/usr/include/cvc3/expr.h is in libcvc3-dev 2.4.1-5.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | /*****************************************************************************/
/*!
* \file expr.h
* \brief Definition of the API to expression package. See class Expr for details.
*
* Author: Clark Barrett
*
* Created: Tue Nov 26 00:27:40 2002
*
* <hr>
*
* License to use, copy, modify, sell and/or distribute this software
* and its documentation for any purpose is hereby granted without
* royalty, subject to the terms and conditions defined in the \ref
* LICENSE file provided with this distribution.
*
* <hr>
*
*/
/*****************************************************************************/
#ifndef _cvc3__expr_h_
#define _cvc3__expr_h_
#include <stdlib.h>
#include <sstream>
#include <set>
#include <functional>
#include <iterator>
#include <map>
#include "os.h"
#include "compat_hash_map.h"
#include "compat_hash_set.h"
#include "rational.h"
#include "kinds.h"
#include "cdo.h"
#include "cdflags.h"
#include "lang.h"
#include "memory_manager.h"
class CInterface;
namespace CVC3 {
class NotifyList;
class Theory;
class Op;
class Type;
class Theorem;
template<class Data>
class ExprHashMap;
class ExprManager;
// Internal data-holding classes
class ExprValue;
class ExprNode;
// Printing
class ExprStream;
//! Type ID of each ExprValue subclass.
/*! It is defined in expr.h, so that ExprManager can use it before loading
expr_value.h */
typedef enum {
EXPR_VALUE,
EXPR_NODE,
EXPR_APPLY, //!< Application of functions and predicates
EXPR_STRING,
EXPR_RATIONAL,
EXPR_SKOLEM,
EXPR_UCONST,
EXPR_SYMBOL,
EXPR_BOUND_VAR,
EXPR_CLOSURE,
EXPR_VALUE_TYPE_LAST // The end of list; don't assign it to any subclass
} ExprValueType;
//! Enum for cardinality of types
typedef enum {
CARD_FINITE,
CARD_INFINITE,
CARD_UNKNOWN
} Cardinality;
//! Expression index type
typedef long unsigned ExprIndex;
/**************************************************************************/
/*! \defgroup ExprPkg Expression Package
* \ingroup BuildingBlocks
*/
/**************************************************************************/
/*! \defgroup Expr_SmartPointer Smart Pointer Functionality in Expr
* \ingroup ExprPkg
*/
/**************************************************************************/
/**************************************************************************/
//! Data structure of expressions in CVC3
/*! \ingroup ExprPkg
* Class: Expr <br>
* Author: Clark Barrett <br>
* Created: Mon Nov 25 15:29:37 2002
*
* This class is the main data structure for expressions that all
* other components should use. It is actually a <em>smart
* pointer</em> to the actual data holding class ExprValue and its
* subclasses.
*
* Expressions are represented as DAGs with maximal sharing of
* subexpressions. Therefore, testing for equality is a constant time
* operation (simply compare the pointers).
*
* Unused expressions are automatically garbage-collected. The use is
* determined by a reference counting mechanism. In particular, this
* means that if there is a circular dependency among expressions
* (e.g. an attribute points back to the expression itself), these
* expressions will not be garbage-collected, even if no one else is
* using them.
*
* The most frequently used operations are getKind() (determining the
* kind of the top level node of the expression), arity() (how many
* children an Expr has), operator[]() for accessing a child, and
* various testers and methods for constructing new expressions.
*
* In addition, a total ordering operator<() is provided. It is
* guaranteed to remain the same for the lifetime of the expressions
* (it may change, however, if the expression is garbage-collected and
* reborn).
*/
/**************************************************************************/
class CVC_DLL Expr {
friend class ExprHasher;
friend class ExprManager;
friend class Op;
friend class ExprValue;
friend class ExprNode;
friend class ExprClosure;
friend class ::CInterface;
friend class Theorem;
/*! \addtogroup ExprPkg
* @{
*/
//! bit-masks for static flags
typedef enum {
//! Whether is valid TYPE expr
VALID_TYPE = 0x1,
//! Whether IS_ATOMIC flag is valid (initialized)
VALID_IS_ATOMIC = 0x2,
//! Whether the expression is an atomic term or formula
IS_ATOMIC = 0x4,
//! Expression is the result of a "normal" (idempotent) rewrite
REWRITE_NORMAL = 0x8,
//! Finite type
IS_FINITE = 0x400,
//! Well-founded (used in datatypes)
WELL_FOUNDED = 0x800,
//! Compute transitive closure (for binary uninterpreted predicates)
COMPUTE_TRANS_CLOSURE = 0x1000,
//! Whether expr contains a bounded variable (for quantifier instantiation)
CONTAINS_BOUND_VAR = 0x00020000,
//! Whether expr uses CC algorithm that relies on not simplifying an expr that has a find
USES_CC = 0x00080000,
//! Whether TERMINALS_CONST flag is valid (initialized)
VALID_TERMINALS_CONST = 0x00100000,
//! Whether expr contains only numerical constants at all possible ite terminals
TERMINALS_CONST = 0x00200000
} StaticFlagsEnum;
//! bit-masks for dynamic flags
// TODO: Registered flags instead of hard-wired
typedef enum {
//! Whether expr has been added as an implied literal
IMPLIED_LITERAL = 0x10,
IS_USER_ASSUMPTION = 0x20,
IS_INT_ASSUMPTION = 0x40,
IS_JUSTIFIED = 0x80,
IS_TRANSLATED = 0x100,
IS_USER_REGISTERED_ATOM = 0x200,
IS_SELECTED = 0x2000,
IS_STORED_PREDICATE = 0x4000,
IS_REGISTERED_ATOM = 0x8000,
IN_USER_ASSUMPTION = 0x00010000,
//! Whether expr is normalized (in array theory)
NOT_ARRAY_NORMALIZED = 0x00040000
} DynamicFlagsEnum;
//! Convenient null expr
static Expr s_null;
/////////////////////////////////////////////////////////////////////////////
// Private Dynamic Data //
/////////////////////////////////////////////////////////////////////////////
//! The value. This is the only data member in this class.
ExprValue* d_expr;
/////////////////////////////////////////////////////////////////////////////
// Private methods //
/////////////////////////////////////////////////////////////////////////////
//! Private constructor, simply wraps around the pointer
Expr(ExprValue* expr);
Expr recursiveSubst(const ExprHashMap<Expr>& subst,
ExprHashMap<Expr>& visited) const;
Expr recursiveQuantSubst(const ExprHashMap<Expr>& subst,
ExprHashMap<Expr>& visited) const;
std::vector<std::vector<Expr> > substTriggers(const ExprHashMap<Expr> & subst,
ExprHashMap<Expr> & visited) const;
public:
/////////////////////////////////////////////////////////////////////////////
// Public Classes and Types //
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/*!
* Class: Expr::iterator
* Author: Sergey Berezin
* Created: Fri Dec 6 15:38:51 2002
* Description: STL-like iterator API to the Expr's children.
* IMPORTANT: the iterator will not be valid after the originating
* expression is destroyed.
*/
/////////////////////////////////////////////////////////////////////////////
class CVC_DLL iterator
: public std::iterator<std::input_iterator_tag,Expr,ptrdiff_t>
{
friend class Expr;
private:
std::vector<Expr>::const_iterator d_it;
// Private constructors (used by Expr only)
//
//! Construct an iterator out of the vector's iterator
iterator(std::vector<Expr>::const_iterator it): d_it(it) { }
// Public methods
public:
//! Default constructor
iterator() { }
// Copy constructor and operator= are defined by C++, that's good enough
//! Equality
bool operator==(const iterator& i) const {
return d_it == i.d_it;
}
//! Disequality
bool operator!=(const iterator& i) const { return !(*this == i); }
//! Dereference operator
const Expr& operator*() const { return *d_it; }
//! Dereference and member access
const Expr* operator->() const { return &(operator*()); }
//! Prefix increment
iterator& operator++() {
++d_it;
return *this;
}
/*! @brief Postfix increment requires a Proxy object to hold the
* intermediate value for dereferencing */
class Proxy {
const Expr* d_e;
public:
Proxy(const Expr& e) : d_e(&e) { }
Expr operator*() { return *d_e; }
};
//! Postfix increment
/*! \return Proxy with the old Expr.
*
* Now, an expression like *i++ will return the current *i, and
* then advance the iterator. However, don't try to use Proxy for
* anything else.
*/
Proxy operator++(int) {
Proxy e(*(*this));
++(*this);
return e;
}
}; // end of class Expr::iterator
/////////////////////////////////////////////////////////////////////////////
// Constructors //
/////////////////////////////////////////////////////////////////////////////
//! Default constructor creates the Null Expr
Expr(): d_expr(NULL) {}
/*! @brief Copy constructor and assignment (copy the pointer and take care
of the refcount) */
Expr(const Expr& e);
//! Assignment operator: take care of the refcounting and GC
Expr& operator=(const Expr& e);
// These constructors grab the ExprManager from the Op or the first
// child. The operator and all children must belong to the same
// ExprManager.
Expr(const Op& op, const Expr& child);
Expr(const Op& op, const Expr& child0, const Expr& child1);
Expr(const Op& op, const Expr& child0, const Expr& child1,
const Expr& child2);
Expr(const Op& op, const Expr& child0, const Expr& child1,
const Expr& child2, const Expr& child3);
Expr(const Op& op, const std::vector<Expr>& children,
ExprManager* em = NULL);
//! Destructor
~Expr();
// Compound expression constructors
Expr eqExpr(const Expr& right) const;
Expr notExpr() const;
Expr negate() const; // avoid double-negatives
Expr andExpr(const Expr& right) const;
Expr orExpr(const Expr& right) const;
Expr iteExpr(const Expr& thenpart, const Expr& elsepart) const;
Expr iffExpr(const Expr& right) const;
Expr impExpr(const Expr& right) const;
Expr xorExpr(const Expr& right) const;
//! Create a Skolem constant for the i'th variable of an existential (*this)
Expr skolemExpr(int i) const;
//! Create a Boolean variable out of the expression
// Expr boolVarExpr() const;
//! Rebuild Expr with a new ExprManager
Expr rebuild(ExprManager* em) const;
// Expr newForall(const Expr& e);
// Expr newExists(const Expr& e);
Expr substExpr(const std::vector<Expr>& oldTerms,
const std::vector<Expr>& newTerms) const;
Expr substExpr(const ExprHashMap<Expr>& oldToNew) const;
// by yeting, a special subst function for TheoryQuant
Expr substExprQuant(const std::vector<Expr>& oldTerms,
const std::vector<Expr>& newTerms) const;
Expr substExprQuant(const ExprHashMap<Expr>& oldToNew) const;
Expr operator!() const { return notExpr(); }
Expr operator&&(const Expr& right) const { return andExpr(right); }
Expr operator||(const Expr& right) const { return orExpr(right); }
/////////////////////////////////////////////////////////////////////////////
// Public Static Methods //
/////////////////////////////////////////////////////////////////////////////
static size_t hash(const Expr& e);
/////////////////////////////////////////////////////////////////////////////
// Read-only (const) methods //
/////////////////////////////////////////////////////////////////////////////
size_t hash() const;
// Core expression testers
bool isFalse() const { return getKind() == FALSE_EXPR; }
bool isTrue() const { return getKind() == TRUE_EXPR; }
bool isBoolConst() const { return isFalse() || isTrue(); }
bool isVar() const;
bool isBoundVar() const { return getKind() == BOUND_VAR; }
bool isString() const;
bool isClosure() const;
bool isQuantifier() const;
bool isLambda() const;
bool isApply() const;
bool isSymbol() const;
bool isTheorem() const;
bool isConstant() const { return getOpKind() <= MAX_CONST; }
bool isRawList() const {return getKind() == RAW_LIST;}
//! Expr represents a type
bool isType() const;
/*
bool isRecord() const;
bool isRecordAccess() const;
bool isTupleAccess() const;
*/
//! Provide access to ExprValue for client subclasses of ExprValue *only*
/*@ Calling getExprValue on an Expr with a built-in ExprValue class will
* cause an error */
const ExprValue* getExprValue() const;
//! Test if e is a term (as opposed to a predicate/formula)
bool isTerm() const;
//! Test if e is atomic
/*! An atomic expression is TRUE or FALSE or one that does not
* contain a formula (including not being a formula itself).
* \sa isAtomicFormula */
bool isAtomic() const;
//! Test if e is an atomic formula
/*! An atomic formula is TRUE or FALSE or an application of a predicate
(possibly 0-ary) which does not properly contain any formula. For
instance, the formula "x = IF f THEN y ELSE z ENDIF" is not an atomic
formula, since it contains the condition "f", which is a formula. */
bool isAtomicFormula() const;
//! An abstract atomic formua is an atomic formula or a quantified formula
bool isAbsAtomicFormula() const
{ return isQuantifier() || isAtomicFormula(); }
//! Test if e is a literal
/*! A literal is an atomic formula, or its negation.
\sa isAtomicFormula */
bool isLiteral() const
{ return (isAtomicFormula() || (isNot() && (*this)[0].isAtomicFormula())); }
//! Test if e is an abstract literal
bool isAbsLiteral() const
{ return (isAbsAtomicFormula() || (isNot() && (*this)[0].isAbsAtomicFormula())); }
//! A Bool connective is one of NOT,AND,OR,IMPLIES,IFF,XOR,ITE (with type Bool)
bool isBoolConnective() const;
//! True iff expr is not a Bool connective
bool isPropAtom() const { return !isTerm() && !isBoolConnective(); }
//! PropAtom or negation of PropAtom
bool isPropLiteral() const
{ return (isNot() && (*this)[0].isPropAtom()) || isPropAtom(); }
//! Return whether Expr contains a non-bool type ITE as a sub-term
bool containsTermITE() const;
bool isEq() const { return getKind() == EQ; }
bool isNot() const { return getKind() == NOT; }
bool isAnd() const { return getKind() == AND; }
bool isOr() const { return getKind() == OR; }
bool isITE() const { return getKind() == ITE; }
bool isIff() const { return getKind() == IFF; }
bool isImpl() const { return getKind() == IMPLIES; }
bool isXor() const { return getKind() == XOR;}
bool isForall() const { return getKind() == FORALL; }
bool isExists() const { return getKind() == EXISTS; }
bool isRational() const { return getKind() == RATIONAL_EXPR; }
bool isSkolem() const { return getKind() == SKOLEM_VAR;}
// Leaf accessors - these functions must only be called one expressions of
// the appropriate kind.
// For UCONST and BOUND_VAR Expr's
const std::string& getName() const;
//! For BOUND_VAR, get the UID
const std::string& getUid() const;
// For STRING_EXPR's
const std::string& getString() const;
//! Get bound variables from a closure Expr
const std::vector<Expr>& getVars() const;
//! Get the existential axiom expression for skolem constant
const Expr& getExistential() const;
//! Get the index of the bound var that skolem constant comes from
int getBoundIndex() const;
//! Get the body of the closure Expr
const Expr& getBody() const;
//! Set the triggers for a closure Expr
void setTriggers(const std::vector<std::vector<Expr> >& triggers) const;
void setTriggers(const std::vector<Expr>& triggers) const;
void setTrigger(const Expr& trigger) const;
void setMultiTrigger(const std::vector<Expr>& multiTrigger) const;
//! Get the manual triggers of the closure Expr
const std::vector<std::vector<Expr> >& getTriggers() const; //by yeting
//! Get the Rational value out of RATIONAL_EXPR
const Rational& getRational() const;
//! Get theorem from THEOREM_EXPR
const Theorem& getTheorem() const;
// Get the expression manager. The expression must be non-null.
ExprManager *getEM() const;
// Return a ref to the vector of children.
const std::vector<Expr>& getKids() const;
// Get the kind of this expr.
int getKind() const;
// Get the index field
ExprIndex getIndex() const;
// True if this is the most recently created expression
bool hasLastIndex() const;
//! Make the expr into an operator
Op mkOp() const;
//! Get operator from expression
Op getOp() const;
//! Get expression of operator (for APPLY Exprs only)
Expr getOpExpr() const;
//! Get kind of operator (for APPLY Exprs only)
int getOpKind() const;
// Return the number of children. Note, that an application of a
// user-defined function has the arity of that function (the number
// of arguments), and the function name itself is part of the
// operator.
int arity() const;
// Return the ith child. As with arity, it's also the ith argument
// in function application.
const Expr& operator[](int i) const;
//! Remove leading NOT if any
const Expr& unnegate() const { return isNot() ? (*this)[0] : *this; }
//! Begin iterator
iterator begin() const;
//! End iterator
iterator end() const;
// Check if Expr is Null
bool isNull() const;
// Check if Expr is not Null
bool isInitialized() const { return d_expr != NULL; }
//! Get the memory manager index (it uniquely identifies the subclass)
size_t getMMIndex() const;
// Attributes
// True if the find attribute has been set to something other than NULL.
bool hasFind() const;
// Return the attached find attribute for the expr. Note that this
// must be called repeatedly to get the root of the union-find tree.
// Should only be called if hasFind is true.
const Theorem& getFind() const;
int getFindLevel() const;
const Theorem& getEqNext() const;
// Return the notify list
NotifyList* getNotify() const;
//! Get the type. Recursively compute if necessary
Type getType() const;
//! Look up the current type. Do not recursively compute (i.e. may be NULL)
Type lookupType() const;
//! Return cardinality of type
Cardinality typeCard() const;
//! Return nth (starting with 0) element in a finite type
/*! Returns NULL Expr if unable to compute nth element
*/
Expr typeEnumerateFinite(Unsigned n) const;
//! Return size of a finite type; returns 0 if size cannot be determined
Unsigned typeSizeFinite() const;
/*! @brief Return true if there is a valid cached value for calling
simplify on this Expr. */
bool validSimpCache() const;
// Get the cached Simplify of this Expr.
const Theorem& getSimpCache() const;
// Return true if valid type flag is set for Expr
bool isValidType() const;
// Return true if there is a valid flag for whether Expr is atomic
bool validIsAtomicFlag() const;
// Return true if there is a valid flag for whether terminals are const
bool validTerminalsConstFlag() const;
// Get the isAtomic flag
bool getIsAtomicFlag() const;
// Get the TerminalsConst flag
bool getTerminalsConstFlag() const;
// Get the RewriteNormal flag
bool isRewriteNormal() const;
// Get the isFinite flag
bool isFinite() const;
// Get the WellFounded flag
bool isWellFounded() const;
// Get the ComputeTransClosure flag
bool computeTransClosure() const;
// Get the ContainsBoundVar flag
bool containsBoundVar() const;
// Get the usesCC flag
bool usesCC() const;
// Get the notArrayNormalized flag
bool notArrayNormalized() const;
// Get the ImpliedLiteral flag
bool isImpliedLiteral() const;
// Get the UserAssumption flag
bool isUserAssumption() const;
// Get the inUserAssumption flag
bool inUserAssumption() const;
// Get the IntAssumption flag
bool isIntAssumption() const;
// Get the Justified flag
bool isJustified() const;
// Get the Translated flag
bool isTranslated() const;
// Get the UserRegisteredAtom flag
bool isUserRegisteredAtom() const;
// Get the RegisteredAtom flag
bool isRegisteredAtom() const;
// Get the Selected flag
bool isSelected() const;
// Get the Stored Predicate flag
bool isStoredPredicate() const;
//! Check if the generic flag is set
bool getFlag() const;
//! Set the generic flag
void setFlag() const;
//! Clear the generic flag in all Exprs
void clearFlags() const;
// Printing functions
//! Print the expression to a string
std::string toString() const;
//! Print the expression to a string using the given output language
std::string toString(InputLanguage lang) const;
//! Print the expression in the specified format
void print(InputLanguage lang, bool dagify = true) const;
//! Print the expression as AST (lisp-like format)
void print() const { print(AST_LANG); }
//! Print the expression as AST without dagifying
void printnodag() const;
//! Pretty-print the expression
void pprint() const;
//! Pretty-print without dagifying
void pprintnodag() const;
//! Print a leaf node
/*@ The top node is pretty-printed if it is a basic leaf type;
* otherwise, just the kind is printed. Should only be called on expressions
* with no children. */
ExprStream& print(ExprStream& os) const;
//! Print the top node and then recurse through the children */
/*@ The top node is printed as an AST with all the information, including
* "hidden" Exprs that are part of the ExprValue */
ExprStream& printAST(ExprStream& os) const;
//! Set initial indentation to n.
/*! The indentation will be reset to default unless the second
argument is true.
\return reference to itself, so one can write `os << e.indent(5)'
*/
Expr& indent(int n, bool permanent = false);
/////////////////////////////////////////////////////////////////////////////
// Other Public methods //
/////////////////////////////////////////////////////////////////////////////
// Attributes
//! Set the find attribute to e
void setFind(const Theorem& e) const;
//! Set the eqNext attribute to e
void setEqNext(const Theorem& e) const;
//! Add (e,i) to the notify list of this expression
void addToNotify(Theory* i, const Expr& e) const;
//! Set the cached type
void setType(const Type& t) const;
// Cache the result of a call to Simplify on this Expr
void setSimpCache(const Theorem& e) const;
// Set the valid type flag for this Expr
void setValidType() const;
// Set the isAtomicFlag for this Expr
void setIsAtomicFlag(bool value) const;
// Set the TerminalsConst flag for this Expr
void setTerminalsConstFlag(bool value) const;
// Set or clear the RewriteNormal flag
void setRewriteNormal() const;
void clearRewriteNormal() const;
// Set the isFinite flag
void setFinite() const;
// Set the WellFounded flag
void setWellFounded() const;
// Set the ComputeTransClosure flag
void setComputeTransClosure() const;
// Set the ContainsBoundVar flag
void setContainsBoundVar() const;
// Set the UsesCC flag
void setUsesCC() const;
// Set the notArrayNormalized flag
void setNotArrayNormalized() const;
// Set the impliedLiteral flag for this Expr
void setImpliedLiteral() const;
// Set the user assumption flag for this Expr
void setUserAssumption(int scope = -1) const;
// Set the in user assumption flag for this Expr
void setInUserAssumption(int scope = -1) const;
// Set the internal assumption flag for this Expr
void setIntAssumption() const;
// Set the justified flag for this Expr
void setJustified() const;
//! Set the translated flag for this Expr
void setTranslated(int scope = -1) const;
//! Set the UserRegisteredAtom flag for this Expr
void setUserRegisteredAtom() const;
//! Set the RegisteredAtom flag for this Expr
void setRegisteredAtom() const;
//! Set the Selected flag for this Expr
void setSelected() const;
//! Set the Stored Predicate flag for this Expr
void setStoredPredicate() const;
//! Check if the current Expr (*this) is a subexpression of e
bool subExprOf(const Expr& e) const;
// Returns the maximum number of Boolean expressions on a path from
// this to a leaf, including this.
inline Unsigned getSize() const;
// inline int getHeight() const;
// // Returns the index of the highest kid.
// inline int getHighestKid() const;
// // Gets/sets an expression that this expression was simplified from
// // (see newRWTheorem). This is the equivalent of SVC's Sigx.
// inline bool hasSimpFrom() const;
// inline const Expr& getSimpFrom() const;
// inline void setSimpFrom(const Expr& simpFrom);
// Attributes for uninterpreted function symbols.
bool hasSig() const;
bool hasRep() const;
const Theorem& getSig() const;
const Theorem& getRep() const;
void setSig(const Theorem& e) const;
void setRep(const Theorem& e) const;
/////////////////////////////////////////////////////////////////////////////
// Friend methods //
/////////////////////////////////////////////////////////////////////////////
friend CVC_DLL std::ostream& operator<<(std::ostream& os, const Expr& e);
// The master method which defines some fixed total ordering on all
// Exprs. If e1 < e2, e1==e2, and e1 > e2, it returns -1, 0, 1
// respectively. A Null expr is always "smaller" than any other
// expr, but is equal to itself.
friend int compare(const Expr& e1, const Expr& e2);
friend bool operator==(const Expr& e1, const Expr& e2);
friend bool operator!=(const Expr& e1, const Expr& e2);
friend bool operator<(const Expr& e1, const Expr& e2);
friend bool operator<=(const Expr& e1, const Expr& e2);
friend bool operator>(const Expr& e1, const Expr& e2);
friend bool operator>=(const Expr& e1, const Expr& e2);
/*!@}*/ // end of group Expr
}; // end of class Expr
} // end of namespace CVC3
// Include expr_value.h here. We cannot include it earlier, since it
// needs the definition of class Expr. See comments in expr_value.h.
#ifndef DOXYGEN
#include "expr_op.h"
#include "expr_manager.h"
#endif
namespace CVC3 {
inline Expr::Expr(ExprValue* expr) : d_expr(expr) { d_expr->incRefcount(); }
inline Expr::Expr(const Expr& e) : d_expr(e.d_expr) {
if (d_expr != NULL) d_expr->incRefcount();
}
inline Expr& Expr::operator=(const Expr& e) {
if(&e == this) return *this; // Self-assignment
ExprValue* tmp = e.d_expr;
if(tmp == d_expr) return *this;
if (tmp == NULL) {
d_expr->decRefcount();
}
else {
tmp->incRefcount();
if(d_expr != NULL) {
d_expr->decRefcount();
}
}
d_expr = tmp;
return *this;
}
inline Expr::Expr(const Op& op, const Expr& child) {
ExprManager* em = child.getEM();
if (op.getKind() != APPLY) {
ExprNode ev(em, op.getKind());
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child);
d_expr = em->newExprValue(&ev);
} else {
ExprApply ev(em, op);
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child);
d_expr = em->newExprValue(&ev);
}
d_expr->incRefcount();
}
inline Expr::Expr(const Op& op, const Expr& child0, const Expr& child1) {
ExprManager* em = child0.getEM();
if (op.getKind() != APPLY) {
ExprNode ev(em, op.getKind());
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
d_expr = em->newExprValue(&ev);
} else {
ExprApply ev(em, op);
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
d_expr = em->newExprValue(&ev);
}
d_expr->incRefcount();
}
inline Expr::Expr(const Op& op, const Expr& child0, const Expr& child1,
const Expr& child2) {
ExprManager* em = child0.getEM();
if (op.getKind() != APPLY) {
ExprNode ev(em, op.getKind());
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
kids.push_back(child2);
d_expr = em->newExprValue(&ev);
} else {
ExprApply ev(em, op);
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
kids.push_back(child2);
d_expr = em->newExprValue(&ev);
}
d_expr->incRefcount();
}
inline Expr::Expr(const Op& op, const Expr& child0, const Expr& child1,
const Expr& child2, const Expr& child3) {
ExprManager* em = child0.getEM();
if (op.getKind() != APPLY) {
ExprNode ev(em, op.getKind());
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
kids.push_back(child2);
kids.push_back(child3);
d_expr = em->newExprValue(&ev);
} else {
ExprApply ev(em, op);
std::vector<Expr>& kids = ev.getKids1();
kids.push_back(child0);
kids.push_back(child1);
kids.push_back(child2);
kids.push_back(child3);
d_expr = em->newExprValue(&ev);
}
d_expr->incRefcount();
}
inline Expr::Expr(const Op& op, const std::vector<Expr>& children,
ExprManager* em) {
if (em == NULL) {
if (op.getKind() == APPLY) em = op.getExpr().getEM();
else {
DebugAssert(children.size() > 0,
"Expr::Expr(Op, children): op's EM is NULL and "
"no children given");
em = children[0].getEM();
}
}
if (op.getKind() != APPLY) {
ExprNodeTmp ev(em, op.getKind(), children);
d_expr = em->newExprValue(&ev);
} else {
ExprApplyTmp ev(em, op, children);
d_expr = em->newExprValue(&ev);
}
d_expr->incRefcount();
}
inline Expr Expr::eqExpr(const Expr& right) const {
return Expr(EQ, *this, right);
}
inline Expr Expr::notExpr() const {
return Expr(NOT, *this);
}
inline Expr Expr::negate() const {
return isNot() ? (*this)[0] : this->notExpr();
}
inline Expr Expr::andExpr(const Expr& right) const {
return Expr(AND, *this, right);
}
inline Expr andExpr(const std::vector <Expr>& children) {
DebugAssert(children.size()>0 && !children[0].isNull(),
"Expr::andExpr(kids)");
return Expr(AND, children);
}
inline Expr Expr::orExpr(const Expr& right) const {
return Expr(OR, *this, right);
}
inline Expr orExpr(const std::vector <Expr>& children) {
DebugAssert(children.size()>0 && !children[0].isNull(),
"Expr::andExpr(kids)");
return Expr(OR, children);
}
inline Expr Expr::iteExpr(const Expr& thenpart, const Expr& elsepart) const {
return Expr(ITE, *this, thenpart, elsepart);
}
inline Expr Expr::iffExpr(const Expr& right) const {
return Expr(IFF, *this, right);
}
inline Expr Expr::impExpr(const Expr& right) const {
return Expr(IMPLIES, *this, right);
}
inline Expr Expr::xorExpr(const Expr& right) const {
return Expr(XOR, *this, right);
}
inline Expr Expr::skolemExpr(int i) const {
return getEM()->newSkolemExpr(*this, i);
}
inline Expr Expr::rebuild(ExprManager* em) const {
return em->rebuild(*this);
}
inline Expr::~Expr() {
if(d_expr != NULL) {
IF_DEBUG(FatalAssert(d_expr->d_refcount > 0, "Mis-handled the ref. counting");)
if (--(d_expr->d_refcount) == 0) d_expr->d_em->gc(d_expr);
}
}
inline size_t Expr::hash(const Expr& e) { return e.getEM()->hash(e); }
/////////////////////////////////////////////////////////////////////////////
// Read-only (const) methods //
/////////////////////////////////////////////////////////////////////////////
inline size_t Expr::hash() const { return getEM()->hash(*this); }
inline const ExprValue* Expr::getExprValue() const
{ return d_expr->getExprValue(); }
// Core Expression Testers
inline bool Expr::isVar() const { return d_expr->isVar(); }
inline bool Expr::isString() const { return d_expr->isString(); }
inline bool Expr::isClosure() const { return d_expr->isClosure(); }
inline bool Expr::isQuantifier() const {
return (isClosure() && (getKind() == FORALL || getKind() == EXISTS));
}
inline bool Expr::isLambda() const {
return (isClosure() && getKind() == LAMBDA);
}
inline bool Expr::isApply() const
{ DebugAssert((getKind() != APPLY || d_expr->isApply()) &&
(!d_expr->isApply() || getKind() == APPLY), "APPLY mismatch");
return getKind() == APPLY; }
inline bool Expr::isSymbol() const { return d_expr->isSymbol(); }
inline bool Expr::isTheorem() const { return d_expr->isTheorem(); }
inline bool Expr::isType() const { return getEM()->isTypeKind(getOpKind()); }
inline bool Expr::isTerm() const { return !getType().isBool(); }
inline bool Expr::isBoolConnective() const {
if (!getType().isBool()) return false;
switch (getKind()) {
case NOT: case AND: case OR: case IMPLIES: case IFF: case XOR: case ITE:
return true; }
return false;
}
inline Unsigned Expr::getSize() const {
if (d_expr->d_size == 0) {
clearFlags();
const_cast<ExprValue*>(d_expr)->d_size = d_expr->getSize();
}
return d_expr->d_size;
}
//inline int Expr::getHeight() const { return d_expr->getHeight(); }
//inline int Expr::getHighestKid() const { return d_expr->getHighestKid(); }
//inline bool Expr::hasSimpFrom() const
// { return !d_expr->getSimpFrom().isNull(); }
// inline const Expr& Expr::getSimpFrom() const
// { return hasSimpFrom() ? d_expr->getSimpFrom() : *this; }
// inline void Expr::setSimpFrom(const Expr& simpFrom)
// { d_expr->setSimpFrom(simpFrom); }
// Leaf accessors
inline const std::string& Expr::getName() const {
DebugAssert(!isNull(), "Expr::getName() on Null expr");
return d_expr->getName();
}
inline const std::string& Expr::getString() const {
DebugAssert(isString(),
"CVC3::Expr::getString(): not a string Expr:\n "
+ toString(AST_LANG));
return d_expr->getString();
}
inline const std::vector<Expr>& Expr::getVars() const {
DebugAssert(isClosure(),
"CVC3::Expr::getVars(): not a closure Expr:\n "
+ toString(AST_LANG));
return d_expr->getVars();
}
inline const Expr& Expr::getBody() const {
DebugAssert(isClosure(),
"CVC3::Expr::getBody(): not a closure Expr:\n "
+ toString(AST_LANG));
return d_expr->getBody();
}
inline void Expr::setTriggers(const std::vector< std::vector<Expr> >& triggers) const {
DebugAssert(isClosure(),
"CVC3::Expr::setTriggers(): not a closure Expr:\n "
+ toString(AST_LANG));
d_expr->setTriggers(triggers);
}
inline void Expr::setTriggers(const std::vector<Expr>& triggers) const {
DebugAssert(isClosure(),
"CVC3::Expr::setTriggers(): not a closure Expr:\n "
+ toString(AST_LANG));
std::vector<std::vector<Expr> > patternvv;
for(std::vector<Expr>::const_iterator i = triggers.begin(); i != triggers.end(); ++i ) {
std::vector<Expr> patternv;
patternv.push_back(*i);
patternvv.push_back(patternv);
}
d_expr->setTriggers(patternvv);
}
inline void Expr::setTrigger(const Expr& trigger) const {
DebugAssert(isClosure(),
"CVC3::Expr::setTrigger(): not a closure Expr:\n "
+ toString(AST_LANG));
std::vector<std::vector<Expr> > patternvv;
std::vector<Expr> patternv;
patternv.push_back(trigger);
patternvv.push_back(patternv);
setTriggers(patternvv);
}
inline void Expr::setMultiTrigger(const std::vector<Expr>& multiTrigger) const {
DebugAssert(isClosure(),
"CVC3::Expr::setTrigger(): not a closure Expr:\n "
+ toString(AST_LANG));
std::vector<std::vector<Expr> > patternvv;
patternvv.push_back(multiTrigger);
setTriggers(patternvv);
}
inline const std::vector<std::vector<Expr> >& Expr::getTriggers() const { //by yeting
DebugAssert(isClosure(),
"CVC3::Expr::getTrigs(): not a closure Expr:\n "
+ toString(AST_LANG));
return d_expr->getTriggers();
}
inline const Expr& Expr::getExistential() const {
DebugAssert(isSkolem(),
"CVC3::Expr::getExistential() not a skolem variable");
return d_expr->getExistential();
}
inline int Expr::getBoundIndex() const {
DebugAssert(isSkolem(),
"CVC3::Expr::getBoundIndex() not a skolem variable");
return d_expr->getBoundIndex();
}
inline const Rational& Expr::getRational() const {
DebugAssert(isRational(),
"CVC3::Expr::getRational(): not a rational Expr:\n "
+ toString(AST_LANG));
return d_expr->getRational();
}
inline const Theorem& Expr::getTheorem() const {
DebugAssert(isTheorem(),
"CVC3::Expr::getTheorem(): not a Theorem Expr:\n "
+ toString(AST_LANG));
return d_expr->getTheorem();
}
inline const std::string& Expr::getUid() const {
DebugAssert(getKind() == BOUND_VAR,
"CVC3::Expr::getUid(): not a BOUND_VAR Expr:\n "
+ toString(AST_LANG));
return d_expr->getUid();
}
inline ExprManager* Expr::getEM() const {
DebugAssert(d_expr != NULL,
"CVC3::Expr:getEM: on Null Expr (not initialized)");
return d_expr->d_em;
}
inline const std::vector<Expr>& Expr::getKids() const {
DebugAssert(d_expr != NULL, "Expr::getKids on Null Expr");
if(isNull()) return getEM()->getEmptyVector();
else return d_expr->getKids();
}
inline int Expr::getKind() const {
if(d_expr == NULL) return NULL_KIND; // FIXME: invent a better Null kind
return d_expr->d_kind;
}
inline ExprIndex Expr::getIndex() const { return d_expr->d_index; }
inline bool Expr::hasLastIndex() const
{ return d_expr->d_em->lastIndex() == getIndex(); }
inline Op Expr::mkOp() const {
DebugAssert(!isNull(), "Expr::mkOp() on Null expr");
return Op(*this);
}
inline Op Expr::getOp() const {
DebugAssert(!isNull(), "Expr::getOp() on Null expr");
if (isApply()) return d_expr->getOp();
DebugAssert(arity() > 0,
"Expr::getOp() called on non-apply expr with no children");
return Op(getKind());
}
inline Expr Expr::getOpExpr() const {
DebugAssert(isApply(), "getOpExpr() called on non-apply");
return getOp().getExpr();
}
inline int Expr::getOpKind() const {
if (!isApply()) return getKind();
return getOp().getExpr().getKind();
}
inline int Expr::arity() const {
if(isNull()) return 0;
else return d_expr->arity();
}
inline const Expr& Expr::operator[](int i) const {
DebugAssert(i < arity(), "out of bounds access");
return (d_expr->getKids())[i];
}
inline Expr::iterator Expr::begin() const {
if (isNull() || d_expr->arity() == 0)
return Expr::iterator(getEM()->getEmptyVector().begin());
else return Expr::iterator(d_expr->getKids().begin());
}
inline Expr::iterator Expr::end() const {
if (isNull() || d_expr->arity() == 0)
return Expr::iterator(getEM()->getEmptyVector().end());
else return Expr::iterator(d_expr->getKids().end());
}
inline bool Expr::isNull() const {
return (d_expr == NULL) || (d_expr->d_kind == NULL_KIND);
}
inline size_t Expr::getMMIndex() const {
DebugAssert(!isNull(), "Expr::getMMIndex()");
return d_expr->getMMIndex();
}
inline bool Expr::hasFind() const {
DebugAssert(!isNull(), "hasFind called on NULL Expr");
return (d_expr->d_find && !(d_expr->d_find->get().isNull()));
}
inline const Theorem& Expr::getFind() const {
DebugAssert(hasFind(), "Should only be called if find is valid");
return d_expr->d_find->get();
}
inline int Expr::getFindLevel() const {
DebugAssert(hasFind(), "Should only be called if find is valid");
return d_expr->d_find->level();
}
inline const Theorem& Expr::getEqNext() const {
DebugAssert(!isNull(), "getEqNext called on NULL Expr");
DebugAssert(hasFind(), "Should only be called if find is valid");
DebugAssert(d_expr->d_eqNext, "getEqNext: d_eqNext is NULL");
return d_expr->d_eqNext->get();
}
inline NotifyList* Expr::getNotify() const {
if(isNull()) return NULL;
else return d_expr->d_notifyList;
}
inline Type Expr::getType() const {
if (isNull()) return s_null;
if (d_expr->d_type.isNull()) getEM()->computeType(*this);
return d_expr->d_type;
}
inline Type Expr::lookupType() const {
if (isNull()) return s_null;
return d_expr->d_type;
}
inline Cardinality Expr::typeCard() const {
DebugAssert(!isNull(), "typeCard called on NULL Expr");
Expr e(*this);
Unsigned n;
return getEM()->finiteTypeInfo(e, n, false, false);
}
inline Expr Expr::typeEnumerateFinite(Unsigned n) const {
DebugAssert(!isNull(), "typeEnumerateFinite called on NULL Expr");
Expr e(*this);
Cardinality card = getEM()->finiteTypeInfo(e, n, true, false);
if (card != CARD_FINITE) e = Expr();
return e;
}
inline Unsigned Expr::typeSizeFinite() const {
DebugAssert(!isNull(), "typeCard called on NULL Expr");
Expr e(*this);
Unsigned n;
Cardinality card = getEM()->finiteTypeInfo(e, n, false, true);
if (card != CARD_FINITE) n = 0;
return n;
}
inline bool Expr::validSimpCache() const {
return d_expr->d_simpCacheTag == getEM()->getSimpCacheTag();
}
inline const Theorem& Expr::getSimpCache() const {
return d_expr->d_simpCache;
}
inline bool Expr::isValidType() const {
return d_expr->d_dynamicFlags.get(VALID_TYPE);
}
inline bool Expr::validIsAtomicFlag() const {
return d_expr->d_dynamicFlags.get(VALID_IS_ATOMIC);
}
inline bool Expr::validTerminalsConstFlag() const {
return d_expr->d_dynamicFlags.get(VALID_TERMINALS_CONST);
}
inline bool Expr::getIsAtomicFlag() const {
return d_expr->d_dynamicFlags.get(IS_ATOMIC);
}
inline bool Expr::getTerminalsConstFlag() const {
return d_expr->d_dynamicFlags.get(TERMINALS_CONST);
}
inline bool Expr::isRewriteNormal() const {
return d_expr->d_dynamicFlags.get(REWRITE_NORMAL);
}
inline bool Expr::isFinite() const {
return d_expr->d_dynamicFlags.get(IS_FINITE);
}
inline bool Expr::isWellFounded() const {
return d_expr->d_dynamicFlags.get(WELL_FOUNDED);
}
inline bool Expr::computeTransClosure() const {
return d_expr->d_dynamicFlags.get(COMPUTE_TRANS_CLOSURE);
}
inline bool Expr::containsBoundVar() const {
return d_expr->d_dynamicFlags.get(CONTAINS_BOUND_VAR);
}
inline bool Expr::usesCC() const {
return d_expr->d_dynamicFlags.get(USES_CC);
}
inline bool Expr::notArrayNormalized() const {
return d_expr->d_dynamicFlags.get(NOT_ARRAY_NORMALIZED);
}
inline bool Expr::isImpliedLiteral() const {
return d_expr->d_dynamicFlags.get(IMPLIED_LITERAL);
}
inline bool Expr::isUserAssumption() const {
return d_expr->d_dynamicFlags.get(IS_USER_ASSUMPTION);
}
inline bool Expr::inUserAssumption() const {
return d_expr->d_dynamicFlags.get(IN_USER_ASSUMPTION);
}
inline bool Expr::isIntAssumption() const {
return d_expr->d_dynamicFlags.get(IS_INT_ASSUMPTION);
}
inline bool Expr::isJustified() const {
return d_expr->d_dynamicFlags.get(IS_JUSTIFIED);
}
inline bool Expr::isTranslated() const {
return d_expr->d_dynamicFlags.get(IS_TRANSLATED);
}
inline bool Expr::isUserRegisteredAtom() const {
return d_expr->d_dynamicFlags.get(IS_USER_REGISTERED_ATOM);
}
inline bool Expr::isRegisteredAtom() const {
return d_expr->d_dynamicFlags.get(IS_REGISTERED_ATOM);
}
inline bool Expr::isSelected() const {
return d_expr->d_dynamicFlags.get(IS_SELECTED);
}
inline bool Expr::isStoredPredicate() const {
return d_expr->d_dynamicFlags.get(IS_STORED_PREDICATE);
}
inline bool Expr::getFlag() const {
DebugAssert(!isNull(), "Expr::getFlag() on Null Expr");
return (d_expr->d_flag == getEM()->getFlag());
}
inline void Expr::setFlag() const {
DebugAssert(!isNull(), "Expr::setFlag() on Null Expr");
d_expr->d_flag = getEM()->getFlag();
}
inline void Expr::clearFlags() const {
DebugAssert(!isNull(), "Expr::clearFlags() on Null Expr");
getEM()->clearFlags();
}
inline void Expr::setFind(const Theorem& e) const {
DebugAssert(!isNull(), "Expr::setFind() on Null expr");
DebugAssert(e.getLHS() == *this, "bad call to setFind");
if (d_expr->d_find) d_expr->d_find->set(e);
else {
CDO<Theorem>* tmp = new(true) CDO<Theorem>(getEM()->getCurrentContext(), e);
d_expr->d_find = tmp;
IF_DEBUG(tmp->setName("CDO[Expr.find]");)
}
}
inline void Expr::setEqNext(const Theorem& e) const {
DebugAssert(!isNull(), "Expr::setEqNext() on Null expr");
DebugAssert(e.getLHS() == *this, "bad call to setEqNext");
if (d_expr->d_eqNext) d_expr->d_eqNext->set(e);
else {
CDO<Theorem>* tmp = new(true) CDO<Theorem>(getEM()->getCurrentContext(), e);
d_expr->d_eqNext = tmp;
IF_DEBUG(tmp->setName("CDO[Expr.eqNext]");)
}
}
inline void Expr::setType(const Type& t) const {
DebugAssert(!isNull(), "Expr::setType() on Null expr");
d_expr->d_type = t;
}
inline void Expr::setSimpCache(const Theorem& e) const {
DebugAssert(!isNull(), "Expr::setSimpCache() on Null expr");
d_expr->d_simpCache = e;
d_expr->d_simpCacheTag = getEM()->getSimpCacheTag();
}
inline void Expr::setValidType() const {
DebugAssert(!isNull(), "Expr::setValidType() on Null expr");
d_expr->d_dynamicFlags.set(VALID_TYPE, 0);
}
inline void Expr::setIsAtomicFlag(bool value) const {
DebugAssert(!isNull(), "Expr::setIsAtomicFlag() on Null expr");
d_expr->d_dynamicFlags.set(VALID_IS_ATOMIC, 0);
if (value) d_expr->d_dynamicFlags.set(IS_ATOMIC, 0);
else d_expr->d_dynamicFlags.clear(IS_ATOMIC, 0);
}
inline void Expr::setTerminalsConstFlag(bool value) const {
DebugAssert(!isNull(), "Expr::setTerminalsConstFlag() on Null expr");
d_expr->d_dynamicFlags.set(VALID_TERMINALS_CONST, 0);
if (value) d_expr->d_dynamicFlags.set(TERMINALS_CONST, 0);
else d_expr->d_dynamicFlags.clear(TERMINALS_CONST, 0);
}
inline void Expr::setRewriteNormal() const {
DebugAssert(!isNull(), "Expr::setRewriteNormal() on Null expr");
TRACE("setRewriteNormal", "setRewriteNormal(", *this, ")");
d_expr->d_dynamicFlags.set(REWRITE_NORMAL, 0);
}
inline void Expr::setFinite() const {
DebugAssert(!isNull(), "Expr::setFinite() on Null expr");
d_expr->d_dynamicFlags.set(IS_FINITE, 0);
}
inline void Expr::setWellFounded() const {
DebugAssert(!isNull(), "Expr::setWellFounded() on Null expr");
d_expr->d_dynamicFlags.set(WELL_FOUNDED, 0);
}
inline void Expr::setComputeTransClosure() const {
DebugAssert(!isNull(), "Expr::setComputeTransClosure() on Null expr");
d_expr->d_dynamicFlags.set(COMPUTE_TRANS_CLOSURE, 0);
}
inline void Expr::setContainsBoundVar() const {
DebugAssert(!isNull(), "Expr::setContainsBoundVar() on Null expr");
d_expr->d_dynamicFlags.set(CONTAINS_BOUND_VAR, 0);
}
inline void Expr::setUsesCC() const {
DebugAssert(!isNull(), "Expr::setUsesCC() on Null expr");
d_expr->d_dynamicFlags.set(USES_CC, 0);
}
inline void Expr::setNotArrayNormalized() const {
DebugAssert(!isNull(), "Expr::setContainsBoundVar() on Null expr");
d_expr->d_dynamicFlags.set(NOT_ARRAY_NORMALIZED);
}
inline void Expr::setImpliedLiteral() const {
DebugAssert(!isNull(), "Expr::setImpliedLiteral() on Null expr");
d_expr->d_dynamicFlags.set(IMPLIED_LITERAL);
}
inline void Expr::setUserAssumption(int scope) const {
DebugAssert(!isNull(), "Expr::setUserAssumption() on Null expr");
d_expr->d_dynamicFlags.set(IS_USER_ASSUMPTION, scope);
}
inline void Expr::setInUserAssumption(int scope) const {
DebugAssert(!isNull(), "Expr::setInUserAssumption() on Null expr");
d_expr->d_dynamicFlags.set(IN_USER_ASSUMPTION, scope);
}
inline void Expr::setIntAssumption() const {
DebugAssert(!isNull(), "Expr::setIntAssumption() on Null expr");
d_expr->d_dynamicFlags.set(IS_INT_ASSUMPTION);
}
inline void Expr::setJustified() const {
DebugAssert(!isNull(), "Expr::setJustified() on Null expr");
d_expr->d_dynamicFlags.set(IS_JUSTIFIED);
}
inline void Expr::setTranslated(int scope) const {
DebugAssert(!isNull(), "Expr::setTranslated() on Null expr");
d_expr->d_dynamicFlags.set(IS_TRANSLATED, scope);
}
inline void Expr::setUserRegisteredAtom() const {
DebugAssert(!isNull(), "Expr::setUserRegisteredAtom() on Null expr");
d_expr->d_dynamicFlags.set(IS_USER_REGISTERED_ATOM);
}
inline void Expr::setRegisteredAtom() const {
DebugAssert(!isNull(), "Expr::setUserRegisteredAtom() on Null expr");
d_expr->d_dynamicFlags.set(IS_REGISTERED_ATOM);
}
inline void Expr::setSelected() const {
DebugAssert(!isNull(), "Expr::setSelected() on Null expr");
d_expr->d_dynamicFlags.set(IS_SELECTED);
}
inline void Expr::setStoredPredicate() const {
DebugAssert(!isNull(), "Expr::setStoredPredicate() on Null expr");
d_expr->d_dynamicFlags.set(IS_STORED_PREDICATE);
}
inline void Expr::clearRewriteNormal() const {
DebugAssert(!isNull(), "Expr::clearRewriteNormal() on Null expr");
d_expr->d_dynamicFlags.clear(REWRITE_NORMAL, 0);
}
inline bool Expr::hasSig() const {
return (!isNull()
&& d_expr->getSig() != NULL
&& !(d_expr->getSig()->get().isNull()));
}
inline bool Expr::hasRep() const {
return (!isNull()
&& d_expr->getRep() != NULL
&& !(d_expr->getRep()->get().isNull()));
}
inline const Theorem& Expr::getSig() const {
static Theorem nullThm;
DebugAssert(!isNull(), "Expr::getSig() on Null expr");
if(d_expr->getSig() != NULL)
return d_expr->getSig()->get();
else
return nullThm;
}
inline const Theorem& Expr::getRep() const {
static Theorem nullThm;
DebugAssert(!isNull(), "Expr::getRep() on Null expr");
if(d_expr->getRep() != NULL)
return d_expr->getRep()->get();
else
return nullThm;
}
inline void Expr::setSig(const Theorem& e) const {
DebugAssert(!isNull(), "Expr::setSig() on Null expr");
CDO<Theorem>* sig = d_expr->getSig();
if(sig != NULL) sig->set(e);
else {
CDO<Theorem>* tmp = new(true) CDO<Theorem>(getEM()->getCurrentContext(), e);
d_expr->setSig(tmp);
IF_DEBUG(tmp->setName("CDO[Expr.sig] in "+toString());)
}
}
inline void Expr::setRep(const Theorem& e) const {
DebugAssert(!isNull(), "Expr::setRep() on Null expr");
CDO<Theorem>* rep = d_expr->getRep();
if(rep != NULL) rep->set(e);
else {
CDO<Theorem>* tmp = new(true) CDO<Theorem>(getEM()->getCurrentContext(), e);
d_expr->setRep(tmp);
IF_DEBUG(tmp->setName("CDO[Expr.rep] in "+toString());)
}
}
inline bool operator==(const Expr& e1, const Expr& e2) {
// Comparing pointers (equal expressions are always shared)
return e1.d_expr == e2.d_expr;
}
inline bool operator!=(const Expr& e1, const Expr& e2)
{ return !(e1 == e2); }
// compare() is defined in expr.cpp
inline bool operator<(const Expr& e1, const Expr& e2)
{ return compare(e1,e2) < 0; }
inline bool operator<=(const Expr& e1, const Expr& e2)
{ return compare(e1,e2) <= 0; }
inline bool operator>(const Expr& e1, const Expr& e2)
{ return compare(e1,e2) > 0; }
inline bool operator>=(const Expr& e1, const Expr& e2)
{ return compare(e1,e2) >= 0; }
} // end of namespace CVC3
#endif
|