This file is indexed.

/usr/include/dlib/statistics/sammon.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// Copyright (C) 2012  Emanuele Cesena (emanuele.cesena@gmail.com), Davis E. King
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SAMMoN_Hh_
#define DLIB_SAMMoN_Hh_

#include "sammon_abstract.h"
#include "../matrix.h"
#include "../algs.h"
#include "dpca.h"
#include <vector>

namespace dlib
{

    class sammon_projection
    {

    public:

    // ------------------------------------------------------------------------------------

        template <typename matrix_type>
        std::vector<matrix<double,0,1> > operator() (
            const std::vector<matrix_type>& data,       
            const long num_dims                      
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(num_dims > 0,
                "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                << "\n\t Invalid inputs were given to this function."
                << "\n\t num_dims:    " << num_dims
                );
            std::vector<matrix<double,0,1> > result;    // projections
            if (data.size() == 0)
            {
                return result;
            }

#ifdef ENABLE_ASSERTS
            DLIB_ASSERT(0 < num_dims && num_dims <= data[0].size(),
                "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                << "\n\t Invalid inputs were given to this function."
                << "\n\t data.size():    " << data.size()
                << "\n\t num_dims:       " << num_dims
                << "\n\t data[0].size(): " << data[0].size() 
                );
            for (unsigned long i = 0; i < data.size(); ++i)
            {
                DLIB_ASSERT(is_col_vector(data[i]) && data[i].size() == data[0].size(),
                        "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                        << "\n\t Invalid inputs were given to this function."
                        << "\n\t data["<<i<<"].size():    " << data[i].size()
                        << "\n\t data[0].size(): " << data[0].size() 
                        << "\n\t is_col_vector(data["<<i<<"]): " << is_col_vector(data[i])
                );
            }
#endif

            double err;                                 // error (discarded)
            do_sammon_projection(data, num_dims, result, err);
            return result;
        }

    // ------------------------------------------------------------------------------------

        template <typename matrix_type>
        void operator() (
            const std::vector<matrix_type>& data,       
            const long num_dims,                     
            std::vector<matrix<double,0,1> >& result,   
            double &err,                                
            const unsigned long num_iters = 1000,             
            const double err_delta = 1.0e-9            
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(num_dims > 0 && num_iters > 0 && err_delta > 0.0,
                "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                << "\n\t Invalid inputs were given to this function."
                << "\n\t data.size(): " << data.size()
                << "\n\t num_dims:    " << num_dims
                << "\n\t num_iters:   " << num_iters
                << "\n\t err_delta:   " << err_delta
                );
            if (data.size() == 0)
            {
                result.clear();
                err = 0;
                return;
            }

#ifdef ENABLE_ASSERTS
            DLIB_ASSERT(0 < num_dims && num_dims <= data[0].size(),
                "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                << "\n\t Invalid inputs were given to this function."
                << "\n\t data.size():    " << data.size()
                << "\n\t num_dims:       " << num_dims
                << "\n\t data[0].size(): " << data[0].size() 
                );
            for (unsigned long i = 0; i < data.size(); ++i)
            {
                DLIB_ASSERT(is_col_vector(data[i]) && data[i].size() == data[0].size(),
                        "\t std::vector<matrix<double,0,1> > sammon_projection::operator()"
                        << "\n\t Invalid inputs were given to this function."
                        << "\n\t data["<<i<<"].size():    " << data[i].size()
                        << "\n\t data[0].size(): " << data[0].size() 
                        << "\n\t is_col_vector(data["<<i<<"]): " << is_col_vector(data[i])
                );
            }
#endif

            do_sammon_projection(data, num_dims, result, err, num_iters, err_delta);
        }

        // ----------------------------------------------------------------------------------------
        // ----------------------------------------------------------------------------------------

    private:

        void compute_relative_distances(
            matrix<double,0,1>& dist,                   // relative distances (output)
            matrix<double,0,0>& data,                   // input data (matrix whose columns are the input vectors)
            double eps_ratio = 1.0e-7                   // to compute the minimum distance eps
        )
        /*!
            requires
                - dist.nc() == comb( data.nc(), 2 ), preallocated
                - eps_ratio > 0
            ensures
                - dist[k] == lenght(data[i] - data[j]) for k = j(j-1)/2 + i
        !*/
        {
            const long N = data.nc();                   // num of points
            double eps;                                 // minimum distance, forced to avoid vectors collision
                                                        // computed at runtime as eps_ration * mean(vectors distances)
            for (int k = 0, i = 1; i < N; ++i)
                for (int j = 0; j < i; ++j)
                    dist(k++) = length(colm(data, i) - colm(data, j));

            eps = eps_ratio * mean(dist);
            dist = lowerbound(dist, eps);
        }

        // ----------------------------------------------------------------------------------------

        template <typename matrix_type>
        void do_sammon_projection(
            const std::vector<matrix_type>& data,       // input data
            unsigned long num_dims,                     // dimension of the reduced space
            std::vector<matrix<double,0,1> >& result,   // projections (output)
            double &err,                                // error (output)
            unsigned long num_iters = 1000,             // max num of iterations: stop condition
            const double err_delta = 1.0e-9             // delta error: stop condition
        )
        /*!
            requires
                - matrix_type should be a kind of dlib::matrix<double,N,1>
                - num_dims > 0
                - num_iters > 0
                - err_delta > 0
            ensures
                - result == a set of matrix<double,num_dims,1> objects that represent
                  the Sammon's projections of data vectors.
                - err == the estimated error done in the projection, with the extra
                  property that err(at previous iteration) - err < err_delta
        !*/
        {
            // other params
            const double mf = 0.3;                      // magic factor

            matrix<double> mdata;                // input data as matrix
            matrix<double> projs;                // projected vectors, i.e. output data as matrix

            // std::vector<matrix> -> matrix
            mdata.set_size(data[0].size(), data.size());
            for (unsigned int i = 0; i < data.size(); i++)
                set_colm(mdata, i) = data[i];

            const long N = mdata.nc();           // num of points
            const long d = num_dims;             // size of the reduced space
            const long nd = N * (N - 1) / 2;     // num of pairs of points = size of the distances vectors

            matrix<double, 0, 1> dsij, inv_dsij; // d*_ij: pair-wise distances in the input space (and inverses)
            dsij.set_size(nd, 1);
            inv_dsij.set_size(nd, 1);
            double ic; // 1.0 / sum of dsij

            matrix<double, 0, 1> dij;            // d_ij: pair-wise distances in the reduced space
            dij.set_size(nd, 1);

            matrix<double, 0, 0> dE, dE2, dtemp; // matrices representing error partial derivatives
            dE.set_size(d, N);
            dE2.set_size(d, N);
            dtemp.set_size(d, N);

            matrix<double, 0, 1> inv_dij, alpha; // utility vectors used to compute the partial derivatives
            inv_dij.set_size(N, 1);              // inv_dij is 1.0/dij, but we only need it column-wise
            alpha.set_size(N, 1);                // (slightly wasting a bit of computation)
            // alpha = 1.0/dij - 1.0/dsij, again column-wise


            // initialize projs with PCA
            discriminant_pca<matrix<double> > dpca;
            for (int i = 0; i < mdata.nc(); ++i)
            {
                dpca.add_to_total_variance(colm(mdata, i));
            }
            matrix<double> mat = dpca.dpca_matrix_of_size(num_dims);
            projs = mat * mdata;

            // compute dsij, inv_dsij and ic
            compute_relative_distances(dsij, mdata);
            inv_dsij = 1.0 / dsij;
            ic = 1.0 / sum(dsij);

            // compute dij and err
            compute_relative_distances(dij, projs);
            err = ic * sum(pointwise_multiply(squared(dij - dsij), inv_dsij));

            // start iterating
            while (num_iters--)
            {
                // compute dE, dE2 progressively column by column
                for (int p = 0; p < N; ++p)
                {
                    // compute
                    // - alpha_p, the column vector with 1/d_pj - 1/d*_pj
                    // - dtemp, the matrix with the p-th column repeated all along
                    //TODO: optimize constructions
                    for (int i = 0; i < N; ++i)
                    {
                        int pos = (i < p) ? p * (p - 1) / 2 + i : i * (i - 1) / 2 + p;
                        inv_dij(i) = (i == p) ? 0.0 : 1.0 / dij(pos);
                        alpha(i) = (i == p) ? 0.0 : inv_dij(i) - inv_dsij(pos);
                        set_colm(dtemp, i) = colm(projs, p);
                    }

                    dtemp -= projs;
                    set_colm(dE, p) = dtemp * alpha;

                    double sum_alpha = sum(alpha);
                    set_colm(dE2, p) = abs( sum_alpha + squared(dtemp) * cubed(inv_dij) );
                }


                // compute the update projections
                projs += pointwise_multiply(dE, mf * reciprocal(dE2));

                // compute new dij and error
                compute_relative_distances(dij, projs);
                double err_new = ic * sum( pointwise_multiply(squared(dij - dsij), inv_dsij) );
                if (err - err_new < err_delta)
                    break;
                err = err_new;
            }

            // matrix -> std::vector<matrix>
            result.clear();
            for (int i = 0; i < projs.nc(); ++i)
                result.push_back(colm(projs, i));
        }

    };

} // namespace dlib

#endif // DLIB_SAMMoN_Hh_