This file is indexed.

/usr/include/cln/univpoly_modint.h is in libcln-dev 1.3.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// Univariate Polynomials over modular integers.

#ifndef _CL_UNIVPOLY_MODINT_H
#define _CL_UNIVPOLY_MODINT_H

#include "cln/ring.h"
#include "cln/univpoly.h"
#include "cln/modinteger.h"
#include "cln/integer_class.h"

namespace cln {

// Normal univariate polynomials with stricter static typing:
// `cl_MI' instead of `cl_ring_element'.

class cl_heap_univpoly_modint_ring;

class cl_univpoly_modint_ring : public cl_univpoly_ring {
public:
	// Default constructor.
	cl_univpoly_modint_ring () : cl_univpoly_ring () {}
	// Copy constructor.
	cl_univpoly_modint_ring (const cl_univpoly_modint_ring&);
	// Assignment operator.
	cl_univpoly_modint_ring& operator= (const cl_univpoly_modint_ring&);
	// Automatic dereferencing.
	cl_heap_univpoly_modint_ring* operator-> () const
	{ return (cl_heap_univpoly_modint_ring*)heappointer; }
};
// Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_modint_ring,cl_univpoly_ring)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_modint_ring,cl_univpoly_modint_ring)

class cl_UP_MI : public cl_UP {
public:
	const cl_univpoly_modint_ring& ring () const { return The(cl_univpoly_modint_ring)(_ring); }
	// Conversion.
	CL_DEFINE_CONVERTER(cl_ring_element)
	// Destructive modification.
	void set_coeff (uintL index, const cl_MI& y);
	void finalize();
	// Evaluation.
	const cl_MI operator() (const cl_MI& y) const;
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

class cl_heap_univpoly_modint_ring : public cl_heap_univpoly_ring {
	SUBCLASS_cl_heap_univpoly_ring()
	const cl_modint_ring& basering () const { return The(cl_modint_ring)(_basering); }
	// High-level operations.
	void fprint (std::ostream& stream, const cl_UP_MI& x)
	{
		cl_heap_univpoly_ring::fprint(stream,x);
	}
	bool equal (const cl_UP_MI& x, const cl_UP_MI& y)
	{
		return cl_heap_univpoly_ring::equal(x,y);
	}
	const cl_UP_MI zero ()
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::zero());
	}
	bool zerop (const cl_UP_MI& x)
	{
		return cl_heap_univpoly_ring::zerop(x);
	}
	const cl_UP_MI plus (const cl_UP_MI& x, const cl_UP_MI& y)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::plus(x,y));
	}
	const cl_UP_MI minus (const cl_UP_MI& x, const cl_UP_MI& y)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::minus(x,y));
	}
	const cl_UP_MI uminus (const cl_UP_MI& x)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::uminus(x));
	}
	const cl_UP_MI one ()
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::one());
	}
	const cl_UP_MI canonhom (const cl_I& x)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::canonhom(x));
	}
	const cl_UP_MI mul (const cl_UP_MI& x, const cl_UP_MI& y)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::mul(x,y));
	}
	const cl_UP_MI square (const cl_UP_MI& x)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::square(x));
	}
	const cl_UP_MI expt_pos (const cl_UP_MI& x, const cl_I& y)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::expt_pos(x,y));
	}
	const cl_UP_MI scalmul (const cl_MI& x, const cl_UP_MI& y)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::scalmul(x,y));
	}
	sintL degree (const cl_UP_MI& x)
	{
		return cl_heap_univpoly_ring::degree(x);
	}
	sintL ldegree (const cl_UP_MI& x)
	{
		return cl_heap_univpoly_ring::ldegree(x);
	}
	const cl_UP_MI monomial (const cl_MI& x, uintL e)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::monomial(x,e));
	}
	const cl_MI coeff (const cl_UP_MI& x, uintL index)
	{
		return The2(cl_MI)(cl_heap_univpoly_ring::coeff(x,index));
	}
	const cl_UP_MI create (sintL deg)
	{
		return The2(cl_UP_MI)(cl_heap_univpoly_ring::create(deg));
	}
	void set_coeff (cl_UP_MI& x, uintL index, const cl_MI& y)
	{
		cl_heap_univpoly_ring::set_coeff(x,index,y);
	}
	void finalize (cl_UP_MI& x)
	{
		cl_heap_univpoly_ring::finalize(x);
	}
	const cl_MI eval (const cl_UP_MI& x, const cl_MI& y)
	{
		return The2(cl_MI)(cl_heap_univpoly_ring::eval(x,y));
	}
private:
	// No need for any constructors.
	cl_heap_univpoly_modint_ring ();
};

// Lookup of polynomial rings.
inline const cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& r)
{ return The(cl_univpoly_modint_ring) (find_univpoly_ring((const cl_ring&)r)); }
inline const cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& r, const cl_symbol& varname)
{ return The(cl_univpoly_modint_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }

// Operations on polynomials.

// Add.
inline const cl_UP_MI operator+ (const cl_UP_MI& x, const cl_UP_MI& y)
	{ return x.ring()->plus(x,y); }

// Negate.
inline const cl_UP_MI operator- (const cl_UP_MI& x)
	{ return x.ring()->uminus(x); }

// Subtract.
inline const cl_UP_MI operator- (const cl_UP_MI& x, const cl_UP_MI& y)
	{ return x.ring()->minus(x,y); }

// Multiply.
inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_UP_MI& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
inline const cl_UP_MI square (const cl_UP_MI& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
inline const cl_UP_MI expt_pos (const cl_UP_MI& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
#if 0 // less efficient
inline const cl_UP_MI operator* (const cl_I& x, const cl_UP_MI& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }
#endif
inline const cl_UP_MI operator* (const cl_I& x, const cl_UP_MI& y)
	{ return y.ring()->scalmul(y.ring()->basering()->canonhom(x),y); }
inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_I& y)
	{ return x.ring()->scalmul(x.ring()->basering()->canonhom(y),x); }
inline const cl_UP_MI operator* (const cl_MI& x, const cl_UP_MI& y)
	{ return y.ring()->scalmul(x,y); }
inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_MI& y)
	{ return x.ring()->scalmul(y,x); }

// Coefficient.
inline const cl_MI coeff (const cl_UP_MI& x, uintL index)
	{ return x.ring()->coeff(x,index); }

// Destructive modification.
inline void set_coeff (cl_UP_MI& x, uintL index, const cl_MI& y)
	{ x.ring()->set_coeff(x,index,y); }
inline void finalize (cl_UP_MI& x)
	{ x.ring()->finalize(x); }
inline void cl_UP_MI::set_coeff (uintL index, const cl_MI& y)
	{ ring()->set_coeff(*this,index,y); }
inline void cl_UP_MI::finalize ()
	{ ring()->finalize(*this); }

// Evaluation. (No extension of the base ring allowed here for now.)
inline const cl_MI cl_UP_MI::operator() (const cl_MI& y) const
{
	return ring()->eval(*this,y);
}

// Derivative.
inline const cl_UP_MI deriv (const cl_UP_MI& x)
	{ return The2(cl_UP_MI)(deriv((const cl_UP&)x)); }

}  // namespace cln

#endif /* _CL_UNIVPOLY_MODINT_H */