/usr/include/dlib/statistics/cca.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | // Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CCA_hh_
#define DLIB_CCA_hh_
#include "cca_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "../sparse_vector.h"
#include "random_subset_selector.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename T
>
matrix<typename T::type,0,1> compute_correlations (
const matrix_exp<T>& L,
const matrix_exp<T>& R
)
{
DLIB_ASSERT( L.size() > 0 && R.size() > 0 && L.nr() == R.nr(),
"\t matrix compute_correlations()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t L.size(): " << L.size()
<< "\n\t R.size(): " << R.size()
<< "\n\t L.nr(): " << L.nr()
<< "\n\t R.nr(): " << R.nr()
);
typedef typename T::type type;
matrix<type> A, B, C;
A = diag(trans(R)*L);
B = sqrt(diag(trans(L)*L));
C = sqrt(diag(trans(R)*R));
A = pointwise_multiply(A , reciprocal(pointwise_multiply(B,C)));
return A;
}
// ----------------------------------------------------------------------------------------
template <
typename matrix_type,
typename T
>
matrix<T,0,1> impl_cca (
const matrix_type& L,
const matrix_type& R,
matrix<T>& Ltrans,
matrix<T>& Rtrans,
unsigned long num_correlations,
unsigned long extra_rank,
unsigned long q,
unsigned long num_output_correlations,
double regularization
)
{
matrix<T> Ul, Vl;
matrix<T> Ur, Vr;
matrix<T> U, V;
matrix<T,0,1> Dr, Dl, D;
// Note that we add a few more singular vectors in because it helps improve the
// final results if we run this part with a little higher rank than the final SVD.
svd_fast(L, Ul, Dl, Vl, num_correlations+extra_rank, q);
svd_fast(R, Ur, Dr, Vr, num_correlations+extra_rank, q);
// Zero out singular values that are essentially zero so they don't cause numerical
// difficulties in the code below.
const double eps = std::numeric_limits<T>::epsilon()*std::max(max(Dr),max(Dl))*100;
Dl = round_zeros(Dl+regularization,eps);
Dr = round_zeros(Dr+regularization,eps);
// This matrix is really small so we can do a normal full SVD on it. Note that we
// also throw away the columns of Ul and Ur corresponding to zero singular values.
svd3(diagm(Dl>0)*tmp(trans(Ul)*Ur)*diagm(Dr>0), U, D, V);
// now throw away extra columns of the transformations. We do this in a way
// that keeps the directions that have the highest correlations.
matrix<T,0,1> temp = D;
rsort_columns(U, temp);
rsort_columns(V, D);
U = colm(U, range(0, num_output_correlations-1));
V = colm(V, range(0, num_output_correlations-1));
D = rowm(D, range(0, num_output_correlations-1));
Ltrans = Vl*inv(diagm(Dl))*U;
Rtrans = Vr*inv(diagm(Dr))*V;
// Note that the D matrix contains the correlation values for the transformed
// vectors. However, when the L and R matrices have rank higher than
// num_correlations+extra_rank then the values in D become only approximate.
return D;
}
// ----------------------------------------------------------------------------------------
template <typename T>
matrix<T,0,1> cca (
const matrix<T>& L,
const matrix<T>& R,
matrix<T>& Ltrans,
matrix<T>& Rtrans,
unsigned long num_correlations,
unsigned long extra_rank = 5,
unsigned long q = 2,
double regularization = 0
)
{
DLIB_ASSERT( num_correlations > 0 && L.size() > 0 && R.size() > 0 && L.nr() == R.nr() &&
regularization >= 0,
"\t matrix cca()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t num_correlations: " << num_correlations
<< "\n\t regularization: " << regularization
<< "\n\t L.size(): " << L.size()
<< "\n\t R.size(): " << R.size()
<< "\n\t L.nr(): " << L.nr()
<< "\n\t R.nr(): " << R.nr()
);
using std::min;
const unsigned long n = min(num_correlations, (unsigned long)min(R.nr(),min(L.nc(), R.nc())));
return impl_cca(L,R,Ltrans, Rtrans, num_correlations, extra_rank, q, n, regularization);
}
// ----------------------------------------------------------------------------------------
template <typename sparse_vector_type, typename T>
matrix<T,0,1> cca (
const std::vector<sparse_vector_type>& L,
const std::vector<sparse_vector_type>& R,
matrix<T>& Ltrans,
matrix<T>& Rtrans,
unsigned long num_correlations,
unsigned long extra_rank = 5,
unsigned long q = 2,
double regularization = 0
)
{
DLIB_ASSERT( num_correlations > 0 && L.size() == R.size() &&
max_index_plus_one(L) > 0 && max_index_plus_one(R) > 0 &&
regularization >= 0,
"\t matrix cca()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t num_correlations: " << num_correlations
<< "\n\t regularization: " << regularization
<< "\n\t L.size(): " << L.size()
<< "\n\t R.size(): " << R.size()
<< "\n\t max_index_plus_one(L): " << max_index_plus_one(L)
<< "\n\t max_index_plus_one(R): " << max_index_plus_one(R)
);
using std::min;
const unsigned long n = min(max_index_plus_one(L), max_index_plus_one(R));
const unsigned long num_output_correlations = min(num_correlations, std::min<unsigned long>(R.size(),n));
return impl_cca(L,R,Ltrans, Rtrans, num_correlations, extra_rank, q, num_output_correlations, regularization);
}
// ----------------------------------------------------------------------------------------
template <typename sparse_vector_type, typename Rand_type, typename T>
matrix<T,0,1> cca (
const random_subset_selector<sparse_vector_type,Rand_type>& L,
const random_subset_selector<sparse_vector_type,Rand_type>& R,
matrix<T>& Ltrans,
matrix<T>& Rtrans,
unsigned long num_correlations,
unsigned long extra_rank = 5,
unsigned long q = 2
)
{
return cca(L.to_std_vector(), R.to_std_vector(), Ltrans, Rtrans, num_correlations, extra_rank, q);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_CCA_hh_
|