/usr/include/cvc4/expr/expr_manager.h is in libcvc4-dev 1.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 | /********************* */
/** expr_manager.h
**
** Copyright 2010-2014 New York University and The University of Iowa,
** and as below.
**
** This file automatically generated by:
**
** ../../../../../src/expr/mkexpr ../../../../../src/expr/expr_manager_template.h ../../../../../src/theory/builtin/kinds ../../../../../src/theory/booleans/kinds ../../../../../src/theory/uf/kinds ../../../../../src/theory/arith/kinds ../../../../../src/theory/bv/kinds ../../../../../src/theory/fp/kinds ../../../../../src/theory/arrays/kinds ../../../../../src/theory/datatypes/kinds ../../../../../src/theory/sep/kinds ../../../../../src/theory/sets/kinds ../../../../../src/theory/strings/kinds ../../../../../src/theory/quantifiers/kinds ../../../../../src/theory/idl/kinds
**
** for the CVC4 project.
**/
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* THIS FILE IS AUTOMATICALLY GENERATED, DO NOT EDIT ! */
/* Edit the template file instead: */
/* ../../../../../src/expr/expr_manager_template.h */
/********************* */
/*! \file expr_manager_template.h
** \verbatim
** Top contributors (to current version):
** Morgan Deters, Dejan Jovanovic, Christopher L. Conway
** This file is part of the CVC4 project.
** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
** in the top-level source directory) and their institutional affiliations.
** All rights reserved. See the file COPYING in the top-level source
** directory for licensing information.\endverbatim
**
** \brief Public-facing expression manager interface
**
** Public-facing expression manager interface.
**/
#include <cvc4/cvc4_public.h>
#ifndef __CVC4__EXPR_MANAGER_H
#define __CVC4__EXPR_MANAGER_H
#include <vector>
#include <cvc4/expr/expr.h>
#include <cvc4/expr/kind.h>
#include <cvc4/expr/type.h>
#include <cvc4/util/statistics.h>
#include <cvc4/util/subrange_bound.h>
#include <cvc4/expr/uninterpreted_constant.h>
#include <cvc4/util/abstract_value.h>
#include <cvc4/expr/kind.h>
#include <cvc4/expr/chain.h>
#include <cvc4/expr/kind.h>
#include <cvc4/expr/predicate.h>
#include <cvc4/util/bool.h>
#include <cvc4/util/divisible.h>
#include <cvc4/util/subrange_bound.h>
#include <cvc4/util/rational.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/bitvector.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/util/floatingpoint.h>
#include <cvc4/expr/array_store_all.h>
#include <cvc4/expr/datatype.h>
#include <cvc4/expr/ascription_type.h>
#include <cvc4/util/tuple.h>
#include <cvc4/expr/record.h>
#include <cvc4/expr/emptyset.h>
#include <cvc4/util/regexp.h>
#include <cvc4/util/regexp.h>
// This is a hack, but an important one: if there's an error, the
// compiler directs the user to the template file instead of the
// generated one. We don't want the user to modify the generated one,
// since it'll get overwritten on a later build.
#line 37 "../../../../../src/expr/expr_manager_template.h"
namespace CVC4 {
class Expr;
class SmtEngine;
class NodeManager;
class Options;
class IntStat;
struct ExprManagerMapCollection;
class ResourceManager;
namespace expr {
namespace pickle {
class Pickler;
}/* CVC4::expr::pickle namespace */
}/* CVC4::expr namespace */
class CVC4_PUBLIC ExprManager {
private:
/** The internal node manager */
NodeManager* d_nodeManager;
/** Counts of expressions and variables created of a given kind */
IntStat* d_exprStatisticsVars[LAST_TYPE + 1];
IntStat* d_exprStatistics[kind::LAST_KIND];
/**
* Returns the internal node manager. This should only be used by
* internal users, i.e. the friend classes.
*/
NodeManager* getNodeManager() const;
/**
* Check some things about a newly-created DatatypeType.
*/
void checkResolvedDatatype(DatatypeType dtt) const;
/**
* SmtEngine will use all the internals, so it will grab the
* NodeManager.
*/
friend class SmtEngine;
/** ExprManagerScope reaches in to get the NodeManager */
friend class ExprManagerScope;
/** NodeManager reaches in to get the NodeManager */
friend class NodeManager;
// undefined, private copy constructor and assignment op (disallow copy)
ExprManager(const ExprManager&) CVC4_UNDEFINED;
ExprManager& operator=(const ExprManager&) CVC4_UNDEFINED;
std::vector<DatatypeType> d_keep_dtt;
std::vector<Datatype> d_keep_dt;
public:
/**
* Creates an expression manager with default options.
*/
ExprManager();
/**
* Creates an expression manager.
*
* @param options the earlyTypeChecking field is used to configure
* whether to do at Expr creation time.
*/
explicit ExprManager(const Options& options);
/**
* Destroys the expression manager. No will be deallocated at this point, so
* any expression references that used to be managed by this expression
* manager and are left-over are bad.
*/
~ExprManager() throw();
/** Get this expr manager's options */
const Options& getOptions() const;
/** Get this expr manager's resource manager */
ResourceManager* getResourceManager() throw();
/** Get the type for booleans */
BooleanType booleanType() const;
/** Get the type for strings. */
StringType stringType() const;
/** Get the type for regular expressions. */
RegExpType regExpType() const;
/** Get the type for reals. */
RealType realType() const;
/** Get the type for integers */
IntegerType integerType() const;
/** Get the type for rounding modes */
RoundingModeType roundingModeType() const;
/**
* Make a unary expression of a given kind (NOT, BVNOT, ...).
* @param kind the kind of expression
* @param child1 kind the kind of expression
* @return the expression
*/
Expr mkExpr(Kind kind, Expr child1);
/**
* Make a binary expression of a given kind (AND, PLUS, ...).
* @param kind the kind of expression
* @param child1 the first child of the new expression
* @param child2 the second child of the new expression
* @return the expression
*/
Expr mkExpr(Kind kind, Expr child1, Expr child2);
/**
* Make a 3-ary expression of a given kind (AND, PLUS, ...).
* @param kind the kind of expression
* @param child1 the first child of the new expression
* @param child2 the second child of the new expression
* @param child3 the third child of the new expression
* @return the expression
*/
Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3);
/**
* Make a 4-ary expression of a given kind (AND, PLUS, ...).
* @param kind the kind of expression
* @param child1 the first child of the new expression
* @param child2 the second child of the new expression
* @param child3 the third child of the new expression
* @param child4 the fourth child of the new expression
* @return the expression
*/
Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3, Expr child4);
/**
* Make a 5-ary expression of a given kind (AND, PLUS, ...).
* @param kind the kind of expression
* @param child1 the first child of the new expression
* @param child2 the second child of the new expression
* @param child3 the third child of the new expression
* @param child4 the fourth child of the new expression
* @param child5 the fifth child of the new expression
* @return the expression
*/
Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3, Expr child4,
Expr child5);
/**
* Make an n-ary expression of given kind given a vector of its
* children
*
* @param kind the kind of expression to build
* @param children the subexpressions
* @return the n-ary expression
*/
Expr mkExpr(Kind kind, const std::vector<Expr>& children);
/**
* Make an n-ary expression of given kind given a first arg and
* a vector of its remaining children (this can be useful where the
* kind is parameterized operator, so the first arg is really an
* arg to the kind to construct an operator)
*
* @param kind the kind of expression to build
* @param child1 the first subexpression
* @param otherChildren the remaining subexpressions
* @return the n-ary expression
*/
Expr mkExpr(Kind kind, Expr child1, const std::vector<Expr>& otherChildren);
/**
* Make a nullary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @return the nullary expression
*/
Expr mkExpr(Expr opExpr);
/**
* Make a unary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @param child1 the subexpression
* @return the unary expression
*/
Expr mkExpr(Expr opExpr, Expr child1);
/**
* Make a binary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @param child1 the first subexpression
* @param child2 the second subexpression
* @return the binary expression
*/
Expr mkExpr(Expr opExpr, Expr child1, Expr child2);
/**
* Make a ternary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @param child1 the first subexpression
* @param child2 the second subexpression
* @param child3 the third subexpression
* @return the ternary expression
*/
Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3);
/**
* Make a quaternary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @param child1 the first subexpression
* @param child2 the second subexpression
* @param child3 the third subexpression
* @param child4 the fourth subexpression
* @return the quaternary expression
*/
Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3, Expr child4);
/**
* Make a quinary parameterized expression with the given operator.
*
* @param opExpr the operator expression
* @param child1 the first subexpression
* @param child2 the second subexpression
* @param child3 the third subexpression
* @param child4 the fourth subexpression
* @param child5 the fifth subexpression
* @return the quinary expression
*/
Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3, Expr child4,
Expr child5);
/**
* Make an n-ary expression of given operator to apply and a vector
* of its children
*
* @param opExpr the operator expression
* @param children the subexpressions
* @return the n-ary expression
*/
Expr mkExpr(Expr opExpr, const std::vector<Expr>& children);
/** Create a constant of type T */
template <class T>
Expr mkConst(const T&);
/**
* Create an Expr by applying an associative operator to the children.
* If <code>children.size()</code> is greater than the max arity for
* <code>kind</code>, then the expression will be broken up into
* suitably-sized chunks, taking advantage of the associativity of
* <code>kind</code>. For example, if kind <code>FOO</code> has max arity
* 2, then calling <code>mkAssociative(FOO,a,b,c)</code> will return
* <code>(FOO (FOO a b) c)</code> or <code>(FOO a (FOO b c))</code>.
* The order of the arguments will be preserved in a left-to-right
* traversal of the resulting tree.
*/
Expr mkAssociative(Kind kind, const std::vector<Expr>& children);
/**
* Determine whether Exprs of a particular Kind have operators.
* @returns true if Exprs of Kind k have operators.
*/
static bool hasOperator(Kind k);
/**
* Get the (singleton) operator of an OPERATOR-kinded kind. The
* returned Expr e will have kind BUILTIN, and calling
* e.getConst<CVC4::Kind>() will yield k.
*/
Expr operatorOf(Kind k);
/** Get a Kind from an operator expression */
Kind operatorToKind(Expr e);
/** Make a function type from domain to range. */
FunctionType mkFunctionType(Type domain, Type range);
/**
* Make a function type with input types from argTypes.
* <code>argTypes</code> must have at least one element.
*/
FunctionType mkFunctionType(const std::vector<Type>& argTypes, Type range);
/**
* Make a function type with input types from
* <code>sorts[0..sorts.size()-2]</code> and result type
* <code>sorts[sorts.size()-1]</code>. <code>sorts</code> must have
* at least 2 elements.
*/
FunctionType mkFunctionType(const std::vector<Type>& sorts);
/**
* Make a predicate type with input types from
* <code>sorts</code>. The result with be a function type with range
* <code>BOOLEAN</code>. <code>sorts</code> must have at least one
* element.
*/
FunctionType mkPredicateType(const std::vector<Type>& sorts);
/**
* Make a tuple type with types from
* <code>types[0..types.size()-1]</code>. <code>types</code> must
* have at least one element.
*/
DatatypeType mkTupleType(const std::vector<Type>& types);
/**
* Make a record type with types from the rec parameter.
*/
DatatypeType mkRecordType(const Record& rec);
/**
* Make a symbolic expressiontype with types from
* <code>types[0..types.size()-1]</code>. <code>types</code> may
* have any number of elements.
*/
SExprType mkSExprType(const std::vector<Type>& types);
/** Make a type representing a floating-point type with the given parameters. */
FloatingPointType mkFloatingPointType(unsigned exp, unsigned sig) const;
/** Make a type representing a bit-vector of the given size. */
BitVectorType mkBitVectorType(unsigned size) const;
/** Make the type of arrays with the given parameterization. */
ArrayType mkArrayType(Type indexType, Type constituentType) const;
/** Make the type of set with the given parameterization. */
SetType mkSetType(Type elementType) const;
/** Make a type representing the given datatype. */
DatatypeType mkDatatypeType(Datatype& datatype);
/**
* Make a set of types representing the given datatypes, which may be
* mutually recursive.
*/
std::vector<DatatypeType> mkMutualDatatypeTypes(std::vector<Datatype>& datatypes);
/**
* Make a set of types representing the given datatypes, which may
* be mutually recursive. unresolvedTypes is a set of SortTypes
* that were used as placeholders in the Datatypes for the Datatypes
* of the same name. This is just a more complicated version of the
* above mkMutualDatatypeTypes() function, but is required to handle
* complex types.
*
* For example, unresolvedTypes might contain the single sort "list"
* (with that name reported from SortType::getName()). The
* datatypes list might have the single datatype
*
* DATATYPE
* list = cons(car:ARRAY INT OF list, cdr:list) | nil;
* END;
*
* To represent the Type of the array, the user had to create a
* placeholder type (an uninterpreted sort) to stand for "list" in
* the type of "car". It is this placeholder sort that should be
* passed in unresolvedTypes. If the datatype was of the simpler
* form:
*
* DATATYPE
* list = cons(car:list, cdr:list) | nil;
* END;
*
* then no complicated Type needs to be created, and the above,
* simpler form of mkMutualDatatypeTypes() is enough.
*/
std::vector<DatatypeType> mkMutualDatatypeTypes(std::vector<Datatype>& datatypes, std::set<Type>& unresolvedTypes);
/**
* Make a type representing a constructor with the given parameterization.
*/
ConstructorType mkConstructorType(const DatatypeConstructor& constructor, Type range) const;
/** Make a type representing a selector with the given parameterization. */
SelectorType mkSelectorType(Type domain, Type range) const;
/** Make a type representing a tester with the given parameterization. */
TesterType mkTesterType(Type domain) const;
/** Bits for use in mkSort() flags. */
enum {
SORT_FLAG_NONE = 0,
SORT_FLAG_PLACEHOLDER = 1
};/* enum */
/** Make a new sort with the given name. */
SortType mkSort(const std::string& name, uint32_t flags = SORT_FLAG_NONE) const;
/** Make a sort constructor from a name and arity. */
SortConstructorType mkSortConstructor(const std::string& name,
size_t arity) const;
/**
* Make a predicate subtype type defined by the given LAMBDA
* expression. A TypeCheckingException can be thrown if lambda is
* not a LAMBDA, or is ill-typed, or if CVC4 fails at proving that
* the resulting predicate subtype is inhabited.
*/
// not in release 1.0
//Type mkPredicateSubtype(Expr lambda)
// throw(TypeCheckingException);
/**
* Make a predicate subtype type defined by the given LAMBDA
* expression and whose non-emptiness is witnessed by the given
* witness. A TypeCheckingException can be thrown if lambda is not
* a LAMBDA, or is ill-typed, or if the witness is not a witness or
* ill-typed.
*/
// not in release 1.0
//Type mkPredicateSubtype(Expr lambda, Expr witness)
// throw(TypeCheckingException);
/**
* Make an integer subrange type as defined by the argument.
*/
Type mkSubrangeType(const SubrangeBounds& bounds)
throw(TypeCheckingException);
/** Get the type of an expression */
Type getType(Expr e, bool check = false)
throw(TypeCheckingException);
/** Bits for use in mkVar() flags. */
enum {
VAR_FLAG_NONE = 0,
VAR_FLAG_GLOBAL = 1,
VAR_FLAG_DEFINED = 2
};/* enum */
/**
* Create a new, fresh variable. This variable is guaranteed to be
* distinct from every variable thus far in the ExprManager, even
* if it shares a name with another; this is to support any kind of
* scoping policy on top of ExprManager. The SymbolTable class
* can be used to store and lookup symbols by name, if desired.
*
* @param name a name to associate to the fresh new variable
* @param type the type for the new variable
* @param flags - VAR_FLAG_NONE - no flags;
* VAR_FLAG_GLOBAL - whether this variable is to be
* considered "global" or not. Note that this information isn't
* used by the ExprManager, but is passed on to the ExprManager's
* event subscribers like the model-building service; if isGlobal
* is true, this newly-created variable will still available in
* models generated after an intervening pop.
* VAR_FLAG_DEFINED - if this is to be a "defined" symbol, e.g., for
* use with SmtEngine::defineFunction(). This keeps a declaration
* from being emitted in API dumps (since a subsequent definition is
* expected to be dumped instead).
*/
Expr mkVar(const std::string& name, Type type, uint32_t flags = VAR_FLAG_NONE);
/**
* Create a (nameless) new, fresh variable. This variable is guaranteed
* to be distinct from every variable thus far in the ExprManager.
*
* @param type the type for the new variable
* @param flags - VAR_FLAG_GLOBAL - whether this variable is to be considered "global"
* or not. Note that this information isn't used by the ExprManager,
* but is passed on to the ExprManager's event subscribers like the
* model-building service; if isGlobal is true, this newly-created
* variable will still available in models generated after an
* intervening pop.
*/
Expr mkVar(Type type, uint32_t flags = VAR_FLAG_NONE);
/**
* Create a new, fresh variable for use in a binder expression
* (the BOUND_VAR_LIST of a FORALL, EXISTS, or LAMBDA). It is
* an error for this bound variable to exist outside of a binder,
* and it should also only be used in a single binder expression.
* That is, two distinct FORALL expressions should use entirely
* disjoint sets of bound variables (however, a single FORALL
* expression can be used in multiple places in a formula without
* a problem). This newly-created bound variable is guaranteed to
* be distinct from every variable thus far in the ExprManager, even
* if it shares a name with another; this is to support any kind of
* scoping policy on top of ExprManager. The SymbolTable class
* can be used to store and lookup symbols by name, if desired.
*
* @param name a name to associate to the fresh new bound variable
* @param type the type for the new bound variable
*/
Expr mkBoundVar(const std::string& name, Type type);
/**
* Create a (nameless) new, fresh variable for use in a binder
* expression (the BOUND_VAR_LIST of a FORALL, EXISTS, or LAMBDA).
* It is an error for this bound variable to exist outside of a
* binder, and it should also only be used in a single binder
* expression. That is, two distinct FORALL expressions should use
* entirely disjoint sets of bound variables (however, a single FORALL
* expression can be used in multiple places in a formula without
* a problem). This newly-created bound variable is guaranteed to
* be distinct from every variable thus far in the ExprManager.
*
* @param type the type for the new bound variable
*/
Expr mkBoundVar(Type type);
/**
* Create unique variable of type
*/
Expr mkNullaryOperator( Type type, Kind k);
/** Get a reference to the statistics registry for this ExprManager */
Statistics getStatistics() const throw();
/** Get a reference to the statistics registry for this ExprManager */
SExpr getStatistic(const std::string& name) const throw();
/**
* Flushes statistics for this ExprManager to a file descriptor. Safe to use
* in a signal handler.
*/
void safeFlushStatistics(int fd) const;
/** Export an expr to a different ExprManager */
//static Expr exportExpr(const Expr& e, ExprManager* em);
/** Export a type to a different ExprManager */
static Type exportType(const Type& t, ExprManager* em, ExprManagerMapCollection& vmap);
/** Returns the minimum arity of the given kind. */
static unsigned minArity(Kind kind);
/** Returns the maximum arity of the given kind. */
static unsigned maxArity(Kind kind);
};/* class ExprManager */
#line 266 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::UninterpretedConstant const& val);
#line 276 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::AbstractValue const& val);
#line 287 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::Kind const& val);
#line 306 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::Chain const& val);
#line 312 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::TypeConstant const& val);
#line 339 "../../../../../src/theory/builtin/kinds"
template <> Expr ExprManager::mkConst(::CVC4::Predicate const& val);
#line 21 "../../../../../src/theory/booleans/kinds"
template <> Expr ExprManager::mkConst(bool const& val);
#line 30 "../../../../../src/theory/arith/kinds"
template <> Expr ExprManager::mkConst(::CVC4::Divisible const& val);
#line 49 "../../../../../src/theory/arith/kinds"
template <> Expr ExprManager::mkConst(::CVC4::SubrangeBounds const& val);
#line 62 "../../../../../src/theory/arith/kinds"
template <> Expr ExprManager::mkConst(::CVC4::Rational const& val);
#line 15 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorSize const& val);
#line 24 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVector const& val);
#line 85 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorBitOf const& val);
#line 91 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorExtract const& val);
#line 97 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorRepeat const& val);
#line 103 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorZeroExtend const& val);
#line 109 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorSignExtend const& val);
#line 115 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorRotateLeft const& val);
#line 121 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::BitVectorRotateRight const& val);
#line 135 "../../../../../src/theory/bv/kinds"
template <> Expr ExprManager::mkConst(::CVC4::IntToBitVector const& val);
#line 16 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPoint const& val);
#line 24 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::RoundingMode const& val);
#line 41 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointSize const& val);
#line 134 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPIEEEBitVector const& val);
#line 146 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPFloatingPoint const& val);
#line 159 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPReal const& val);
#line 171 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPSignedBitVector const& val);
#line 183 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPUnsignedBitVector const& val);
#line 196 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToFPGeneric const& val);
#line 211 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToUBV const& val);
#line 223 "../../../../../src/theory/fp/kinds"
template <> Expr ExprManager::mkConst(::CVC4::FloatingPointToSBV const& val);
#line 35 "../../../../../src/theory/arrays/kinds"
template <> Expr ExprManager::mkConst(::CVC4::ArrayStoreAll const& val);
#line 41 "../../../../../src/theory/datatypes/kinds"
template <> Expr ExprManager::mkConst(::CVC4::DatatypeIndexConstant const& val);
#line 73 "../../../../../src/theory/datatypes/kinds"
template <> Expr ExprManager::mkConst(::CVC4::AscriptionType const& val);
#line 88 "../../../../../src/theory/datatypes/kinds"
template <> Expr ExprManager::mkConst(::CVC4::TupleUpdate const& val);
#line 96 "../../../../../src/theory/datatypes/kinds"
template <> Expr ExprManager::mkConst(::CVC4::RecordUpdate const& val);
#line 18 "../../../../../src/theory/sets/kinds"
template <> Expr ExprManager::mkConst(::CVC4::EmptySet const& val);
#line 61 "../../../../../src/theory/strings/kinds"
template <> Expr ExprManager::mkConst(::CVC4::String const& val);
#line 67 "../../../../../src/theory/strings/kinds"
template <> Expr ExprManager::mkConst(::CVC4::RegExp const& val);
}/* CVC4 namespace */
#endif /* __CVC4__EXPR_MANAGER_H */
|