/usr/include/cvc3/theory.h is in libcvc3-dev 2.4.1-5.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | /*****************************************************************************/
/*!
* \file theory.h
* \brief Generic API for Theories plus methods commonly used by theories
*
* Author: Clark Barrett
*
* Created: Sat Nov 30 23:30:15 2002
*
* <hr>
*
* License to use, copy, modify, sell and/or distribute this software
* and its documentation for any purpose is hereby granted without
* royalty, subject to the terms and conditions defined in the \ref
* LICENSE file provided with this distribution.
*
* <hr>
*
*/
/*****************************************************************************/
#ifndef _cvc3__include__theory_h_
#define _cvc3__include__theory_h_
#include "expr_stream.h"
#include "common_proof_rules.h"
#include "cdlist.h"
namespace CVC3 {
class TheoryCore;
class Theorem;
class Type;
/************************************************************************/
/*!
*\defgroup Theories Theories
*\ingroup VC
*\brief Theories
*@{
*/
/***********************************************************************/
/*****************************************************************************/
/*!
*\anchor Theory
*\class Theory
*\brief Base class for theories
*
* Author: Clark Barrett
*
* Created: Thu Jan 30 16:37:56 2003
*
* This is an abstract class which all theories should inherit from. In
* addition to providing an abstract theory interface, it provides access
* functions to core functionality. However, in order to avoid duplicating the
* data structures which implement this functionality, all the functionality is
* stored in a separate class (which actually derives from this one) called
* TheoryCore. These two classes work closely together to provide the core
* functionality.
*/
/*****************************************************************************/
class Theory {
friend class TheoryCore;
private:
ExprManager* d_em;
TheoryCore* d_theoryCore; //!< Provides the core functionality
CommonProofRules* d_commonRules; //!< Commonly used proof rules
std::string d_name; //!< Name of the theory (for debugging)
//! Private default constructor.
/*! Everyone besides TheoryCore has to use the public constructor
which sets up all the provided functionality automatically.
*/
Theory(void);
protected:
bool d_theoryUsed; //! Whether theory has been used (for smtlib translator)
public:
//! Exposed constructor.
/*! Note that each instance of Theory must have a name (mostly for
debugging purposes). */
Theory(TheoryCore* theoryCore, const std::string& name);
//! Destructor
virtual ~Theory(void);
//! Access to ExprManager
ExprManager* getEM() { return d_em; }
//! Get a pointer to theoryCore
TheoryCore* theoryCore() { return d_theoryCore; }
//! Get a pointer to common proof rules
CommonProofRules* getCommonRules() { return d_commonRules; }
//! Get the name of the theory (for debugging purposes)
const std::string& getName() const { return d_name; }
//! Set the "used" flag on this theory (for smtlib translator)
virtual void setUsed() { d_theoryUsed = true; }
//! Get whether theory has been used (for smtlib translator)
virtual bool theoryUsed() { return d_theoryUsed; }
/***************************************************************************/
/*!
*\defgroup Theory_API Abstract Theory Interface
*\anchor theory_api
*\ingroup Theories
*\brief Abstract Theory Interface
*
* These are the theory-specific methods which provide the decision procedure
* functionality for a new theory. At the very least, a theory must
* implement the checkSat method. The other methods can be used to make the
* implementation more convenient. For more information on this API, see
* Clark Barrett's PhD dissertation and \ref theory_api_howto.
*@{
*/
/***************************************************************************/
//! Notify theory of a new shared term
/*! When a term e associated with theory i occurs as a child of an expression
associated with theory j, the framework calls i->addSharedTerm(e) and
j->addSharedTerm(e)
*/
virtual void addSharedTerm(const Expr& e) {}
//! Assert a new fact to the decision procedure
/*! Each fact that makes it into the core framework is assigned to exactly
one theory: the theory associated with that fact. assertFact is called to
inform the theory that a new fact has been assigned to the theory.
*/
virtual void assertFact(const Theorem& e) = 0;
//! Check for satisfiability in the theory
/*! \param fullEffort when it is false, checkSat can do as much or
as little work as it likes, though simple inferences and checks for
consistency should be done to increase efficiency. If fullEffort is true,
checkSat must check whether the set of facts given by assertFact together
with the arrangement of shared terms (provided by addSharedTerm) induced by
the global find database equivalence relation are satisfiable. If
satisfiable, checkSat does nothing.
If satisfiability can be acheived by merging some of the shared terms, a new
fact must be enqueued using enqueueFact (this fact need not be a literal).
If there is no way to make things satisfiable, setInconsistent must be called.
*/
virtual void checkSat(bool fullEffort) = 0;
//! Theory-specific rewrite rules.
/*! By default, rewrite just returns a reflexive theorem stating that the
input expression is equivalent to itself. However, rewrite is allowed to
return any theorem which describes how the input expression is equivalent
to some new expression. rewrite should be used to perform simplifications,
normalization, and any other preprocessing on theory-specific expressions
that needs to be done.
*/
virtual Theorem rewrite(const Expr& e) { return reflexivityRule(e); }
//! Theory-specific preprocessing
/*! This gets called each time a new assumption or query is preprocessed.
By default it does nothing. */
virtual Theorem theoryPreprocess(const Expr& e) { return reflexivityRule(e); }
//! Set up the term e for call-backs when e or its children change.
/*! setup is called once for each expression associated with the theory. It
is typically used to setup theory-specific data for an expression and to
add call-back information for use with update.
\sa update
*/
virtual void setup(const Expr& e) {}
//! Notify a theory of a new equality
/*! update is a call-back used by the notify mechanism of the core theory.
It works as follows. When an equation t1 = t2 makes it into the core
framework, the two find equivalence classes for t1 and t2 are merged. The
result is that t2 is the new equivalence class representative and t1 is no
longer an equivalence class representative. When this happens, the notify
list of t1 is traversed. Notify list entries consist of a theory and an
expression d. For each entry (i,d), i->update(e, d) is called, where e is
the theorem corresponding to the equality t1=t2.
To add the entry (i,d) to a term t1's notify list, a call must be made to
t1.addNotify(i,d). This is typically done in setup.
\sa setup
*/
virtual void update(const Theorem& e, const Expr& d) {}
//! An optional solver.
/*! The solve method can be used to implement a Shostak-style solver. Since
solvers do not in general combine, the following technique is used. One
theory is designated as the primary solver (in our case, it is the theory
of arithmetic). For each equation that enters the core framework, the
primary solver is called to ensure that the equation is in solved form with
respect to the primary theory.
After the primary solver, the solver for the theory associated with the
equation is called. This solver can do whatever it likes, as long as the
result is still in solved form with respect to the primary solver. This is
a slight generalization of what is described in my (Clark)'s PhD thesis.
*/
virtual Theorem solve(const Theorem& e) { return e; }
//! A debug check used by the primary solver
virtual void checkAssertEqInvariant(const Theorem& e) { }
/////////////////////////////////
// Extensions to original API: //
/////////////////////////////////
//! Recursive simplification step
/*!
* INVARIANT: the result is a Theorem(e=e'), where e' is a fully
* simplified version of e. To simplify subexpressions recursively,
* call simplify() function.
*
* This theory-specific method is called when the simplifier
* descends top-down into the expression. Normally, every kid is
* simplified recursively, and the results are combined into the new
* parent with the same operator (Op). This functionality is
* provided with the default implementation.
*
* However, in some expressions some kids may not matter in the
* result, and can be skipped. For instance, if the first kid in a
* long AND simplifies to FALSE, then the entire expression
* simplifies to FALSE, and the remaining kids do not need to be
* simplified.
*
* This call is a chance for a DP to provide these types of
* optimizations during the top-down phase of simplification.
*/
virtual Theorem simplifyOp(const Expr& e);
//! Check that e is a valid Type expr
virtual void checkType(const Expr& e)
{ throw Exception("Cannot construct type from expr: "+e.toString()); }
//! Compute information related to finiteness of types
/*! Used by the TypeComputer defined in TheoryCore (theories should not call this
* funtion directly -- they should use the methods in Type instead). Each theory
* should implement this if it contains any types that could be non-infinite.
*
* 1. Returns Cardinality of the type (finite, infinite, or unknown)
* 2. If cardinality = finite and enumerate is true,
* sets e to the nth element of the type if it can
* sets e to NULL if n is out of bounds or if unable to compute nth element
* 3. If cardinality = finite and computeSize is true,
* sets n to the size of the type if it can
* sets n to 0 otherwise
*/
virtual Cardinality finiteTypeInfo(Expr& e, Unsigned& n,
bool enumerate, bool computeSize)
{ return CARD_INFINITE; }
//! Compute and store the type of e
/*!
* \param e is the expression whose type is computed.
*
* This function computes the type of the top-level operator of e,
* and recurses into children using getType(), if necessary.
*/
virtual void computeType(const Expr& e) {}
//! Compute the base type of the top-level operator of an arbitrary type
virtual Type computeBaseType(const Type& tp) { return tp; }
/*! @brief Theory specific computation of the subtyping predicate for
* type t applied to the expression e.
*/
/*! By default returns true. Each theory needs to compute subtype predicates
* for the types associated with it. So, for example, the theory of records
* will take a record type [# f1: T1, f2: T2 #] and an expression e
* and will return the subtyping predicate for e, namely:
* computeTypePred(T1, e.f1) AND computeTypePred(T2, e.f2)
*/
virtual Expr computeTypePred(const Type& t, const Expr& e)
{ return e.getEM()->trueExpr(); }
//! Compute and cache the TCC of e.
/*!
* \param e is an expression (term or formula). This function
* computes the TCC of e which is true iff the expression is defined.
*
* This function computes the TCC or predicate of the top-level
* operator of e, and recurses into children using getTCC(), if
* necessary.
*
* The default implementation is to compute TCCs recursively for all
* children, and return their conjunction.
*/
virtual Expr computeTCC(const Expr& e);
//! Theory-specific parsing implemented by the DP
virtual Expr parseExprOp(const Expr& e) { return e; }
//! Theory-specific pretty-printing.
/*! By default, print the top node in AST, and resume
pretty-printing the children. The same call e.print(os) can be
used in DP-specific printers to use AST printing for the given
node. In fact, it is strongly recommended to add e.print(os) as
the default for all the cases/kinds that are not handled by the
particular pretty-printer.
*/
virtual ExprStream& print(ExprStream& os, const Expr& e) {
return e.printAST(os);
}
//! Add variables from 'e' to 'v' for constructing a concrete model
/*! If e is already of primitive type, do NOT add it to v. */
virtual void computeModelTerm(const Expr& e, std::vector<Expr>& v);
//! Process disequalities from the arrangement for model generation
virtual void refineCounterExample() {}
//! Assign concrete values to basic-type variables in v
virtual void computeModelBasic(const std::vector<Expr>& v) {}
//! Compute the value of a compound variable from the more primitive ones
/*! The more primitive variables for e are already assigned concrete
* values, and are available through getModelValue().
*
* The new value for e must be assigned using assignValue() method.
*
* \param e is the compound type expression to assign a value;
*
* \param vars are the variables actually assigned. Normally, 'e'
* is the only element of vars. However, e.g. in the case of
* uninterpreted functions, assigning 'f' means assigning all
* relevant applications of 'f' to constant values (f(0), f(5),
* etc.). Such applications might not be known before the model is
* constructed (they may be of the form f(x), f(y+z), etc., where
* x,y,z are still unassigned).
*
* Populating 'vars' is an opportunity for a DP to change the set of
* top-level "variables" to assign, if needed. In particular, it
* may drop 'e' from the model entirely, if it is already a concrete
* value by itself.
*/
virtual void computeModel(const Expr& e, std::vector<Expr>& vars) {
assignValue(find(e));
vars.push_back(e);
}
//! Receives all the type predicates for the types of the given theory
/*! Type predicates may be expensive to enqueue eagerly, and DPs may
choose to postpone them, or transform them to something more
efficient. By default, the asserted type predicate is
immediately enqueued as a new fact.
Note: Used only by bitvector theory.
\param e is the expression for which the type predicate is computed
\param pred is the predicate theorem P(e)
*/
virtual void assertTypePred(const Expr& e, const Theorem& pred)
{ enqueueFact(pred); }
//! Theory-specific rewrites for atomic formulas
/*! The intended use is to convert complex atomic formulas into an
* equivalent Boolean combination of simpler formulas. Such
* conversion may be harmful for algebraic rewrites, and is not
* always desirable to have in rewrite() method.
*
* Note: Used only by bitvector theory and rewriteLiteral in core.
*
* However, if rewrite() alone cannot solve the problem, and the SAT
* solver needs to be envoked, these additional rewrites may ease
* the job for the SAT solver.
*/
virtual Theorem rewriteAtomic(const Expr& e) { return reflexivityRule(e); }
//! Notification of conflict
/*!
* Decision procedures implement this method when they want to be
* notified about a conflict.
*
* Note: Used only by quantifier theory
*
* \param thm is the theorem of FALSE given to setInconsistent()
*/
virtual void notifyInconsistent(const Theorem& thm) { }
virtual void registerAtom(const Expr& e, const Theorem& thm);
//! Theory-specific registration of atoms
/*!
* If a theory wants to implement its own theory propagation, it
* should implement this method and use it to collect all atoms
* that the core is interested in. If the theory can deduce the atom
* or its negation, it should do so (using enqueueFact).
*/
virtual void registerAtom(const Expr& e) { }
#ifdef _CVC3_DEBUG_MODE
//! Theory-specific debug function
virtual void debug(int i) { }
//! help function, as debug(int i). yeting
virtual int help(int i) { return 9999 ;} ;
#endif
/*@}*/ // End of Theory_API group
/***************************************************************************/
/*!
*\name Core Framework Functionality
* These methods provide convenient access to core functionality for the
* benefit of decision procedures.
*@{
*/
/***************************************************************************/
//! Check if the current context is inconsistent
virtual bool inconsistent();
//! Make the context inconsistent; The formula proved by e must FALSE.
virtual void setInconsistent(const Theorem& e);
//! Mark the current decision branch as possibly incomplete
/*!
* This should be set when a decision procedure uses an incomplete
* algorithm, and cannot guarantee satisfiability after the final
* checkSat() call with full effort. An example would be
* instantiation of universal quantifiers.
*
* A decision procedure can provide a reason for incompleteness,
* which will be reported back to the user.
*/
virtual void setIncomplete(const std::string& reason);
//! Simplify a term e and return a Theorem(e==e')
/*! \sa simplifyExpr() */
virtual Theorem simplify(const Expr& e);
//! Simplify a term e w.r.t. the current context
/*! \sa simplify */
Expr simplifyExpr(const Expr& e)
{ return simplify(e).getRHS(); }
//! Submit a derived fact to the core from a decision procedure
/*! \param e is the Theorem for the new fact
*/
virtual void enqueueFact(const Theorem& e);
virtual void enqueueSE(const Theorem& e);
//! Handle new equalities (usually asserted through addFact)
/*!
* INVARIANT: the Theorem 'e' is an equality e1==e2, where e2 is
* i-leaf simplified in the current context, or a conjunction of
* such equalities.
*
*/
virtual void assertEqualities(const Theorem& e);
//! Parse the generic expression.
/*! This method should be used in parseExprOp() for recursive calls
* to subexpressions, and is the method called by the command
* processor.
*/
virtual Expr parseExpr(const Expr& e);
//! Assigns t a concrete value val. Used in model generation.
virtual void assignValue(const Expr& t, const Expr& val);
//! Record a derived assignment to a variable (LHS).
virtual void assignValue(const Theorem& thm);
/*@}*/ // End of Core Framework Functionality
/***************************************************************************/
/*!
*\name Theory Helper Methods
* These methods provide basic functionality needed by all theories.
*@{
*/
/***************************************************************************/
//! Register new kinds with the given theory
void registerKinds(Theory* theory, std::vector<int>& kinds);
//! Unregister kinds for a theory
void unregisterKinds(Theory* theory, std::vector<int>& kinds);
//! Register a new theory
void registerTheory(Theory* theory, std::vector<int>& kinds,
bool hasSolver=false);
//! Unregister a theory
void unregisterTheory(Theory* theory, std::vector<int>& kinds,
bool hasSolver);
//! Return the number of registered theories
int getNumTheories();
//! Test whether a kind maps to any theory
bool hasTheory(int kind);
//! Return the theory associated with a kind
Theory* theoryOf(int kind);
//! Return the theory associated with a type
Theory* theoryOf(const Type& e);
//! Return the theory associated with an Expr
Theory* theoryOf(const Expr& e);
//! Return the theorem that e is equal to its find
Theorem find(const Expr& e);
//! Return the find as a reference: expr must have a find
const Theorem& findRef(const Expr& e);
//! Return find-reduced version of e
Theorem findReduce(const Expr& e);
//! Return true iff e is find-reduced
bool findReduced(const Expr& e);
//! Return the find of e, or e if it has no find
inline Expr findExpr(const Expr& e)
{ return e.hasFind() ? find(e).getRHS() : e; }
//! Compute the TCC of e, or the subtyping predicate, if e is a type
Expr getTCC(const Expr& e);
//! Compute (or look up in cache) the base type of e and return the result
Type getBaseType(const Expr& e);
//! Compute the base type from an arbitrary type
Type getBaseType(const Type& tp);
//! Calls the correct theory to compute a type predicate
Expr getTypePred(const Type& t, const Expr& e);
//! Update the children of the term e
/*! When a decision procedure receives a call to update() because a
child of a term 'e' has changed, this method can be called to
compute the new value of 'e'.
\sa update
*/
Theorem updateHelper(const Expr& e);
//! Setup a term for congruence closure (must have sig and rep attributes)
void setupCC(const Expr& e);
//! Update a term w.r.t. congruence closure (must be setup with setupCC())
void updateCC(const Theorem& e, const Expr& d);
//! Rewrite a term w.r.t. congruence closure (must be setup with setupCC())
Theorem rewriteCC(const Expr& e);
/*! @brief Calls the correct theory to get all of the terms that
need to be assigned values in the concrete model */
void getModelTerm(const Expr& e, std::vector<Expr>& v);
//! Fetch the concrete assignment to the variable during model generation
Theorem getModelValue(const Expr& e);
//! Suggest a splitter to the SearchEngine
void addSplitter(const Expr& e, int priority = 0);
//! Add a global lemma
void addGlobalLemma(const Theorem& thm, int priority = 0);
/*@}*/ // End of Theory Helper Methods
/***************************************************************************/
/*!
*\name Core Testers
*@{
*/
/***************************************************************************/
//! Test if e is an i-leaf term for the current theory
/*! A term 'e' is an i-leaf for a theory 'i', if it is a variable,
or 'e' belongs to a different theory. This definition makes sense
for a larger term which by itself belongs to the current theory
'i', but (some of) its children are variables or belong to
different theories. */
bool isLeaf(const Expr& e) { return e.isVar() || theoryOf(e) != this; }
//! Test if e1 is an i-leaf in e2
/*! \sa isLeaf */
bool isLeafIn(const Expr& e1, const Expr& e2);
//! Test if all i-leaves of e are simplified
/*! \sa isLeaf */
bool leavesAreSimp(const Expr& e);
/*@}*/ // End of Core Testers
/***************************************************************************/
/*!
*\name Common Type and Expr Methods
*@{
*/
/***************************************************************************/
//! Return BOOLEAN type
Type boolType() { return Type::typeBool(d_em); }
//! Return FALSE Expr
const Expr& falseExpr() { return d_em->falseExpr(); }
//! Return TRUE Expr
const Expr& trueExpr() { return d_em->trueExpr(); }
//! Create a new variable given its name and type
/*! Add the variable to the database for resolving IDs in parseExpr
*/
Expr newVar(const std::string& name, const Type& type);
//! Create a new named expression given its name, type, and definition
/*! Add the definition to the database for resolving IDs in parseExpr
*/
Expr newVar(const std::string& name, const Type& type, const Expr& def);
//! Create a new uninterpreted function
/*! Add the definition to the database for resolving IDs in parseExpr
*/
Op newFunction(const std::string& name, const Type& type,
bool computeTransClosure);
//! Look up a function by name.
/*! Returns the function and sets type to the type of the function if it
* exists. If not, returns a NULL Op object.
*/
Op lookupFunction(const std::string& name, Type* type);
//! Create a new defined function
/*! Add the definition to the database for resolving IDs in parseExpr
*/
Op newFunction(const std::string& name, const Type& type, const Expr& def);
//! Create and add a new bound variable to the stack, for parseExprOp().
/*!
* The stack is popped automatically upon return from the
* parseExprOp() which used this method.
*
* Bound variable names may repeat, in which case the latest
* declaration takes precedence.
*/
Expr addBoundVar(const std::string& name, const Type& type);
//! Create and add a new bound named def to the stack, for parseExprOp().
/*!
* The stack is popped automatically upon return from the
* parseExprOp() which used this method.
*
* Bound variable names may repeat, in which case the latest
* declaration takes precedence.
*
* The type may be Null, but 'def' must always be a valid Expr
*/
Expr addBoundVar(const std::string& name, const Type& type, const Expr& def);
/*! @brief Lookup variable and return it and its type. Return NULL Expr if
it doesn't exist yet. */
Expr lookupVar(const std::string& name, Type* type);
//! Create a new uninterpreted type with the given name
/*! Add the name to the global variable database d_globals
*/
Type newTypeExpr(const std::string& name);
//! Lookup type by name. Return Null if no such type exists.
Type lookupTypeExpr(const std::string& name);
//! Create a new type abbreviation with the given name
Type newTypeExpr(const std::string& name, const Type& def);
//! Create a new subtype expression
Type newSubtypeExpr(const Expr& pred, const Expr& witness);
//! Resolve an identifier, for use in parseExprOp()
/*!
* First, search the bound variable stack, and if the name is not
* found, search the global constant and type declarations.
*
* \return an expression to use in place of the identifier, or Null
* if cannot resolve the name.
*/
Expr resolveID(const std::string& name);
//! Install name as a new identifier associated with Expr e
void installID(const std::string& name, const Expr& e);
Theorem typePred(const Expr& e);
/*@}*/ // End of Common Type and Expr Methods
/***************************************************************************/
/*!
*\name Commonly Used Proof Rules
*\anchor theory_api_core_proof_rules
*@{
*/
/***************************************************************************/
//! ==> a == a
Theorem reflexivityRule(const Expr& a)
{ return d_commonRules->reflexivityRule(a); }
//! a1 == a2 ==> a2 == a1
Theorem symmetryRule(const Theorem& a1_eq_a2)
{ return d_commonRules->symmetryRule(a1_eq_a2); }
//! (a1 == a2) & (a2 == a3) ==> (a1 == a3)
Theorem transitivityRule(const Theorem& a1_eq_a2,
const Theorem& a2_eq_a3)
{ return d_commonRules->transitivityRule(a1_eq_a2, a2_eq_a3); }
//! (c_1 == d_1) & ... & (c_n == d_n) ==> op(c_1,...,c_n) == op(d_1,...,d_n)
Theorem substitutivityRule(const Op& op,
const std::vector<Theorem>& thms)
{ return d_commonRules->substitutivityRule(op, thms); }
//! Special case for unary operators
Theorem substitutivityRule(const Expr& e,
const Theorem& t)
{ return d_commonRules->substitutivityRule(e, t); }
//! Special case for binary operators
Theorem substitutivityRule(const Expr& e,
const Theorem& t1,
const Theorem& t2)
{ return d_commonRules->substitutivityRule(e, t1, t2); }
//! Optimized: only positions which changed are included
Theorem substitutivityRule(const Expr& e,
const std::vector<unsigned>& changed,
const std::vector<Theorem>& thms)
{ return d_commonRules->substitutivityRule(e, changed, thms); }
//! Optimized: only a single position changed
Theorem substitutivityRule(const Expr& e,
int changed,
const Theorem& thm)
{ return d_commonRules->substitutivityRule(e, changed, thm); }
//! e1 AND (e1 IFF e2) ==> e2
Theorem iffMP(const Theorem& e1, const Theorem& e1_iff_e2) {
return d_commonRules->iffMP(e1, e1_iff_e2);
}
//! ==> AND(e1,e2) IFF [simplified expr]
Theorem rewriteAnd(const Expr& e) {
return d_commonRules->rewriteAnd(e);
}
//! ==> OR(e1,...,en) IFF [simplified expr]
Theorem rewriteOr(const Expr& e) {
return d_commonRules->rewriteOr(e);
}
//! Derived rule for rewriting ITE
Theorem rewriteIte(const Expr& e);
//! Derived rule to create a new name for an expression
Theorem renameExpr(const Expr& e);
/*@}*/ // End of Commonly Used Proof Rules
};
/*@}*/ // End of group Theories
}
#endif
|