number of times a[i] has the same sign as b[i] divided by
              a.size().  So we return the probability that elements of a and b have
              the same sign.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T, 
        typename alloc
        >
    double correlation (
        const std::vector<T,alloc>& a,
        const std::vector<T,alloc>& b
    );
    /*!
        requires
            - a.size() == b.size()
            - a.size() > 1
        ensures
            - returns the correlation coefficient between all the elements of a and b.
              (i.e. how correlated is a(i) with b(i))
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T, 
        typename alloc
        >
    double covariance (
        const std::vector<T,alloc>& a,
        const std::vector<T,alloc>& b
    );
    /*!
        requires
            - a.size() == b.size()
            - a.size() > 1
        ensures
            - returns the covariance between all the elements of a and b.
              (i.e. how does a(i) vary with b(i))
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T, 
        typename alloc
        >
    double r_squared (
        const std::vector<T,alloc>& a,
        const std::vector<T,alloc>& b
    );
    /*!
        requires
            - a.size() == b.size()
            - a.size() > 1
        ensures
            - returns the R^2 coefficient of determination between all the elements of a and b.
              This value is just the square of correlation(a,b).
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T, 
        typename alloc
        >
    double mean_squared_error (
        const std::vector<T,alloc>& a,
        const std::vector<T,alloc>& b
    );
    /*!
        requires
            - a.size() == b.size()
        ensures
            - returns the mean squared error between all the elements of a and b.
              (i.e. mean(squared(mat(a)-mat(b))))
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    class running_stats
    {
        /*!
            REQUIREMENTS ON T
                - T must be a float, double, or long double type

            INITIAL VALUE
                - mean() == 0
                - current_n() == 0

            WHAT THIS OBJECT REPRESENTS
                This object represents something that can compute the running mean, 
                variance, skewness, and excess kurtosis of a stream of real numbers.  
        !*/
    public:

        running_stats(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has its initial value
                - clears all memory of any previous data points
        !*/

        T current_n (
        ) const;
        /*!
            ensures
                - returns the number of points given to this object so far. 
        !*/

        void add (
            const T& val
        );
        /*!
            ensures
                - updates the mean, variance, skewness, and kurtosis stored in this object
                  so that the new value is factored into them.
                - #mean() == mean()*current_n()/(current_n()+1) + val/(current_n()+1).
                  (i.e. the updated mean value that takes the new value into account)
                - #variance() == the updated variance that takes this new value into account.
                - #skewness() == the updated skewness that takes this new value into account.
                - #ex_kurtosis() == the updated kurtosis that takes this new value into account.
                - #current_n() == current_n() + 1
        !*/

        T mean (
        ) const;
        /*!
            ensures
                - returns the mean of all the values presented to this object 
                  so far.
        !*/

        T variance (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample variance of all the values presented to this
                  object so far.
        !*/

        T stddev (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sampled standard deviation of all the values
                  presented to this object so far.
        !*/

        T skewness (
        ) const;
        /*!
            requires
                - current_n() > 2
            ensures
                - returns the unbiased sample skewness of all the values presented 
                  to this object so far.
        !*/

        T ex_kurtosis(
        ) const;
        /*!
            requires
                - current_n() > 3
            ensures
                - returns the unbiased sample kurtosis of all the values presented 
                  to this object so far.
        !*/

        T max (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the largest value presented to this object so far.
        !*/

        T min (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the smallest value presented to this object so far.
        !*/

        T scale (
            const T& val
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - return (val-mean())/stddev();
        !*/

        running_stats operator+ (
            const running_stats& rhs
        ) const;
        /*!
            ensures
                - returns a new running_stats object that represents the combination of all
                  the values given to *this and rhs.  That is, this function returns a
                  running_stats object, R, that is equivalent to what you would obtain if
                  all calls to this->add() and rhs.add() had instead been done to R.
        !*/
    };

    template <typename T>
    void serialize (
        const running_stats<T>& item, 
        std::ostream& out 
    );
    /*!
        provides serialization support 
    !*/

    template <typename T>
    void deserialize (
        running_stats<T>& item, 
        std::istream& in
    );
    /*!
        provides serialization support 
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    class running_scalar_covariance
    {
        /*!
            REQUIREMENTS ON T
                - T must be a float, double, or long double type

            INITIAL VALUE
                - mean_x() == 0
                - mean_y() == 0
                - current_n() == 0

            WHAT THIS OBJECT REPRESENTS
                This object represents something that can compute the running covariance 
                of a stream of real number pairs.
        !*/

    public:

        running_scalar_covariance(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has its initial value
                - clears all memory of any previous data points
        !*/

        void add (
            const T& x,
            const T& y
        );
        /*!
            ensures
                - updates the statistics stored in this object so that
                  the new pair (x,y) is factored into them.
                - #current_n() == current_n() + 1
        !*/

        T current_n (
        ) const;
        /*!
            ensures
                - returns the number of points given to this object so far. 
        !*/

        T mean_x (
        ) const;
        /*!
            ensures
                - returns the mean value of all x samples presented to this object
                  via add().
        !*/

        T mean_y (
        ) const;
        /*!
            ensures
                - returns the mean value of all y samples presented to this object
                  via add().
        !*/

        T covariance (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the covariance between all the x and y samples presented
                  to this object via add()
        !*/

        T correlation (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the correlation coefficient between all the x and y samples 
                  presented to this object via add()
        !*/

        T variance_x (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample variance value of all x samples presented 
                  to this object via add().
        !*/

        T variance_y (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample variance value of all y samples presented 
                  to this object via add().
        !*/

        T stddev_x (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample standard deviation of all x samples
                  presented to this object via add().
        !*/

        T stddev_y (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample standard deviation of all y samples
                  presented to this object via add().
        !*/

        running_scalar_covariance operator+ (
            const running_covariance& rhs
        ) const;
        /*!
            ensures
                - returns a new running_scalar_covariance object that represents the
                  combination of all the values given to *this and rhs.  That is, this
                  function returns a running_scalar_covariance object, R, that is
                  equivalent to what you would obtain if all calls to this->add() and
                  rhs.add() had instead been done to R.
        !*/
    };

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type
        >
    class running_covariance
    {
        /*!
            REQUIREMENTS ON matrix_type
                Must be some type of dlib::matrix.

            INITIAL VALUE
                - in_vector_size() == 0
                - current_n() == 0

            WHAT THIS OBJECT REPRESENTS
                This object is a simple tool for computing the mean and
                covariance of a sequence of vectors.  
        !*/
    public:

        typedef typename matrix_type::mem_manager_type mem_manager_type;
        typedef typename matrix_type::type scalar_type;
        typedef typename matrix_type::layout_type layout_type;
        typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
        typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;

        running_covariance(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has its initial value
                - clears all memory of any previous data points
        !*/

        long current_n (
        ) const;
        /*!
            ensures
                - returns the number of samples that have been presented to this object
        !*/

        long in_vector_size (
        ) const;
        /*!
            ensures
                - if (this object has been presented with any input vectors or
                  set_dimension() has been called) then
                    - returns the dimension of the column vectors used with this object
                - else
                    - returns 0
        !*/

        void set_dimension (
            long size
        );
        /*!
            requires
                - size > 0
            ensures
                - #in_vector_size() == size
                - #current_n() == 0
        !*/

        template <typename T>
        void add (
            const T& val
        );
        /*!
            requires
                - val must represent a column vector.  It can either be a dlib::matrix
                  object or some kind of unsorted sparse vector type.  See the top of
                  dlib/svm/sparse_vector_abstract.h for a definition of unsorted sparse vector.
                - val must have a number of dimensions which is compatible with the current
                  setting of in_vector_size().  In particular, this means that the
                  following must hold:
                    - if (val is a dlib::matrix) then 
                        - in_vector_size() == 0 || val.size() == val_vector_size()
                    - else
                        - max_index_plus_one(val) <= in_vector_size()
                        - in_vector_size() > 0 
                          (i.e. you must call set_dimension() prior to calling add() if
                          you want to use sparse vectors.)
            ensures
                - updates the mean and covariance stored in this object so that
                  the new value is factored into them.
                - if (val is a dlib::matrix) then
                    - #in_vector_size() == val.size()
        !*/

        const column_matrix mean (
        ) const;
        /*!
            requires
                - in_vector_size() != 0 
            ensures
                - returns the mean of all the vectors presented to this object 
                  so far.
        !*/

        const general_matrix covariance (
        ) const;
        /*!
            requires
                - in_vector_size() != 0 
                - current_n() > 1
            ensures
                - returns the unbiased sample covariance matrix for all the vectors 
                  presented to this object so far.
        !*/

        const running_covariance operator+ (
            const running_covariance& item
        ) const;
        /*!
            requires
                - in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()
                  (i.e. the in_vector_size() of *this and item must match or one must be zero)
            ensures
                - returns a new running_covariance object that represents the combination of all 
                  the vectors given to *this and item.  That is, this function returns a
                  running_covariance object, R, that is equivalent to what you would obtain if all
                  calls to this->add() and item.add() had instead been done to R.
        !*/
    };

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type
        >
    class running_cross_covariance
    {
        /*!
            REQUIREMENTS ON matrix_type
                Must be some type of dlib::matrix.

            INITIAL VALUE
                - x_vector_size() == 0
                - y_vector_size() == 0
                - current_n() == 0

            WHAT THIS OBJECT REPRESENTS
                This object is a simple tool for computing the mean and cross-covariance
                matrices of a sequence of pairs of vectors.  
        !*/

    public:

        typedef typename matrix_type::mem_manager_type mem_manager_type;
        typedef typename matrix_type::type scalar_type;
        typedef typename matrix_type::layout_type layout_type;
        typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
        typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;

        running_cross_covariance(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear(
        );
        /*!
            ensures
                - This object has its initial value.
                - Clears all memory of any previous data points.
        !*/

        long x_vector_size (
        ) const;
        /*!
            ensures
                - if (this object has been presented with any input vectors or
                  set_dimensions() has been called) then
                    - returns the dimension of the x vectors given to this object via add().
                - else
                    - returns 0
        !*/

        long y_vector_size (
        ) const;
        /*!
            ensures
                - if (this object has been presented with any input vectors or
                  set_dimensions() has been called) then
                    - returns the dimension of the y vectors given to this object via add().
                - else
                    - returns 0
        !*/

        void set_dimensions (
            long x_size,
            long y_size
        );
        /*!
            requires
                - x_size > 0
                - y_size > 0
            ensures
                - #x_vector_size() == x_size
                - #y_vector_size() == y_size
                - #current_n() == 0
        !*/

        long current_n (
        ) const;
        /*!
            ensures
                - returns the number of samples that have been presented to this object.
        !*/

        template <typename T, typename U>
        void add (
            const T& x,
            const U& y
        );
        /*!
            requires
                - x and y must represent column vectors.  They can either be dlib::matrix
                  objects or some kind of unsorted sparse vector type.  See the top of
                  dlib/svm/sparse_vector_abstract.h for a definition of unsorted sparse vector.
                - x and y must have a number of dimensions which is compatible with the
                  current setting of x_vector_size() and y_vector_size().  In particular,
                  this means that the following must hold:
                    - if (x or y is a sparse vector type) then
                        - x_vector_size() > 0 && y_vector_size() > 0
                          (i.e. you must call set_dimensions() prior to calling add() if
                          you want to use sparse vectors.)
                    - if (x is a dlib::matrix) then 
                        - x_vector_size() == 0 || x.size() == x_vector_size()
                    - else
                        - max_index_plus_one(x) <= x_vector_size()
                    - if (y is a dlib::matrix) then 
                        - y_vector_size() == 0 || y.size() == y_vector_size()
                    - else
                        - max_index_plus_one(y) <= y_vector_size()
            ensures
                - updates the mean and cross-covariance matrices stored in this object so
                  that the new (x,y) vector pair is factored into them.
                - if (x is a dlib::matrix) then
                    - #x_vector_size() == x.size()
                - if (y is a dlib::matrix) then
                    - #y_vector_size() == y.size()
        !*/

        const column_matrix mean_x (
        ) const;
        /*!
            requires
                - current_n() != 0 
            ensures
                - returns the mean of all the x vectors presented to this object so far.
                - The returned vector will have x_vector_size() dimensions.
        !*/

        const column_matrix mean_y (
        ) const;
        /*!
            requires
                - current_n() != 0 
            ensures
                - returns the mean of all the y vectors presented to this object so far.
                - The returned vector will have y_vector_size() dimensions.
        !*/

        const general_matrix covariance_xy (
        ) const;
        /*!
            requires
                - current_n() > 1
            ensures
                - returns the unbiased sample cross-covariance matrix for all the vector
                  pairs presented to this object so far.  In particular, returns a matrix
                  M such that:
                    - M.nr() == x_vector_size()
                    - M.nc() == y_vector_size()
                    - M == the cross-covariance matrix of the data given to add().
        !*/

        const running_cross_covariance operator+ (
            const running_cross_covariance& item
        ) const;
        /*!
            requires
                - x_vector_size() == 0 || item.x_vector_size() == 0 || x_vector_size() == item.x_vector_size()
                  (i.e. the x_vector_size() of *this and item must match or one must be zero)
                - y_vector_size() == 0 || item.y_vector_size() == 0 || y_vector_size() == item.y_vector_size()
                  (i.e. the y_vector_size() of *this and item must match or one must be zero)
            ensures
                - returns a new running_cross_covariance object that represents the
                  combination of all the vectors given to *this and item.  That is, this
                  function returns a running_cross_covariance object, R, that is equivalent
                  to what you would obtain if all calls to this->add() and item.add() had
                  instead been done to R.
        !*/
    };

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type
        >
    class vector_normalizer
    {
        /*!
            REQUIREMENTS ON matrix_type
                - must be a dlib::matrix object capable of representing column 
                  vectors

            INITIAL VALUE
                - in_vector_size() == 0
                - out_vector_size() == 0
                - means().size() == 0
                - std_devs().size() == 0

            WHAT THIS OBJECT REPRESENTS
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  

                Also, if desired, this object can use principal component 
                analysis for the purposes of reducing the number of elements in a 
                vector.  

            THREAD SAFETY
                Note that this object contains a cached matrix object it uses 
                to store intermediate results for normalization.  This avoids
                needing to reallocate it every time this object performs normalization
                but also makes it non-thread safe.  So make sure you don't share
                instances of this object between threads. 
        !*/

    public:
        typedef typename matrix_type::mem_manager_type mem_manager_type;
        typedef typename matrix_type::type scalar_type;
        typedef matrix_type result_type;

        template <typename vector_type>
        void train (
            const vector_type& samples
        );
        /*!
            requires
                - samples.size() > 0
                - samples == a column matrix or something convertible to a column 
                  matrix via mat().  Also, x should contain 
                  matrix_type objects that represent nonempty column vectors.
                - samples does not contain any infinite or NaN values
            ensures
                - #in_vector_size() == samples(0).nr()
                - #out_vector_size() == samples(0).nr()
                - This object has learned how to normalize vectors that look like
                  vectors in the given set of samples.  
                - #means() == mean(samples)
                - #std_devs() == reciprocal(sqrt(variance(samples)));
        !*/

        long in_vector_size (
        ) const;
        /*!
            ensures
                - returns the number of rows that input vectors are
                  required to contain if they are to be normalized by
                  this object.
        !*/

        long out_vector_size (
        ) const;
        /*!
            ensures
                - returns the number of rows in the normalized vectors
                  that come out of this object.
        !*/

        const matrix_type& means (
        ) const;
        /*!
            ensures               
                - returns a matrix M such that:
                    - M.nc() == 1
                    - M.nr() == in_vector_size()
                    - M(i) == the mean of the ith input feature shown to train()
        !*/

        const matrix_type& std_devs (
        ) const;
        /*!
            ensures               
                - returns a matrix SD such that:
                    - SD.nc() == 1
                    - SD.nr() == in_vector_size()
                    - SD(i) == the reciprocal of the standard deviation of the ith 
                      input feature shown to train() 
        !*/
 
        const result_type& operator() (
            const matrix_type& x
        ) const;
        /*!
            requires
                - x.nr() == in_vector_size()
                - x.nc() == 1
            ensures
                - returns a normalized version of x, call it Z, that has the 
                  following properties: 
                    - Z.nr() == out_vector_size()
                    - Z.nc() == 1
                    - the mean of each element of Z is 0 
                    - the variance of each element of Z is 1
                    - Z == pointwise_multiply(x-means(), std_devs());
        !*/

        void swap (
            vector_normalizer& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/
    };

    template <
        typename matrix_type
        >
    inline void swap (
        vector_normalizer<matrix_type>& a, 
        vector_normalizer<matrix_type>& b 
    ) { a.swap(b); }   
    /*!
        provides a global swap function
    !*/

    template <
        typename matrix_type,
        >
    void deserialize (
        vector_normalizer<matrix_type>& item, 
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

    template <
        typename matrix_type,
        >
    void serialize (
        const vector_normalizer<matrix_type>& item, 
        std::ostream& out 
    );   
    /*!
        provides serialization support 
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type
        >
    class vector_normalizer_pca
    {
        /*!
            REQUIREMENTS ON matrix_type
                - must be a dlib::matrix object capable of representing column 
                  vectors

            INITIAL VALUE
                - in_vector_size() == 0
                - out_vector_size() == 0
                - means().size() == 0
                - std_devs().size() == 0
                - pca_matrix().size() == 0

            WHAT THIS OBJECT REPRESENTS
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  

                Also, this object uses principal component analysis for the purposes 
                of reducing the number of elements in a vector.  

            THREAD SAFETY
                Note that this object contains a cached matrix object it uses 
                to store intermediate results for normalization.  This avoids
                needing to reallocate it every time this object performs normalization
                but also makes it non-thread safe.  So make sure you don't share
                instances of this object between threads. 
        !*/

    public:
        typedef typename matrix_type::mem_manager_type mem_manager_type;
        typedef typename matrix_type::type scalar_type;
        typedef matrix<scalar_type,0,1,mem_manager_type> result_type;

        template <typename vector_type>
        void train (
            const vector_type& samples,
            const double eps = 0.99
        );
        /*!
            requires
                - 0 < eps <= 1
                - samples.size() > 0
                - samples == a column matrix or something convertible to a column 
                  matrix via mat().  Also, x should contain 
                  matrix_type objects that represent nonempty column vectors.
                - samples does not contain any infinite or NaN values
            ensures
                - This object has learned how to normalize vectors that look like
                  vectors in the given set of samples.  
                - Principal component analysis is performed to find a transform 
                  that might reduce the number of output features. 
                - #in_vector_size() == samples(0).nr()
                - 0 < #out_vector_size() <= samples(0).nr()
                - eps is a number that controls how "lossy" the pca transform will be.
                  Large values of eps result in #out_vector_size() being larger and
                  smaller values of eps result in #out_vector_size() being smaller. 
                - #means() == mean(samples)
                - #std_devs() == reciprocal(sqrt(variance(samples)));
                - #pca_matrix() == the PCA transform matrix that is out_vector_size()
                  rows by in_vector_size() columns.
        !*/

        long in_vector_size (
        ) const;
        /*!
            ensures
                - returns the number of rows that input vectors are
                  required to contain if they are to be normalized by
                  this object.
        !*/

        long out_vector_size (
        ) const;
        /*!
            ensures
                - returns the number of rows in the normalized vectors
                  that come out of this object.
        !*/

        const matrix<scalar_type,0,1,mem_manager_type>& means (
        ) const;
        /*!
            ensures               
                - returns a matrix M such that:
                    - M.nc() == 1
                    - M.nr() == in_vector_size()
                    - M(i) == the mean of the ith input feature shown to train()
        !*/

        const matrix<scalar_type,0,1,mem_manager_type>& std_devs (
        ) const;
        /*!
            ensures               
                - returns a matrix SD such that:
                    - SD.nc() == 1
                    - SD.nr() == in_vector_size()
                    - SD(i) == the reciprocal of the standard deviation of the ith 
                      input feature shown to train() 
        !*/
 
        const matrix<scalar_type,0,0,mem_manager_type>& pca_matrix (
        ) const;
        /*!
            ensures
                - returns a matrix PCA such that:
                    - PCA.nr() == out_vector_size()
                    - PCA.nc() == in_vector_size()
                    - PCA == the principal component analysis transformation 
                      matrix 
        !*/

        const result_type& operator() (
            const matrix_type& x
        ) const;
        /*!
            requires
                - x.nr() == in_vector_size()
                - x.nc() == 1
            ensures
                - returns a normalized version of x, call it Z, that has the 
                  following properties: 
                    - Z.nr() == out_vector_size()
                    - Z.nc() == 1
                    - the mean of each element of Z is 0 
                    - the variance of each element of Z is 1
                    - Z == pca_matrix()*pointwise_multiply(x-means(), std_devs());
        !*/

        void swap (
            vector_normalizer_pca& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/
    };

    template <
        typename matrix_type
        >
    inline void swap (
        vector_normalizer_pca<matrix_type>& a, 
        vector_normalizer_pca<matrix_type>& b 
    ) { a.swap(b); }   
    /*!
        provides a global swap function
    !*/

    template <
        typename matrix_type,
        >
    void deserialize (
        vector_normalizer_pca<matrix_type>& item, 
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

    template <
        typename matrix_type,
        >
    void serialize (
        const vector_normalizer_pca<matrix_type>& item, 
        std::ostream& out 
    );   
    /*!
        provides serialization support 
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_STATISTICs_ABSTRACT_