This file is indexed.

/usr/include/dcmtk/dcmimgle/displint.h is in libdcmtk-dev 3.6.2-3build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 *
 *  Copyright (C) 1996-2016, OFFIS e.V.
 *  All rights reserved.  See COPYRIGHT file for details.
 *
 *  This software and supporting documentation were developed by
 *
 *    OFFIS e.V.
 *    R&D Division Health
 *    Escherweg 2
 *    D-26121 Oldenburg, Germany
 *
 *
 *  Module:  dcmimgle
 *
 *  Author:  Joerg Riesmeier
 *
 *  Purpose: DiCubicSpline Function/Interpolation (Header/Implementation)
 *
 */


#ifndef DISPLINT_H
#define DISPLINT_H

#include "dcmtk/config/osconfig.h"
#include "dcmtk/ofstd/ofcast.h"

#define INCLUDE_CSTDDEF               /* For NULL */
#include "dcmtk/ofstd/ofstdinc.h"


/*--------------------*
 *  macro definition  *
 *--------------------*/

// SunCC 4.x does not support default values for template types :-/
#define T3_ double


/*------------------*
 *  template class  *
 *------------------*/

/** Template class for cubic spline interpolation
 */
template <class T1, class T2 /*, class T3 = double*/>
class DiCubicSpline
{

 public:

    /** calculate spline function for given points.
     *  T1  = type of x coordinates
     *  T2  = type of y coordinates
     *  T3_ = type of y coordinates of the spline function
     *
     ** @param  x    array with x coordinates of given points
     *  @param  y    array with y coordinates of given points
     *  @param  n    number of entries in array (= points)
     *  @param  y2   array used to store the resulting spline function (used for CubicSplineInterpolation)
     *  @param  yp1  first derivative of the interpolating function at point 1
     *  @param  ypn  first derivative of the interpolating function at point n
     *
     ** @return true if successful, false otherwise
     */
    static int Function(const T1 *x,
                        const T2 *y,
                        const unsigned int n,
                        T3_ *y2,
                        const T3_ yp1 = 1.0e30,
                        const T3_ ypn = 1.0e30)
    {
        if ((x != NULL) && (y != NULL) && (n > 0) && (y2 != NULL))
        {
            T3_ *u = new T3_[n];                            // temporary vector
            if (u != NULL)
            {
                unsigned int i;
                T3_ p, qn, sig, un;
                if (yp1 > 0.99e30)                          // ignore value for first derivative at point 1
                    y2[0] = u[0] = 0.0;
                else
                {
                    y2[0] = -0.5;
                    u[0] = (3.0 / (OFstatic_cast(T3_, x[1]) - OFstatic_cast(T3_, x[0]))) *
                           ((OFstatic_cast(T3_, y[1]) - OFstatic_cast(T3_, y[0])) /
                           (OFstatic_cast(T3_, x[1]) - OFstatic_cast(T3_, x[0])) - yp1);
                }
                for (i = 1; i < n - 1; ++i)
                {
                    sig = (OFstatic_cast(T3_, x[i]) - OFstatic_cast(T3_, x[i - 1])) /
                          (OFstatic_cast(T3_, x[i + 1]) - OFstatic_cast(T3_, x[i - 1]));
                    p = sig * y2[i - 1] + 2.0;
                    y2[i] = (sig - 1.0) / p;
                    u[i] = (OFstatic_cast(T3_, y[i + 1]) - OFstatic_cast(T3_, y[i])) /
                           (OFstatic_cast(T3_, x[i + 1]) - OFstatic_cast(T3_, x[i])) -
                           (OFstatic_cast(T3_, y[i]) - OFstatic_cast(T3_, y[i - 1])) /
                           (OFstatic_cast(T3_, x[i]) - OFstatic_cast(T3_, x[i - 1]));
                    u[i] = (6.0 * u[i] / (OFstatic_cast(T3_, x[i + 1]) -
                            OFstatic_cast(T3_, x[i - 1])) - sig * u[i - 1]) / p;
                }
                if (ypn > 0.99e30)                          // ignore value for first derivative at point 1
                    qn = un = 0.0;
                else
                {
                    qn = 0.5;
                    un = (3.0 / (OFstatic_cast(T3_, x[n - 1]) - OFstatic_cast(T3_, x[n - 2]))) *
                         (ypn - (OFstatic_cast(T3_, y[n - 1]) - OFstatic_cast(T3_, y[n - 2])) /
                         (OFstatic_cast(T3_, x[n - 1]) - OFstatic_cast(T3_, x[n - 2])));
                }
                y2[n - 1] = (un - qn * u[n - 2]) / (qn * y2[n - 2] + 1.0);
                for (i = n - 1; i > 0; --i)
                    y2[i - 1] = y2[i - 1] * y2[i] + u[i - 1];
                delete[] u;
                return 1;
            }
        }
        return 0;
    }


    /** perform cubic spline interpolation for given points.
     *  T1  = type of x coordinates
     *  T2  = type of y coordinates
     *  T3_ = type of y coordinates of the spline function
     *
     ** @param  xa   array with x coordinates of given points
     *  @param  ya   array with y coordinates of given points
     *  @param  y2a  array used to store the resulting spline function (calculated by CubicSplineFunction)
     *  @param  na   number of entries in above arrays (xa, ya and y2a)
     *  @param  x    array with x coordinates of points to be interpolated
     *  @param  y    array used to store interpolated values
     *  @param  n    number of entries in above array (x and y)
     *
     ** @return true if successful, false otherwise
     */
    static int Interpolation(const T1 *xa,
                             const T2 *ya,
                             const T3_ *y2a,
                             const unsigned int na,
                             const T1 *x,
                             T2 *y,
                             const unsigned int n)
    {
        if ((xa != NULL) && (ya != NULL) && (y2a != NULL) && (na > 0) && (x != NULL) && (y != NULL) && (n > 0))
        {
            unsigned int k, i;
            unsigned int klo = 0;
            unsigned int khi = na - 1;
            T3_ h, b, a;
            for (i = 0; i < n; ++i)
            {
                if ((xa[klo] > x[i]) || (xa[khi] < x[i]))       // optimization
                {
                    klo = 0;
                    khi = na - 1;
                }
                while (khi - klo > 1)                           // search right place in the table, if necessary
                {
                    k = (khi + klo) >> 1;
                    if (xa[k] > x[i])
                        khi = k;
                    else
                        klo = k;
                }
                if (xa[khi] == x[i])                            // optimization: use known values
                    y[i] = ya[khi];
                else
                {
                    h = OFstatic_cast(T3_, xa[khi]) - OFstatic_cast(T3_, xa[klo]);
                    if (h == 0.0)                               // bad xa input, values must be distinct !
                        return 0;
                    a = (OFstatic_cast(T3_, xa[khi]) - OFstatic_cast(T3_, x[i])) / h;
                    b = (OFstatic_cast(T3_, x[i]) - OFstatic_cast(T3_, xa[klo])) / h;
                    y[i] = OFstatic_cast(T2, a * OFstatic_cast(T3_, ya[klo]) + b * OFstatic_cast(T3_, ya[khi]) +
                           ((a * a * a - a) * y2a[klo] + (b * b * b - b) * y2a[khi]) * (h * h) / 6.0);
                }
            }
            return 1;
        }
        return 0;
    }
};


#endif