/usr/include/dcmtk/ofstd/ofoset.h is in libdcmtk-dev 3.6.2-3build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | /*
*
* Copyright (C) 2002-2011, OFFIS e.V.
* All rights reserved. See COPYRIGHT file for details.
*
* This software and supporting documentation were developed by
*
* OFFIS e.V.
* R&D Division Health
* Escherweg 2
* D-26121 Oldenburg, Germany
*
*
* Module: ofstd
*
* Author: Thomas Wilkens
*
* Purpose: Template class for administrating an ordered set of elements
* of an arbitrary type.
*
*/
#ifndef OFOrderedSet_h
#define OFOrderedSet_h
#include "dcmtk/config/osconfig.h"
#include "dcmtk/ofstd/oftypes.h"
#include "dcmtk/ofstd/ofset.h"
/** This template class provides a data structure and operations for administrating an
* ordered set of elements of an arbitrary type. Note the following properties of this
* class:
* - an element which is inserted into the set will be copied
* - the datatype of the set's elements has to support operator== so that it is possible
* to find a certain element
* - it is allowed to insert identical elements into the set
* - if a user requires to remove a certain element and if there are several elements
* which are identical to this element, only one element will be removed from the set
* - when removing an element, the indeces of the elements behind the removed element will
* be reduced by one
* - the set will be ordered according to the point in time at which an element is inserted
* into the set; a new element will always be inserted at the end of the set
*/
template <class T> class OFOrderedSet : public OFSet<T>
{
protected:
public:
/** Default constructor.
*/
OFOrderedSet()
: OFSet<T>()
{
}
/** Copy constructor.
* @param src Source object of which this will be a copy.
*/
OFOrderedSet( const OFOrderedSet<T> &src )
: OFSet<T>( src )
{
}
/** Destructor.
*/
virtual ~OFOrderedSet()
{
}
/** operator=.
* @param src Source object whose values will be assigned to this.
* @return Reference to this.
*/
const OFOrderedSet<T> &operator=( const OFOrderedSet<T> &src )
{
return( assign( src ) );
}
/** This function is a workaround for avoiding a compiler warning on
* Solaris 2.5.1 using compiler SC 2.0.1.
*/
const OFOrderedSet<T> &assign( const OFOrderedSet<T> &src )
{
if( this != &src )
this->operator=( src );
return( *this );
}
/** Determines if two sets are identical. Note that for ordered sets
* not only their elements have to be identical, but also the order
* of their elements has to be identical.
* @param other Set which shall be compared with this.
* @return OFTrue if sets are identical, OFFalse otherwise.
*/
virtual OFBool operator==( const OFOrderedSet<T> &other ) const
{
// check if both sets contain the same
// amount of items; if not, return OFFalse
if( this->num != other.num )
return( OFFalse );
// initialize result with OFTrue
OFBool result = OFTrue;
// as long as result is OFTrue go through all items in this
for( unsigned int i=0 ; i < this->num && result == OFTrue ; i++ )
{
// in case the current element does not equal the current
// element in other, result shall be set to OFFalse
if( *this->items[i] != *other.items[i] )
result = OFFalse;
}
// return result
return( result );
}
/** Determines if two sets are not identical.
* @param other Set which shall be compared with this.
* @return OFTrue if sets are not identical, OFFalse otherwise.
*/
virtual OFBool operator!=( const OFOrderedSet<T> &other ) const
{
return( !( *this == other ) );
}
/** Inserts a new item into the set.
* @param item Item which shall be inserted into the set.
*/
virtual void Insert( const T &item )
{
// if size equals num, we need more space
if( this->size == this->num )
this->Resize( this->size * 2 );
// copy item
T *newItem = new T( item );
// insert copy into array
this->items[this->num] = newItem;
// increase counter
this->num++;
}
/** Inserts all items of another set into this set.
* @param other set whose items shall be inserted into the set.
*/
virtual void Insert( const OFOrderedSet<T> &other )
{
// go through all items in other and insert each item into this
for( unsigned int i=0 ; i<other.num ; i++ )
Insert( *other.items[i] );
}
/** Inserts a new item at a certain position into the set.
* @param item Item which shall be inserted into the set.
* @param idx Index of the position at which the item shall be inserted.
* The first position has index 0. Note that in case index
* is greater than the index of the last item, the new item will
* be inserted right behind the last item of the set.
*/
virtual void InsertAt( const T &item, unsigned int idx )
{
unsigned int i;
// in case index is greater than the index of the last item,
// insert the new item right behind the last item of the set
if( idx > this->num - 1 )
Insert( item );
else
{
// if size equals num, we need more space
if( this->size == this->num )
this->Resize( this->size * 2 );
// copy item
T *newItem = new T( item );
// create a new temporary array and assign all pointers correspondingly
T **tmp = new T*[this->size];
for( i=0 ; i<idx ; i++ )
tmp[i] = this->items[i];
tmp[idx] = newItem;
for( i=idx ; i < this->size - 1 ; i++ )
{
if( i < this->num )
tmp[i+1] = this->items[i];
else
tmp[i+1] = NULL;
}
// delete old array
delete this->items;
// assign new array to member variable
this->items = tmp;
// increase counter
this->num++;
}
}
/** Removes one item from the set.
* @param item Item which shall be inserted into the set.
*/
virtual void Remove( const T &item )
{
// so far, nothing was deleted
OFBool itemDeleted = OFFalse;
// go through all items
for( unsigned int i=0 ; i < this->num && !itemDeleted ; i++ )
{
// if current item is the one which shall be deleted
if( *this->items[i] == item )
{
// delete item
delete this->items[i];
// and - so that there are no holes in the array - move all elements
// behind the current element up one array field; only do so in case
// we did _not_ delete the last item
if( i != this->num - 1 )
{
unsigned int j;
for( j=i+1 ; j < this->num ; j++ )
{
this->items[j-1] = this->items[j];
}
this->items[j-1] = NULL;
}
else
this->items[i] = NULL;
// reduce counter
this->num--;
// remember that an item was deleted (so that always only one item will be deleted)
itemDeleted = OFTrue;
}
}
}
/** Removes one item from the set.
* @param idx Index of the item which shall be removed from the set.
*/
virtual void RemoveByIndex( unsigned int idx )
{
// do something only if the given index is not out of range
if( idx < this->num )
{
// delete item with given index
delete this->items[idx];
// and - so that there are no holes in the array - move all elements
// behind the current element up one array field; only do so in case
// we did _not_ delete the last item
if( idx != this->num - 1 )
{
unsigned int j;
for( j=idx+1 ; j < this->num ; j++ )
{
this->items[j-1] = this->items[j];
}
this->items[j-1] = NULL;
}
else
this->items[idx] = NULL;
// reduce counter
this->num--;
}
}
/** Tries to find a given object in the set. In case the specified object could
* be found, a pointer to the corresponding element within the set is returned;
* in case the specified object could not be found, NULL will be returned.
* @param item Search pattern.
* @return Pointer to the corresponding element within the set or NULL.
*/
virtual T *Find( const T &item ) const
{
unsigned int i;
OFBool itemFound = OFFalse;
for( i=0 ; i < this->num && !itemFound ; i++ )
{
if( *this->items[i] == item )
itemFound = OFTrue;
}
if( itemFound )
return( this->items[i-1] );
else
return( NULL );
}
/** Determines if a certain item is contained in the set.
* @param item - Item which shall be looked for.
* @return OFTrue, if item is contained in the set, OFFalse otherwise.
*/
virtual OFBool Contains( const T &item ) const
{
OFBool itemFound = OFFalse;
for( unsigned int i=0 ; i < this->num && !itemFound ; i++ )
{
if( *this->items[i] == item )
itemFound = OFTrue;
}
return( itemFound );
}
/** Determines if this is an actual superset of other, i.e.
* if this completely contains other and furthermore has
* additional elements.
* @param other - Set which shall be compared with this.
* @return OFTrue if this is a superset of other, OFFalse otherwise.
*/
virtual OFBool IsSupersetOf( const OFOrderedSet<T> &other ) const
{
// if this contains less or the same amount of items than other, return OFFalse
if( this->num <= other.num )
return( OFFalse );
// initialize result with OFTrue
OFBool result = OFTrue;
// make a copy of this
OFOrderedSet<T> s = *this;
// as long as result is OFTrue go through all items in other
for( unsigned int i=0 ; i<other.num && result == OFTrue ; i++ )
{
// in case s contains the current item of other
if( s.Contains( *other.items[i] ) )
{
// remove this item from s so that it will not be
// considered again in a later call to s.Contains()
s.Remove( *other.items[i] );
}
// in case s does not contain the current item of other the result is OFFalse
else
result = OFFalse;
}
// return result
return( result );
}
/** Determines if this is an actual subset of other, i.e.
* if this is completely contained in other and other
* furthermore has additional elements.
* @param other - Set which shall be compared with this.
* @return OFTrue if this is a subset of other, OFFalse otherwise.
*/
virtual OFBool IsSubsetOf( const OFOrderedSet<T> &other ) const
{
return( other.IsSupersetOf( *this ) );
}
/** Determines the union of the two sets this and other, i.e. the set
* containing all items which can be found either in this or in other,
* and returns the resulting new set.
* @param other Second parameter for union.
* @return New set.
*/
OFOrderedSet<T> Union( const OFOrderedSet<T> &other ) const
{
// initialize result set
OFOrderedSet<T> resultSet = *this;
// insert other set into result set
resultSet.Insert( other );
// return result set
return( resultSet );
}
/** Determines the intersection of the two sets this and other, i.e. the set
* containing all items which can be found in both this and other, and
* returns the resulting new set.
* @param other Second parameter for intersection.
* @return New set.
*/
OFOrderedSet<T> Intersection( const OFOrderedSet<T> &other ) const
{
// initialize result set
OFOrderedSet<T> resultSet;
// make a copy of other
OFOrderedSet<T> s = other;
// go through all items in this
for( unsigned int i=0 ; i < this->num ; i++ )
{
// if s contains the current item
if( s.Contains( *this->items[i] ) )
{
// insert the item into the result set
resultSet.Insert( *this->items[i] );
// and remove the item from s so that it will not be
// considered again in a later call to s.Contains()
s.Remove( *this->items[i] );
}
}
// return result set
return( resultSet );
}
/** Determines the difference this - other, i.e. the set containing all
* the items found in this but not in other, and returns the resulting
* new set.
* @param other Second parameter for difference.
* @return New set.
*/
OFOrderedSet<T> Difference( const OFOrderedSet<T> &other ) const
{
// initialize result set
OFOrderedSet<T> resultSet;
// make a copy of other
OFOrderedSet<T> s = other;
// go through all items in this
for( unsigned int i=0 ; i < this->num ; i++ )
{
// if s does not contain the current item
if( !s.Contains( *this->items[i] ) )
{
// insert the item into the result set
resultSet.Insert( *this->items[i] );
}
else
{
// else remove the item from s so that it will not be
// considered again in a later call to s.Contains()
s.Remove( *this->items[i] );
}
}
// return result set
return( resultSet );
}
/** Determines the symmetric difference of this and other, i.e. the set
* containing all the items which can be found either in this or in other
* but not in the intersection of this and other, and returns the resulting
* new set.
* @param other Second parameter for symmetric difference.
* @return New set.
*/
OFOrderedSet<T> SymmetricDifference( const OFOrderedSet<T> &other ) const
{
// determine s1 = this - other
OFOrderedSet<T> s1 = (*this).Difference( other );
// determine s2 = other - this
OFOrderedSet<T> s2 = other.Difference( *this );
// determine the union of s1 and s2
OFOrderedSet<T> resultSet = s1.Union( s2 );
// return result set
return( resultSet );
}
};
#endif
|