/usr/include/cvc3/common_proof_rules.h is in libcvc3-dev 2.4.1-5.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | /*****************************************************************************/
/*!
* \file common_proof_rules.h
*
* Author: Sergey Berezin
*
* Created: Dec 11 18:15:37 GMT 2002
*
* <hr>
*
* License to use, copy, modify, sell and/or distribute this software
* and its documentation for any purpose is hereby granted without
* royalty, subject to the terms and conditions defined in the \ref
* LICENSE file provided with this distribution.
*
* <hr>
*
*/
/*****************************************************************************/
// CLASS: CommonProofRules
//
// AUTHOR: Sergey Berezin, 12/09/2002
//
// Description: Commonly used proof rules (reflexivity, symmetry,
// transitivity, substitutivity, etc.).
//
// Normally, proof rule interfaces belong to their decision
// procedures. However, in the case of equational logic, the rules
// are so useful, that even some basic classes like Transformer use
// these rules under the hood. Therefore, it is made public, and its
// implementation is provided by the 'theorem' module.
///////////////////////////////////////////////////////////////////////////////
#ifndef _cvc3__common_proof_rules_h_
#define _cvc3__common_proof_rules_h_
#include <vector>
namespace CVC3 {
class Theorem;
class Theorem3;
class Expr;
class Op;
class CommonProofRules {
public:
//! Destructor
virtual ~CommonProofRules() { }
////////////////////////////////////////////////////////////////////////
// TCC rules (3-valued logic)
////////////////////////////////////////////////////////////////////////
// G1 |- phi G2 |- D_phi
// -------------------------
// G1,G2 |-_3 phi
/*!
* @brief Convert 2-valued formula to 3-valued by discharging its
* TCC (\f$D_\phi\f$):
* \f[\frac{\Gamma_1\vdash_2 \phi\quad \Gamma_2\vdash_2 D_{\phi}}
* {\Gamma_1,\,\Gamma_2\vdash_3\phi}\f]
*/
virtual Theorem3 queryTCC(const Theorem& phi, const Theorem& D_phi) = 0;
// G0,a1,...,an |-_3 phi G1 |- D_a1 ... Gn |- D_an
// -------------------------------------------------
// G0,G1,...,Gn |-_3 (a1 & ... & an) -> phi
/*!
* @brief 3-valued implication introduction rule:
* \f[\frac{\Gamma_0,\,\alpha_1\,\ldots,\,\alpha_n\vdash_3\phi\quad
* (\Gamma_i\vdash D_{\alpha_i})_{i\in[1..n]}}
* {\Gamma_0,\,\Gamma_1, \ldots, \Gamma_n\vdash_3
* (\bigwedge_{i=1}^n\alpha_i)\to\phi}\f]
*
* \param phi is the formula \f$\phi\f$
* \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$
* \param tccs is the vector of TCCs for assumptions
* \f$D_{\alpha_1}\ldots D_{\alpha_n}\f$
*/
virtual Theorem3 implIntro3(const Theorem3& phi,
const std::vector<Expr>& assump,
const std::vector<Theorem>& tccs) = 0;
////////////////////////////////////////////////////////////////////////
// Common rules
////////////////////////////////////////////////////////////////////////
// ==> u:a |- a
//! \f[\frac{}{a\vdash a}\f]
virtual Theorem assumpRule(const Expr& a, int scope = -1) = 0;
// ==> a == a or ==> a IFF a
//! \f[\frac{}{a = a}\quad or \quad\frac{}{a \Leftrightarrow a}\f]
virtual Theorem reflexivityRule(const Expr& a) = 0;
//! ==> (a == a) IFF TRUE
virtual Theorem rewriteReflexivity(const Expr& a_eq_a) = 0;
// a1 == a2 ==> a2 == a1 (same for IFF)
//! \f[\frac{a_1=a_2}{a_2=a_1}\f] (same for IFF)
virtual Theorem symmetryRule(const Theorem& a1_eq_a2) = 0;
// ==> (a1 == a2) IFF (a2 == a1)
//! \f[\frac{}{(a_1=a_2)\Leftrightarrow (a_2=a_1)}\f]
virtual Theorem rewriteUsingSymmetry(const Expr& a1_eq_a2) = 0;
// (a1 == a2) & (a2 == a3) ==> (a1 == a3) [same for IFF]
//! \f[\frac{a_1=a_2\quad a_2=a_3}{a_1=a_3}\f] (same for IFF)
virtual Theorem transitivityRule(const Theorem& a1_eq_a2,
const Theorem& a2_eq_a3) = 0;
//! Optimized case for expr with one child
virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm) = 0;
//! Optimized case for expr with two children
virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm1,
const Theorem& thm2) = 0;
// (c_1 == d_1) & ... & (c_n == d_n)
// ==> op(c_1,...,c_n) == op(d_1,...,d_n)
/*! @brief
\f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)}
{op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f]
*/
virtual Theorem substitutivityRule(const Op& op,
const std::vector<Theorem>& thms) = 0;
// (c_1 == d_1) & ... & (c_n == d_n)
// ==> op(c_1,...,c_n) == op(d_1,...,d_n)
/*! @brief
\f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)}
{op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f]
except that only those arguments are given that \f$c_i\not=d_i\f$.
\param e is the original expression \f$op(c_1,\ldots,c_n)\f$.
\param changed is the vector of indices of changed kids
\param thms are the theorems \f$c_i=d_i\f$ for the changed kids.
*/
virtual Theorem substitutivityRule(const Expr& e,
const std::vector<unsigned>& changed,
const std::vector<Theorem>& thms) = 0;
virtual Theorem substitutivityRule(const Expr& e, const int changed, const Theorem& thm) = 0;
// |- e, |- !e ==> |- FALSE
/*! @brief
\f[\frac{\Gamma_1\vdash e\quad\Gamma_2\vdash \neg e}
{\Gamma_1\cup\Gamma_2\vdash \mathrm{FALSE}}
\f]
*/
virtual Theorem contradictionRule(const Theorem& e,
const Theorem& not_e) = 0;
// |- e OR !e
virtual Theorem excludedMiddle(const Expr& e) = 0;
// e ==> e IFF TRUE
//! \f[\frac{\Gamma\vdash e}{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}\f]
virtual Theorem iffTrue(const Theorem& e) = 0;
// e ==> !e IFF FALSE
//! \f[\frac{\Gamma\vdash e}{\Gamma\vdash\neg e\Leftrightarrow\mathrm{FALSE}}\f]
virtual Theorem iffNotFalse(const Theorem& e) = 0;
// e IFF TRUE ==> e
//! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}{\Gamma\vdash e}\f]
virtual Theorem iffTrueElim(const Theorem& e) = 0;
// e IFF FALSE ==> !e
//! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{FALSE}}{\Gamma\vdash\neg e}\f]
virtual Theorem iffFalseElim(const Theorem& e) = 0;
//! e1 <=> e2 ==> ~e1 <=> ~e2
/*! \f[\frac{\Gamma\vdash e_1\Leftrightarrow e_2}
* {\Gamma\vdash\sim e_1\Leftrightarrow\sim e_2}\f]
* Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e').
*/
virtual Theorem iffContrapositive(const Theorem& thm) = 0;
// !!e ==> e
//! \f[\frac{\Gamma\vdash\neg\neg e}{\Gamma\vdash e}\f]
virtual Theorem notNotElim(const Theorem& not_not_e) = 0;
// e1 AND (e1 IFF e2) ==> e2
/*! @brief
\f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Leftrightarrow e_2)}
{\Gamma_1\cup\Gamma_2\vdash e_2}
\f]
*/
virtual Theorem iffMP(const Theorem& e1, const Theorem& e1_iff_e2) = 0;
// e1 AND (e1 IMPLIES e2) ==> e2
/*! @brief
\f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Rightarrow e_2)}
{\Gamma_1\cup\Gamma_2\vdash e_2}
\f]
*/
virtual Theorem implMP(const Theorem& e1, const Theorem& e1_impl_e2) = 0;
// AND(e_1,...e_n) ==> e_i
//! \f[\frac{\vdash e_1\wedge\cdots\wedge e_n}{\vdash e_i}\f]
virtual Theorem andElim(const Theorem& e, int i) = 0;
// e1, e2 ==> AND(e1, e2)
/*! @brief
\f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash e_2}
{\Gamma_1\cup\Gamma_2\vdash e_1\wedge e_2}
\f]
*/
virtual Theorem andIntro(const Theorem& e1, const Theorem& e2) = 0;
// e1, ..., en ==> AND(e1, ..., en)
/*! @brief
\f[\frac{\Gamma_1\vdash e_1\quad \cdots \quad\Gamma_n\vdash e_n}
{\bigcup_{i=1}^n\Gamma_i\vdash \bigwedge_{i=1}^n e_i}
\f]
*/
virtual Theorem andIntro(const std::vector<Theorem>& es) = 0;
// G,a1,...,an |- phi
// -------------------------------------------------
// G |- (a1 & ... & an) -> phi
/*!
* @brief Implication introduction rule:
* \f[\frac{\Gamma,\,\alpha_1\,\ldots,\,\alpha_n\vdash\phi}
* {\Gamma\vdash(\bigwedge_{i=1}^n\alpha_i)\to\phi}\f]
*
* \param phi is the formula \f$\phi\f$
* \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$
*/
virtual Theorem implIntro(const Theorem& phi,
const std::vector<Expr>& assump) = 0;
//! e1 => e2 ==> ~e2 => ~e1
/*! \f[\frac{\Gamma\vdash e_1\Rightarrow e_2}
* {\Gamma\vdash\sim e_2\Rightarrow\sim e_1}\f]
* Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e').
*/
virtual Theorem implContrapositive(const Theorem& thm) = 0;
//! ==> ITE(TRUE, e1, e2) == e1
virtual Theorem rewriteIteTrue(const Expr& e) = 0;
//! ==> ITE(FALSE, e1, e2) == e2
virtual Theorem rewriteIteFalse(const Expr& e) = 0;
//! ==> ITE(c, e, e) == e
virtual Theorem rewriteIteSame(const Expr& e) = 0;
// NOT e ==> e IFF FALSE
//! \f[\frac{\vdash\neg e}{\vdash e\Leftrightarrow\mathrm{FALSE}}\f]
virtual Theorem notToIff(const Theorem& not_e) = 0;
// e1 XOR e2 ==> e1 IFF (NOT e2)
//! \f[\frac{\vdash e_1 XOR e_2}{\vdash e_1\Leftrightarrow(\neg e_2)}\f]
virtual Theorem xorToIff(const Expr& e) = 0;
//! ==> (e1 <=> e2) <=> [simplified expr]
/*! Rewrite formulas like FALSE/TRUE <=> e, e <=> NOT e, etc. */
virtual Theorem rewriteIff(const Expr& e) = 0;
// AND and OR rewrites check for TRUE and FALSE arguments and
// remove them or collapse the entire expression to TRUE and FALSE
// appropriately
//! ==> AND(e1,e2) IFF [simplified expr]
virtual Theorem rewriteAnd(const Expr& e) = 0;
//! ==> OR(e1,...,en) IFF [simplified expr]
virtual Theorem rewriteOr(const Expr& e) = 0;
//! ==> NOT TRUE IFF FALSE
virtual Theorem rewriteNotTrue(const Expr& e) = 0;
//! ==> NOT FALSE IFF TRUE
virtual Theorem rewriteNotFalse(const Expr& e) = 0;
//! ==> NOT NOT e IFF e, takes !!e
virtual Theorem rewriteNotNot(const Expr& e) = 0;
//! ==> NOT FORALL (vars): e IFF EXISTS (vars) NOT e
virtual Theorem rewriteNotForall(const Expr& forallExpr) = 0;
//! ==> NOT EXISTS (vars): e IFF FORALL (vars) NOT e
virtual Theorem rewriteNotExists(const Expr& existsExpr) = 0;
//From expr EXISTS(x1: t1, ..., xn: tn) phi(x1,...,cn)
//we create phi(c1,...,cn) where ci is a skolem constant
//defined by the original expression and the index i.
virtual Expr skolemize(const Expr& e) = 0;
/*! skolem rewrite rule: Introduces axiom |- Exists(x) phi(x) <=> phi(c)
* where c is a constant defined by the expression Exists(x) phi(x)
*/
virtual Theorem skolemizeRewrite(const Expr& e) = 0;
//! Special version of skolemizeRewrite for "EXISTS x. t = x"
virtual Theorem skolemizeRewriteVar(const Expr& e) = 0;
//! |- EXISTS x. e = x
virtual Theorem varIntroRule(const Expr& e) = 0;
/*! @brief If thm is (EXISTS x: phi(x)), create the Skolemized version
and add it to the database. Otherwise returns just thm. */
/*!
* \param thm is the Theorem(EXISTS x: phi(x))
*/
virtual Theorem skolemize(const Theorem& thm) = 0;
//! Retrun a theorem "|- e = v" for a new Skolem constant v
/*!
* This is equivalent to skolemize(d_core->varIntroRule(e)), only more
* efficient.
*/
virtual Theorem varIntroSkolem(const Expr& e) = 0;
// Derived rules
//! ==> TRUE
virtual Theorem trueTheorem() = 0;
//! AND(e1,e2) ==> [simplified expr]
virtual Theorem rewriteAnd(const Theorem& e) = 0;
//! OR(e1,...,en) ==> [simplified expr]
virtual Theorem rewriteOr(const Theorem& e) = 0;
// TODO: do we really need this?
virtual std::vector<Theorem>& getSkolemAxioms() = 0;
//TODO: do we need this?
virtual void clearSkolemAxioms() = 0;
virtual Theorem ackermann(const Expr& e1, const Expr& e2) = 0;
// Given a propositional atom containing embedded ite's, lifts first ite condition
// to form a Boolean ITE
// |- P(...ite(a,b,c)...) <=> ite(a,P(...b...),P(...c...))
virtual Theorem liftOneITE(const Expr& e) = 0;
}; // end of class CommonProofRules
} // end of namespace CVC3
#endif
|