/usr/include/CLHEP/GenericFunctions/SphericalHarmonicFit.icc is in libclhep-dev 2.1.4.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | // -*- C++ -*-
// $Id:
#include <sstream>
#include <cmath>
#include <gsl/gsl_sf_legendre.h>
#include <complex>
#include <cstdlib>
#include <stdexcept>
#include "CLHEP/GenericFunctions/ClebschGordanCoefficientSet.hh"
namespace Genfun {
FUNCTION_OBJECT_IMP(SphericalHarmonicFit)
class SphericalHarmonicFit::Clockwork {
public:
Clockwork(unsigned int LMAX):LMAX(LMAX),coefficientsA(LMAX),coefficientsASq(2*LMAX) {}
struct MStruct {
unsigned int M;
Genfun::Parameter *fractionAbsMOrHigher;
Genfun::Parameter *fractionMPositive;
Genfun::Parameter *phaseMPlus;
Genfun::Parameter *phaseMMinus;
};
struct LStruct {
unsigned int L;
Genfun::Parameter *fractionLOrHigher;
Genfun::Parameter *phaseLM0;
std::vector<MStruct> mstruct;
};
std::vector<LStruct> lstruct;
const unsigned int LMAX;
SphericalHarmonicCoefficientSet coefficientsA;
SphericalHarmonicCoefficientSet coefficientsASq;
ClebschGordanCoefficientSet ClebschGordan;
void recomputeCoefficients() {
// Note, the calling sequence of the GSL Special Function forces us to
// transpose Plm from its "natural" order.. It is addressed as P[m][l].
// double ampSq=0.0;
std::complex<double> I(0,1.0);
double f=1.0;
double fThisSum=0.0;
for (unsigned int l=0;l<=LMAX;l++) {
// lStructThis is zero if l==0;
// lStructNext is zero if l==LMAX;
const LStruct *lStructThis= (l==0 ? NULL: & lstruct[l-1]);
const LStruct *lStructNext= (l==LMAX ? NULL: & lstruct[l]);
double fHigher = lStructNext ? lStructNext->fractionLOrHigher->getValue() : NULL;
double fThis = f*(1-fHigher);
fThisSum+=fThis;
double g=1.0;
double gThisSum=0.0;
for (int m=0;m<=int(l);m++) {
// mStructThis is zero if m==0;
// mStructNext is zero if m==l;
const MStruct *mStructThis= ((m==0 || !lStructThis) ? NULL: & lStructThis->mstruct[m-1]);
const MStruct *mStructNext= (m==int(l) ? NULL: & lStructThis->mstruct[m]);
double gHigher = mStructNext ? mStructNext->fractionAbsMOrHigher->getValue() : NULL;
double gThis = g*(1-gHigher);
gThisSum+=gThis;
if (fThis<0) {
std::cout << "L-fraction correction" << fThis << "-->0" << std::endl;
fThis=0.0;
}
if (gThis<0) {
std::cout << "M-fraction correction" << gThis << "-->0" << std::endl;
gThis=0.0;
}
double px=0.0; // phase
if (m==0) {
if (lStructThis) {
double amplitude = sqrt(fThis*gThis);
px = lStructThis->phaseLM0->getValue();;
coefficientsA(l,m)=exp(I*px)*amplitude;
}
// L=0 occurs here:
else {
double amplitude = sqrt(fThis*gThis);
coefficientsA(l,m)=exp(I*px)*amplitude;
}
}
// Split it between positive and negative:
else {
{
double amplitude = sqrt(fThis*gThis*mStructThis->fractionMPositive->getValue());
px = mStructThis->phaseMPlus->getValue();;
coefficientsA(l,m)=exp(I*px)*amplitude;
}
{
double amplitude = sqrt(fThis*gThis*(1-mStructThis->fractionMPositive->getValue()));
px = mStructThis->phaseMMinus->getValue();;
coefficientsA(l,-m)=exp(I*px)*amplitude;
}
}
g*=gHigher;
}
f*=fHigher;
}
}
};
inline
SphericalHarmonicFit::SphericalHarmonicFit(unsigned int LMAX):
c(new Clockwork(LMAX))
{
for (unsigned int l=1;l<=LMAX;l++) {
Clockwork::LStruct lstruct;
lstruct.L=l;
{
std::ostringstream stream;
stream << "Fraction L>=" << l;
lstruct.fractionLOrHigher= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
}
{
std::ostringstream stream;
stream << "Phase L=" << l << "; M=0";
lstruct.phaseLM0= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
}
for (unsigned int m=1;m<=l;m++) {
Clockwork::MStruct mstruct;
mstruct.M=m;
{
std::ostringstream stream;
stream << "Fraction L= " << l << "; |M| >=" << m;
mstruct.fractionAbsMOrHigher= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
}
{
std::ostringstream stream;
stream << "Fraction L=" << l << "; M=+" << m ;
mstruct.fractionMPositive= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
}
{
std::ostringstream stream;
stream << "Phase L=" << l << "; M=+" << m ;
mstruct.phaseMPlus= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
}
{
std::ostringstream stream;
stream << "Phase L=" << l << "; M=-" << m ;
mstruct.phaseMMinus= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
}
lstruct.mstruct.push_back(mstruct);
}
c->lstruct.push_back(lstruct);
}
}
inline
SphericalHarmonicFit::~SphericalHarmonicFit() {
for (unsigned int i=0;i<c->lstruct.size();i++) {
delete c->lstruct[i].fractionLOrHigher;
delete c->lstruct[i].phaseLM0;
for (unsigned int j=0;j<c->lstruct[i].mstruct.size();j++) {
delete c->lstruct[i].mstruct[j].fractionAbsMOrHigher;
delete c->lstruct[i].mstruct[j].fractionMPositive;
delete c->lstruct[i].mstruct[j].phaseMPlus;
delete c->lstruct[i].mstruct[j].phaseMMinus;
}
}
delete c;
}
inline
SphericalHarmonicFit::SphericalHarmonicFit(const SphericalHarmonicFit & right):
AbsFunction(),
c(new Clockwork(right.c->LMAX))
{
for (unsigned int i=0;i<right.c->lstruct.size();i++) {
Clockwork::LStruct lstruct;
lstruct.L= right.c->lstruct[i].L;
lstruct.fractionLOrHigher = new Parameter(*right.c->lstruct[i].fractionLOrHigher);
lstruct.phaseLM0 = new Parameter(*right.c->lstruct[i].phaseLM0);
for (unsigned int j=0;j<right.c->lstruct[i].mstruct.size();j++) {
Clockwork::MStruct mstruct;
mstruct.M=right.c->lstruct[i].mstruct[j].M;
mstruct.fractionAbsMOrHigher=new Parameter(*right.c->lstruct[i].mstruct[j].fractionAbsMOrHigher);
mstruct.fractionMPositive =new Parameter(*right.c->lstruct[i].mstruct[j].fractionMPositive);
mstruct.phaseMPlus =new Parameter(*right.c->lstruct[i].mstruct[j].phaseMPlus);
mstruct.phaseMMinus =new Parameter(*right.c->lstruct[i].mstruct[j].phaseMMinus);
lstruct.mstruct.push_back(mstruct);
}
c->lstruct.push_back(lstruct);
}
}
inline
double SphericalHarmonicFit::operator() (double ) const {
throw std::runtime_error("Dimensionality error in SphericalHarmonicFit");
return 0;
}
inline
double SphericalHarmonicFit::operator() (const Argument & a ) const {
unsigned int LMAX=c->LMAX;
double x = a[0];
double phi=a[1];
// Note, the calling sequence of the GSL Special Function forces us to
// transpose Plm from its "natural" order.. It is addressed as P[m][l].
//double Plm[LMAX+1][LMAX+1];
std::vector< std::vector<double> > Plm(LMAX+1);
for (int m=0;m<=int(LMAX);m++) {
Plm[m].resize(LMAX+1);
gsl_sf_legendre_sphPlm_array (LMAX, m, x, &*Plm[m].begin());
}
c->recomputeCoefficients();
std::complex<double> P=0.0;
std::complex<double> I(0,1.0);
for (unsigned int l=0;l<=LMAX;l++) {
for (int m=0;m<=int(l);m++) {
{
int LP=l-abs(m);
double Pn= Plm[abs(m)][LP];
if (!finite(Pn)) return 0.0;
// Once for positive m (in all cases):
P+=(c->coefficientsA(l,m)*Pn*exp(I*(m*phi)));
// Once for negative m (skip if m==0);
if (m!=0) P+= ( (m%2 ?-1.0:1.0)*c->coefficientsA(l,-m)*Pn*exp(-I*(m*phi)));
}
}
}
double retVal=std::norm(P);
if (!finite(retVal)) {
return 0.0;
}
return retVal;
}
inline
unsigned int SphericalHarmonicFit::lMax() const {
return c->LMAX;
}
inline
unsigned int SphericalHarmonicFit::numComponents() const {
return (c->LMAX+1)*(c->LMAX+1)-1;
}
// The fraction of Amplitude sq which is L or higher
inline
Parameter *SphericalHarmonicFit::getFractionLOrHigher(unsigned int L){
return c->lstruct[L-1].fractionLOrHigher;
}
inline
const Parameter *SphericalHarmonicFit::getFractionLOrHigher(unsigned int L) const {
return c->lstruct[L-1].fractionLOrHigher;
}
// The phase of coefficient L, M=0;
inline
Parameter *SphericalHarmonicFit::getPhaseLM0(unsigned int L){
return c->lstruct[L-1].phaseLM0;
}
inline
const Parameter *SphericalHarmonicFit::getPhaseLM0(unsigned int L) const{
return c->lstruct[L-1].phaseLM0;
}
// The fraction of amplitude sq which is L which is +- M OR HIGHER
inline
Parameter *SphericalHarmonicFit::getFractionAbsMOrHigher(unsigned int L, unsigned int M){
return c->lstruct[L-1].mstruct[M-1].fractionAbsMOrHigher;
}
inline
const Parameter *SphericalHarmonicFit::getFractionAbsMOrHigher(unsigned int L, unsigned int M) const{
return c->lstruct[L-1].mstruct[M-1].fractionAbsMOrHigher;
}
// The fraction of amplitude sq which is +- M, which is positive
inline
Parameter *SphericalHarmonicFit::getFractionMPositive(unsigned int L, unsigned int M){
return c->lstruct[L-1].mstruct[M-1].fractionMPositive;
}
inline
const Parameter *SphericalHarmonicFit::getFractionMPositive(unsigned int L, unsigned int M) const{
return c->lstruct[L-1].mstruct[M-1].fractionMPositive;
}
// The phase of the positive M coefficient
inline
Parameter *SphericalHarmonicFit::getPhaseMPlus(unsigned int L, unsigned int M){
return c->lstruct[L-1].mstruct[M-1].phaseMPlus;
}
inline
const Parameter *SphericalHarmonicFit::getPhaseMPlus(unsigned int L, unsigned int M) const{
return c->lstruct[L-1].mstruct[M-1].phaseMPlus;
}
// The phase of the negative M coefficient
inline
Parameter *SphericalHarmonicFit::getPhaseMMinus(unsigned int L, unsigned int M){
return c->lstruct[L-1].mstruct[M-1].phaseMMinus;
}
inline
const Parameter *SphericalHarmonicFit::getPhaseMMinus(unsigned int L, unsigned int M) const{
return c->lstruct[L-1].mstruct[M-1].phaseMMinus;
}
inline
const SphericalHarmonicCoefficientSet & SphericalHarmonicFit::coefficientsA() const {
c->recomputeCoefficients();
return c->coefficientsA;
}
inline
const SphericalHarmonicCoefficientSet & SphericalHarmonicFit::coefficientsASq() const{
c->recomputeCoefficients();
unsigned int LMAX=c->coefficientsA.getLMax();
for (unsigned int L=0;L<=2*LMAX;L++) {
for (int M=-L; M<=int(L); M++) {
c->coefficientsASq(L,M)=0.0;
for (unsigned int l1=0;l1<=LMAX;l1++) {
for (unsigned int l2=0;l2<=LMAX;l2++) {
for (int m1=-l1;m1<=int(l1);m1++) {
for (int m2=-l2;m2<=int(l2);m2++) {
if (m1-m2==M) {
if (((l1+l2) >= L) && abs(l1-l2) <=int(L)) {
c->coefficientsASq(L,M) += (c->coefficientsA(l1,m1)*
conj(c->coefficientsA(l2,m2))*
(m2%2 ? -1.0:1.0) *
sqrt((2*l1+1)*(2*l2+1)/(4*M_PI*(2*L+1)))*
c->ClebschGordan(l1,l2,0,0,L,0)*c->ClebschGordan(l1,l2,m1,-m2,L,M));
}
}
}
}
}
}
}
}
return c->coefficientsASq;
}
inline
void SphericalHarmonicFit::recomputeCoefficients() const {
c->recomputeCoefficients();
}
} // end namespace Genfun
|