/usr/include/cvc3/theory_arith.h is in libcvc3-dev 2.4.1-5.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /*****************************************************************************/
/*!
* \file theory_arith.h
*
* Author: Clark Barrett
*
* Created: Fri Jan 17 18:34:55 2003
*
* <hr>
*
* License to use, copy, modify, sell and/or distribute this software
* and its documentation for any purpose is hereby granted without
* royalty, subject to the terms and conditions defined in the \ref
* LICENSE file provided with this distribution.
*
* <hr>
*
*/
/*****************************************************************************/
#ifndef _cvc3__include__theory_arith_h_
#define _cvc3__include__theory_arith_h_
#include "theory.h"
#include "cdmap.h"
namespace CVC3 {
class ArithProofRules;
typedef enum {
// New constants
REAL_CONST = 30, // wrapper around constants to indicate that they should be real
NEGINF = 31,
POSINF = 32,
REAL = 3000,
INT,
SUBRANGE,
UMINUS,
PLUS,
MINUS,
MULT,
DIVIDE,
POW,
INTDIV,
MOD,
LT,
LE,
GT,
GE,
IS_INTEGER,
DARK_SHADOW,
GRAY_SHADOW
} ArithKinds;
/*****************************************************************************/
/*!
*\class TheoryArith
*\ingroup Theories
*\brief This theory handles basic linear arithmetic.
*
* Author: Clark Barrett
*
* Created: Sat Feb 8 14:44:32 2003
*/
/*****************************************************************************/
class TheoryArith :public Theory {
protected:
Type d_realType;
Type d_intType;
std::vector<int> d_kinds;
protected:
//! Canonize the expression e, assuming all children are canonical
virtual Theorem canon(const Expr& e) = 0;
//! Canonize the expression e recursively
Theorem canonRec(const Expr& e);
//! Print a rational in SMT-LIB format
void printRational(ExprStream& os, const Rational& r,
bool printAsReal = false);
//! Whether any ite's appear in the arithmetic part of the term e
bool isAtomicArithTerm(const Expr& e);
//! simplify leaves and then canonize
Theorem canonSimp(const Expr& e);
//! helper for checkAssertEqInvariant
bool recursiveCanonSimpCheck(const Expr& e);
public:
TheoryArith(TheoryCore* core, const std::string& name)
: Theory(core, name) {}
~TheoryArith() {}
virtual void addMultiplicativeSignSplit(const Theorem& case_split_thm) {};
/**
* Record that smaller should be smaller than bigger in the variable order.
* Should be implemented in decision procedures that support it.
*/
virtual bool addPairToArithOrder(const Expr& smaller, const Expr& bigger) { return true; };
// Used by translator
//! Return whether e is syntactically identical to a rational constant
bool isSyntacticRational(const Expr& e, Rational& r);
//! Whether any ite's appear in the arithmetic part of the formula e
bool isAtomicArithFormula(const Expr& e);
//! Rewrite an atom to look like x - y op c if possible--for smtlib translation
Expr rewriteToDiff(const Expr& e);
/*! @brief Composition of canon(const Expr&) by transitivity: take e0 = e1,
* canonize e1 to e2, return e0 = e2. */
Theorem canonThm(const Theorem& thm) {
return transitivityRule(thm, canon(thm.getRHS()));
}
// ArithTheoremProducer needs this function, so make it public
//! Separate monomial e = c*p1*...*pn into c and 1*p1*...*pn
virtual void separateMonomial(const Expr& e, Expr& c, Expr& var) = 0;
// Theory interface
virtual void addSharedTerm(const Expr& e) = 0;
virtual void assertFact(const Theorem& e) = 0;
virtual void refineCounterExample() = 0;
virtual void computeModelBasic(const std::vector<Expr>& v) = 0;
virtual void computeModel(const Expr& e, std::vector<Expr>& vars) = 0;
virtual void checkSat(bool fullEffort) = 0;
virtual Theorem rewrite(const Expr& e) = 0;
virtual void setup(const Expr& e) = 0;
virtual void update(const Theorem& e, const Expr& d) = 0;
virtual Theorem solve(const Theorem& e) = 0;
virtual void checkAssertEqInvariant(const Theorem& e) = 0;
virtual void checkType(const Expr& e) = 0;
virtual Cardinality finiteTypeInfo(Expr& e, Unsigned& n,
bool enumerate, bool computeSize) = 0;
virtual void computeType(const Expr& e) = 0;
virtual Type computeBaseType(const Type& t) = 0;
virtual void computeModelTerm(const Expr& e, std::vector<Expr>& v) = 0;
virtual Expr computeTypePred(const Type& t, const Expr& e) = 0;
virtual Expr computeTCC(const Expr& e) = 0;
virtual ExprStream& print(ExprStream& os, const Expr& e) = 0;
virtual Expr parseExprOp(const Expr& e) = 0;
// Arith constructors
Type realType() { return d_realType; }
Type intType() { return d_intType;}
Type subrangeType(const Expr& l, const Expr& r)
{ return Type(Expr(SUBRANGE, l, r)); }
Expr rat(Rational r) { return getEM()->newRatExpr(r); }
// Dark and Gray shadows (for internal use only)
//! Construct the dark shadow expression representing lhs <= rhs
Expr darkShadow(const Expr& lhs, const Expr& rhs) {
return Expr(DARK_SHADOW, lhs, rhs);
}
//! Construct the gray shadow expression representing c1 <= v - e <= c2
/*! Alternatively, v = e + i for some i s.t. c1 <= i <= c2
*/
Expr grayShadow(const Expr& v, const Expr& e,
const Rational& c1, const Rational& c2) {
return Expr(GRAY_SHADOW, v, e, rat(c1), rat(c2));
}
bool leavesAreNumConst(const Expr& e);
};
// Arith testers
inline bool isReal(Type t) { return t.getExpr().getKind() == REAL; }
inline bool isInt(Type t) { return t.getExpr().getKind() == INT; }
// Static arith testers
inline bool isRational(const Expr& e) { return e.isRational(); }
inline bool isIntegerConst(const Expr& e)
{ return e.isRational() && e.getRational().isInteger(); }
inline bool isUMinus(const Expr& e) { return e.getKind() == UMINUS; }
inline bool isPlus(const Expr& e) { return e.getKind() == PLUS; }
inline bool isMinus(const Expr& e) { return e.getKind() == MINUS; }
inline bool isMult(const Expr& e) { return e.getKind() == MULT; }
inline bool isDivide(const Expr& e) { return e.getKind() == DIVIDE; }
inline bool isPow(const Expr& e) { return e.getKind() == POW; }
inline bool isLT(const Expr& e) { return e.getKind() == LT; }
inline bool isLE(const Expr& e) { return e.getKind() == LE; }
inline bool isGT(const Expr& e) { return e.getKind() == GT; }
inline bool isGE(const Expr& e) { return e.getKind() == GE; }
inline bool isDarkShadow(const Expr& e) { return e.getKind() == DARK_SHADOW;}
inline bool isGrayShadow(const Expr& e) { return e.getKind() == GRAY_SHADOW;}
inline bool isIneq(const Expr& e)
{ return isLT(e) || isLE(e) || isGT(e) || isGE(e); }
inline bool isIntPred(const Expr& e) { return e.getKind() == IS_INTEGER; }
// Static arith constructors
inline Expr uminusExpr(const Expr& child)
{ return Expr(UMINUS, child); }
inline Expr plusExpr(const Expr& left, const Expr& right)
{ return Expr(PLUS, left, right); }
inline Expr plusExpr(const std::vector<Expr>& children) {
DebugAssert(children.size() > 0, "plusExpr()");
return Expr(PLUS, children);
}
inline Expr minusExpr(const Expr& left, const Expr& right)
{ return Expr(MINUS, left, right); }
inline Expr multExpr(const Expr& left, const Expr& right)
{ return Expr(MULT, left, right); }
// Begin Deepak:
//! a Mult expr with two or more children
inline Expr multExpr(const std::vector<Expr>& children) {
DebugAssert(children.size() > 0, "multExpr()");
return Expr(MULT, children);
}
//! Power (x^n, or base^{pow}) expressions
inline Expr powExpr(const Expr& pow, const Expr & base)
{ return Expr(POW, pow, base);}
// End Deepak
inline Expr divideExpr(const Expr& left, const Expr& right)
{ return Expr(DIVIDE, left, right); }
inline Expr ltExpr(const Expr& left, const Expr& right)
{ return Expr(LT, left, right); }
inline Expr leExpr(const Expr& left, const Expr& right)
{ return Expr(LE, left, right); }
inline Expr gtExpr(const Expr& left, const Expr& right)
{ return Expr(GT, left, right); }
inline Expr geExpr(const Expr& left, const Expr& right)
{ return Expr(GE, left, right); }
inline Expr operator-(const Expr& child)
{ return uminusExpr(child); }
inline Expr operator+(const Expr& left, const Expr& right)
{ return plusExpr(left, right); }
inline Expr operator-(const Expr& left, const Expr& right)
{ return minusExpr(left, right); }
inline Expr operator*(const Expr& left, const Expr& right)
{ return multExpr(left, right); }
inline Expr operator/(const Expr& left, const Expr& right)
{ return divideExpr(left, right); }
}
#endif
|