This file is indexed.

/usr/include/cvc3/search_impl_base.h is in libcvc3-dev 2.4.1-5.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*****************************************************************************/
/*!
 * \file search_impl_base.h
 * \brief Abstract API to the proof search engine
 * 
 * Author: Clark Barrett, Vijay Ganesh (Clausal Normal Form Converter)
 * 
 * Created: Fri Jan 17 13:35:03 2003
 *
 * <hr>
 *
 * License to use, copy, modify, sell and/or distribute this software
 * and its documentation for any purpose is hereby granted without
 * royalty, subject to the terms and conditions defined in the \ref
 * LICENSE file provided with this distribution.
 * 
 * <hr>
 * 
 */
/*****************************************************************************/

#ifndef _cvc3__include__search_impl_base_h_
#define _cvc3__include__search_impl_base_h_

#include "search.h"
#include "theory_core.h"
#include "variable.h"
#include "formula_value.h"

namespace CVC3 {

class SearchEngineRules;
class VariableManager;

  //! API to to a generic proof search engine (a.k.a. SAT solver) 
  /*! \ingroup SE */
class SearchImplBase :public SearchEngine {
  friend class DecisionEngine;
protected:
  /*! \addtogroup SE 
   * @{
   */
  //! Variable manager for classes Variable and Literal
  VariableManager* d_vm;

  /*! @brief The bottom-most scope for the current call to checkSAT (where conflict
    clauses are still valid).
  */
  CDO<int> d_bottomScope;

  TheoryCore::CoreSatAPI* d_coreSatAPI_implBase;

  //! Representation of a DP-suggested splitter
  class Splitter {
    Literal d_lit;
  public:
    // int priority;
    //! Constructor
    Splitter(const Literal& lit);
    //! Copy constructor
    Splitter(const Splitter& s);
    //! Assignment
    Splitter& operator=(const Splitter& s);
    //! Descructor
    ~Splitter();
    operator Literal() { return d_lit; }
    //! The order is descending by priority ("reversed", highest first)
//     friend bool operator<(const Splitter& s1, const Splitter& s2) {
//       return (s1.priority > s2.priority
// 	      || (s1.priority == s2.priority && s1.expr > s2.expr));
//     }
  };
  //! Backtracking ordered set of DP-suggested splitters
  CDList<Splitter> d_dpSplitters;

  /*! @brief Theorem from the last successful checkValid call.  It is
    used by getProof and getAssumptions. */
  Theorem d_lastValid;
  /*! @brief Assumptions from the last unsuccessful checkValid call.
    These are used by getCounterExample. */
  ExprHashMap<bool> d_lastCounterExample;
  /*! @brief Maintain the list of current assumptions (user asserts and
   splitters) for getAssumptions(). */
  CDMap<Expr,Theorem> d_assumptions;

  //! Backtracking cache for the CNF generator
  CDMap<Expr, Theorem> d_cnfCache;
  //! Backtracking set of new variables generated by CNF translator
  /*! Specific search engines do not have to split on these variables */
  CDMap<Expr, bool> d_cnfVars;
  //! Command line flag whether to convert to CNF
  const bool* d_cnfOption;
  //! Flag: whether to convert term ITEs into CNF
  const bool* d_ifLiftOption;
  //! Flag: ignore auxiliary CNF variables when searching for a splitter
  const bool* d_ignoreCnfVarsOption;
  //! Flag: Preserve the original formula with +cnf (for splitter heuristics)
  const bool* d_origFormulaOption;

  /*!
   * \name CNF Caches 
   *
   * These caches are for subexpressions of the translated formula
   * phi, to avoid expanding phi into a tree.  We cannot use
   * d_cnfCache for that, since it is effectively non-backtracking,
   * and we do not know if a subexpression of phi was translated at
   * the current level, or at some other (inactive) branch of the
   * decision tree.
   * @{
   */
  //! Cache for enqueueCNF()
  CDMap<Expr,bool> d_enqueueCNFCache;
  //! Cache for applyCNFRules()
  CDMap<Expr,bool> d_applyCNFRulesCache;
  //! Cache for replaceITE()
  CDMap<Expr,Theorem> d_replaceITECache;
  /*@}*/ // End of CNF Caches

  //! Construct a Literal out of an Expr or return an existing one
  Literal newLiteral(const Expr& e) { return Literal(d_vm, e); }

  /*! @brief Our version of simplifier: take Theorem(e), apply
    simplifier to get Theorem(e==e'), return Theorem(e') */
  Theorem simplify(const Theorem& e)
    { return d_core->iffMP(e, d_core->simplify(e.getExpr())); }

  //! Notify the search engine about a new literal fact.
  /*! It should be called by SearchEngine::addFact() only.
   *  Must be implemented by the subclasses of SearchEngine.
   *
   * IMPORTANT: do not call addFact() from this function; use
   * enqueueFact() or setInconsistent() instead.
   */
  virtual void addLiteralFact(const Theorem& thm) = 0;
  //! Notify the search engine about a new non-literal fact.
  /*! It should be called by SearchEngine::addFact() only.
   *  Must be implemented by the subclasses of SearchEngine.
   *
   * IMPORTANT: do not call addFact() from this function; use
   * enqueueFact() or setInconsistent() instead.
   */
  virtual void addNonLiteralFact(const Theorem& thm) = 0;
  //! Add a new fact to the search engine bypassing CNF converter
  /*! Calls either addLiteralFact() or addNonLiteralFact()
   * appropriately, and converts to CNF when d_cnfOption is set.  If
   * fromCore==true, this fact already comes from the core, and
   * doesn't need to be reported back to the core.
   */
  void addCNFFact(const Theorem& thm, bool fromCore=false);

 public:

  int getBottomScope() { return d_bottomScope; }

  //! Check if e is a clause (a literal, or a disjunction of literals)
  bool isClause(const Expr& e);

  //! Check if e is a propositional clause
  /*! \sa isPropAtom() */
  bool isPropClause(const Expr& e);
  //! Check whether e is a fresh variable introduced by the CNF converter
  /*! Search engines do not need to split on those variables in order
   * to be complete
   */
  bool isCNFVar(const Expr& e) { return (d_cnfVars.count(e) > 0); }
  //! Check if a splitter is required for completeness
  /*! Currently, it checks that 'e' is not an auxiliary CNF variable */
  bool isGoodSplitter(const Expr& e);

 private:

  //! Translate theta to CNF and enqueue the new clauses
  void enqueueCNF(const Theorem& theta);
  //! Recursive version of enqueueCNF()
  void enqueueCNFrec(const Theorem& theta);
  //! FIXME: write a comment
  void applyCNFRules(const Theorem& e);
  
  //! Cache a theorem phi <=> v by phi, where v is a literal.
  void addToCNFCache(const Theorem& thm);

  //! Find a theorem phi <=> v by phi, where v is a literal.
  /*! \return Null Theorem if not found. */
  Theorem findInCNFCache(const Expr& e);

  //! Replaces ITE subexpressions in e with variables
  Theorem replaceITE(const Expr& e);
  
protected:

  //! Return the current scope level (for convenience)
  int scopeLevel() { return d_core->getCM()->scopeLevel(); }

public:
  //! Constructor
  SearchImplBase(TheoryCore* core);
  //! Destructor
  virtual ~SearchImplBase();

  virtual void registerAtom(const Expr& e)
    { d_core->theoryOf(e)->registerAtom(e, Theorem()); }
  virtual Theorem getImpliedLiteral() { return d_core->getImpliedLiteral(); }
  virtual void push() { d_core->getCM()->push(); }
  virtual void pop() { d_core->getCM()->pop(); }

  ///////////////////////////////////////////////////////////////////////////
  // checkValid() is the method that subclasses must implement.
  ///////////////////////////////////////////////////////////////////////////

  //! Checks the validity of a formula in the current context
  /*! The method that actually calls the SAT solver (implemented in a
    subclass).  It should maintain d_assumptions (add all asserted
    splitters to it), and set d_lastValid and d_lastCounterExample
    appropriately before exiting. */
  virtual QueryResult checkValidInternal(const Expr& e) = 0;
  //! Similar to checkValidInternal(), only returns Theorem(e) or Null
  virtual QueryResult checkValid(const Expr& e, Theorem& result);
  //! Reruns last check with e as an additional assumption
  virtual QueryResult restartInternal(const Expr& e) = 0;
  //! Reruns last check with e as an additional assumption
  virtual QueryResult restart(const Expr& e, Theorem& result);
  void returnFromCheck()
    { Theorem thm; restart(d_core->falseExpr(), thm); }
  virtual Theorem lastThm() { return d_lastValid; }

  ///////////////////////////////////////////////////////////////////////////
  // The following methods are provided by the base class, and in most
  // cases should be sufficient.  However, they are virtual so that
  // subclasses can add functionality to them if needed.
  ///////////////////////////////////////////////////////////////////////////

  /*! @brief Generate and add a new assertion to the set of assertions
    in the current context.  This should only be used by class VCL in
    assertFormula(). */
  Theorem newUserAssumption(const Expr& e);
  //! Add a new internal asserion
  virtual Theorem newIntAssumption(const Expr& e);
  //! Helper for above function
  void newIntAssumption(const Theorem& thm);
  //! Get all assumptions made in this and all previous contexts.
  /*! \param assumptions should be an empty vector which will be filled \
    with the assumptions */
  void getUserAssumptions(std::vector<Expr>& assumptions);
  void getInternalAssumptions(std::vector<Expr>& assumptions);
  virtual void getAssumptions(std::vector<Expr>& assumptions);
  //! Check if the formula has been assumed
  virtual bool isAssumption(const Expr& e);

  //! Add a new fact to the search engine from the core
  /*! It should be called by TheoryCore::assertFactCore(). */
  void addFact(const Theorem& thm);

  //! Suggest a splitter to the SearchEngine
  /*! The higher is the priority, the sooner the SAT solver will split
   * on it.  It can be positive or negative (default is 0).
   *
   * The set of suggested splitters is backtracking; that is, a
   * splitter is "forgotten" once the scope is backtracked.
   *
   * This method can be used either to change the priority
   * of existing splitters, or to introduce new splitters that DPs
   * consider relevant, even though they do not appear in existing
   * formulas.
   */
  virtual void addSplitter(const Expr& e, int priority);
  
  virtual void getCounterExample(std::vector<Expr>& assertions, bool inOrder = true);

  // The following two methods should be called only after a checkValid
  // which returns true.  In any other case, they return Null values.

  //! Returns the proof term for the last proven query
  /*! It should be called only after a checkValid which returns true.
    In any other case, it returns Null. */
  virtual Proof getProof();
  /*! @brief Returns the set of assumptions used in the proof.  It
    should be a subset of getAssumptions(). */
  /*! It should be called only after a checkValid which returns true.
    In any other case, it returns Null. */
  virtual const Assumptions& getAssumptionsUsed();

  //! Process result of checkValid
  void processResult(const Theorem& res, const Expr& e);

  //:ALEX:
  inline virtual FormulaValue getValue(const CVC3::Expr& e) {
    FatalAssert(false, "not implemented");
    return UNKNOWN_VAL;
  }

  /* @} */ // end of group SE

};


}

#endif