This file is indexed.

/usr/include/cvc3/theory_arith.h is in libcvc3-dev 2.4.1-5.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*****************************************************************************/
/*!
 * \file theory_arith.h
 *
 * Author: Clark Barrett
 *
 * Created: Fri Jan 17 18:34:55 2003
 *
 * <hr>
 *
 * License to use, copy, modify, sell and/or distribute this software
 * and its documentation for any purpose is hereby granted without
 * royalty, subject to the terms and conditions defined in the \ref
 * LICENSE file provided with this distribution.
 *
 * <hr>
 *
 */
/*****************************************************************************/

#ifndef _cvc3__include__theory_arith_h_
#define _cvc3__include__theory_arith_h_

#include "theory.h"
#include "cdmap.h"

namespace CVC3 {

  class ArithProofRules;

  typedef enum {
    // New constants
    REAL_CONST = 30, // wrapper around constants to indicate that they should be real
    NEGINF = 31,
    POSINF = 32,

    REAL = 3000,
    INT,
    SUBRANGE,

    UMINUS,
    PLUS,
    MINUS,
    MULT,
    DIVIDE,
    POW,
    INTDIV,
    MOD,
    LT,
    LE,
    GT,
    GE,
    IS_INTEGER,
    DARK_SHADOW,
    GRAY_SHADOW

  } ArithKinds;

/*****************************************************************************/
/*!
 *\class TheoryArith
 *\ingroup Theories
 *\brief This theory handles basic linear arithmetic.
 *
 * Author: Clark Barrett
 *
 * Created: Sat Feb  8 14:44:32 2003
 */
/*****************************************************************************/
class TheoryArith :public Theory {
 protected:
  Type d_realType;
  Type d_intType;
  std::vector<int> d_kinds;

 protected:

  //! Canonize the expression e, assuming all children are canonical
  virtual Theorem canon(const Expr& e) = 0;

  //! Canonize the expression e recursively
  Theorem canonRec(const Expr& e);

  //! Print a rational in SMT-LIB format
  void printRational(ExprStream& os, const Rational& r,
                     bool printAsReal = false);

  //! Whether any ite's appear in the arithmetic part of the term e
  bool isAtomicArithTerm(const Expr& e);

  //! simplify leaves and then canonize
  Theorem canonSimp(const Expr& e);

  //! helper for checkAssertEqInvariant
  bool recursiveCanonSimpCheck(const Expr& e);

 public:
  TheoryArith(TheoryCore* core, const std::string& name)
    : Theory(core, name) {}
  ~TheoryArith() {}

  virtual void addMultiplicativeSignSplit(const Theorem& case_split_thm) {};

  /**
   * Record that smaller should be smaller than bigger in the variable order.
   * Should be implemented in decision procedures that support it.
   */
  virtual bool addPairToArithOrder(const Expr& smaller, const Expr& bigger) { return true; };

  // Used by translator
  //! Return whether e is syntactically identical to a rational constant
  bool isSyntacticRational(const Expr& e, Rational& r);
  //! Whether any ite's appear in the arithmetic part of the formula e
  bool isAtomicArithFormula(const Expr& e);
  //! Rewrite an atom to look like x - y op c if possible--for smtlib translation
  Expr rewriteToDiff(const Expr& e);

  /*! @brief Composition of canon(const Expr&) by transitivity: take e0 = e1,
   * canonize e1 to e2, return e0 = e2. */
  Theorem canonThm(const Theorem& thm) {
    return transitivityRule(thm, canon(thm.getRHS()));
  }

  // ArithTheoremProducer needs this function, so make it public
  //! Separate monomial e = c*p1*...*pn into c and 1*p1*...*pn
  virtual void separateMonomial(const Expr& e, Expr& c, Expr& var) = 0;

  // Theory interface
  virtual void addSharedTerm(const Expr& e) = 0;
  virtual void assertFact(const Theorem& e) = 0;
  virtual void refineCounterExample() = 0;
  virtual void computeModelBasic(const std::vector<Expr>& v) = 0;
  virtual void computeModel(const Expr& e, std::vector<Expr>& vars) = 0;
  virtual void checkSat(bool fullEffort) = 0;
  virtual Theorem rewrite(const Expr& e) = 0;
  virtual void setup(const Expr& e) = 0;
  virtual void update(const Theorem& e, const Expr& d) = 0;
  virtual Theorem solve(const Theorem& e) = 0;
  virtual void checkAssertEqInvariant(const Theorem& e) = 0;
  virtual void checkType(const Expr& e) = 0;
  virtual Cardinality finiteTypeInfo(Expr& e, Unsigned& n,
                                     bool enumerate, bool computeSize) = 0;
  virtual void computeType(const Expr& e) = 0;
  virtual Type computeBaseType(const Type& t) = 0;
  virtual void computeModelTerm(const Expr& e, std::vector<Expr>& v) = 0;
  virtual Expr computeTypePred(const Type& t, const Expr& e) = 0;
  virtual Expr computeTCC(const Expr& e) = 0;
  virtual ExprStream& print(ExprStream& os, const Expr& e) = 0;
  virtual Expr parseExprOp(const Expr& e) = 0;

  // Arith constructors
  Type realType() { return d_realType; }
  Type intType() { return d_intType;}
  Type subrangeType(const Expr& l, const Expr& r)
    { return Type(Expr(SUBRANGE, l, r)); }
  Expr rat(Rational r) { return getEM()->newRatExpr(r); }
  // Dark and Gray shadows (for internal use only)
  //! Construct the dark shadow expression representing lhs <= rhs
  Expr darkShadow(const Expr& lhs, const Expr& rhs) {
    return Expr(DARK_SHADOW, lhs, rhs);
  }
  //! Construct the gray shadow expression representing c1 <= v - e <= c2
  /*! Alternatively, v = e + i for some i s.t. c1 <= i <= c2
   */
  Expr grayShadow(const Expr& v, const Expr& e,
		  const Rational& c1, const Rational& c2) {
    return Expr(GRAY_SHADOW, v, e, rat(c1), rat(c2));
  }
  bool leavesAreNumConst(const Expr& e);
};

// Arith testers
inline bool isReal(Type t) { return t.getExpr().getKind() == REAL; }
inline bool isInt(Type t) { return t.getExpr().getKind() == INT; }

// Static arith testers
inline bool isRational(const Expr& e) { return e.isRational(); }
inline bool isIntegerConst(const Expr& e)
  { return e.isRational() && e.getRational().isInteger(); }
inline bool isUMinus(const Expr& e) { return e.getKind() == UMINUS; }
inline bool isPlus(const Expr& e) { return e.getKind() == PLUS; }
inline bool isMinus(const Expr& e) { return e.getKind() == MINUS; }
inline bool isMult(const Expr& e) { return e.getKind() == MULT; }
inline bool isDivide(const Expr& e) { return e.getKind() == DIVIDE; }
inline bool isPow(const Expr& e) { return e.getKind() == POW; }
inline bool isLT(const Expr& e) { return e.getKind() == LT; }
inline bool isLE(const Expr& e) { return e.getKind() == LE; }
inline bool isGT(const Expr& e) { return e.getKind() == GT; }
inline bool isGE(const Expr& e) { return e.getKind() == GE; }
inline bool isDarkShadow(const Expr& e) { return e.getKind() == DARK_SHADOW;}
inline bool isGrayShadow(const Expr& e) { return e.getKind() == GRAY_SHADOW;}
inline bool isIneq(const Expr& e)
  { return isLT(e) || isLE(e) || isGT(e) || isGE(e); }
inline bool isIntPred(const Expr& e) { return e.getKind() == IS_INTEGER; }

// Static arith constructors
inline Expr uminusExpr(const Expr& child)
  { return Expr(UMINUS, child); }
inline Expr plusExpr(const Expr& left, const Expr& right)
  { return Expr(PLUS, left, right); }
inline Expr plusExpr(const std::vector<Expr>& children) {
  DebugAssert(children.size() > 0, "plusExpr()");
  return Expr(PLUS, children);
}
inline Expr minusExpr(const Expr& left, const Expr& right)
  { return Expr(MINUS, left, right); }
inline Expr multExpr(const Expr& left, const Expr& right)
  { return Expr(MULT, left, right); }
// Begin Deepak:
//! a Mult expr with two or more children
inline Expr multExpr(const std::vector<Expr>& children) {
  DebugAssert(children.size() > 0, "multExpr()");
  return Expr(MULT, children);
}
//! Power (x^n, or base^{pow}) expressions
inline Expr powExpr(const Expr& pow, const Expr & base)
  { return Expr(POW, pow, base);}
// End Deepak
inline Expr divideExpr(const Expr& left, const Expr& right)
  { return Expr(DIVIDE, left, right); }
inline Expr ltExpr(const Expr& left, const Expr& right)
  { return Expr(LT, left, right); }
inline Expr leExpr(const Expr& left, const Expr& right)
  { return Expr(LE, left, right); }
inline Expr gtExpr(const Expr& left, const Expr& right)
  { return Expr(GT, left, right); }
inline Expr geExpr(const Expr& left, const Expr& right)
  { return Expr(GE, left, right); }

inline Expr operator-(const Expr& child)
  { return uminusExpr(child); }
inline Expr operator+(const Expr& left, const Expr& right)
  { return plusExpr(left, right); }
inline Expr operator-(const Expr& left, const Expr& right)
  { return minusExpr(left, right); }
inline Expr operator*(const Expr& left, const Expr& right)
  { return multExpr(left, right); }
inline Expr operator/(const Expr& left, const Expr& right)
  { return divideExpr(left, right); }

}

#endif