This file is indexed.

/usr/lib/llvm-6.0/include/polly/ScopInfo.h is in libclang-common-6.0-dev 1:6.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
//===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Store the polyhedral model representation of a static control flow region,
// also called SCoP (Static Control Part).
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. CLooG, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCOPINFO_H
#define POLLY_SCOPINFO_H

#include "polly/ScopDetection.h"
#include "polly/Support/SCEVAffinator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "isl/isl-noexceptions.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <forward_list>
#include <functional>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

namespace llvm {

class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Function;
class Loop;
class LoopInfo;
class OptimizationRemarkEmitter;
class PassRegistry;
class raw_ostream;
class ScalarEvolution;
class SCEV;
class Type;
class Value;

void initializeScopInfoRegionPassPass(PassRegistry &);
void initializeScopInfoWrapperPassPass(PassRegistry &);

} // end namespace llvm

struct isl_map;
struct isl_pw_multi_aff;
struct isl_schedule;
struct isl_set;
struct isl_union_map;

namespace polly {

class MemoryAccess;
class Scop;
class ScopStmt;

//===---------------------------------------------------------------------===//

extern bool UseInstructionNames;

/// Enumeration of assumptions Polly can take.
enum AssumptionKind {
  ALIASING,
  INBOUNDS,
  WRAPPING,
  UNSIGNED,
  PROFITABLE,
  ERRORBLOCK,
  COMPLEXITY,
  INFINITELOOP,
  INVARIANTLOAD,
  DELINEARIZATION,
};

/// Enum to distinguish between assumptions and restrictions.
enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };

/// The different memory kinds used in Polly.
///
/// We distinguish between arrays and various scalar memory objects. We use
/// the term ``array'' to describe memory objects that consist of a set of
/// individual data elements arranged in a multi-dimensional grid. A scalar
/// memory object describes an individual data element and is used to model
/// the definition and uses of llvm::Values.
///
/// The polyhedral model does traditionally not reason about SSA values. To
/// reason about llvm::Values we model them "as if" they were zero-dimensional
/// memory objects, even though they were not actually allocated in (main)
/// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
/// time. To relate the memory slots used during code generation with the
/// llvm::Values they belong to the new names for these corresponding stack
/// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
/// to the name of the original llvm::Value. To describe how def/uses are
/// modeled exactly we use these suffixes here as well.
///
/// There are currently four different kinds of memory objects:
enum class MemoryKind {
  /// MemoryKind::Array: Models a one or multi-dimensional array
  ///
  /// A memory object that can be described by a multi-dimensional array.
  /// Memory objects of this type are used to model actual multi-dimensional
  /// arrays as they exist in LLVM-IR, but they are also used to describe
  /// other objects:
  ///   - A single data element allocated on the stack using 'alloca' is
  ///     modeled as a one-dimensional, single-element array.
  ///   - A single data element allocated as a global variable is modeled as
  ///     one-dimensional, single-element array.
  ///   - Certain multi-dimensional arrays with variable size, which in
  ///     LLVM-IR are commonly expressed as a single-dimensional access with a
  ///     complicated access function, are modeled as multi-dimensional
  ///     memory objects (grep for "delinearization").
  Array,

  /// MemoryKind::Value: Models an llvm::Value
  ///
  /// Memory objects of type MemoryKind::Value are used to model the data flow
  /// induced by llvm::Values. For each llvm::Value that is used across
  /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
  /// stores the llvm::Value at its definition into the memory object and at
  /// each use of the llvm::Value (ignoring trivial intra-block uses) a
  /// corresponding READ is added. For instance, the use/def chain of a
  /// llvm::Value %V depicted below
  ///              ______________________
  ///              |DefBB:              |
  ///              |  %V = float op ... |
  ///              ----------------------
  ///               |                  |
  /// _________________               _________________
  /// |UseBB1:        |               |UseBB2:        |
  /// |  use float %V |               |  use float %V |
  /// -----------------               -----------------
  ///
  /// is modeled as if the following memory accesses occurred:
  ///
  ///                        __________________________
  ///                        |entry:                  |
  ///                        |  %V.s2a = alloca float |
  ///                        --------------------------
  ///                                     |
  ///                    ___________________________________
  ///                    |DefBB:                           |
  ///                    |  store %float %V, float* %V.s2a |
  ///                    -----------------------------------
  ///                           |                   |
  /// ____________________________________ ___________________________________
  /// |UseBB1:                           | |UseBB2:                          |
  /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
  /// |  use float %V.reload1            | |  use float %V.reload2           |
  /// ------------------------------------ -----------------------------------
  ///
  Value,

  /// MemoryKind::PHI: Models PHI nodes within the SCoP
  ///
  /// Besides the MemoryKind::Value memory object used to model the normal
  /// llvm::Value dependences described above, PHI nodes require an additional
  /// memory object of type MemoryKind::PHI to describe the forwarding of values
  /// to
  /// the PHI node.
  ///
  /// As an example, a PHIInst instructions
  ///
  /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
  ///
  /// is modeled as if the accesses occurred this way:
  ///
  ///                    _______________________________
  ///                    |entry:                       |
  ///                    |  %PHI.phiops = alloca float |
  ///                    -------------------------------
  ///                           |              |
  /// __________________________________  __________________________________
  /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
  /// |  ...                           |  |  ...                           |
  /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
  /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
  /// ----------------------------------  ----------------------------------
  ///                             \            /
  ///                              \          /
  ///               _________________________________________
  ///               |JoinBlock:                             |
  ///               |  %PHI = load float, float* PHI.phiops |
  ///               -----------------------------------------
  ///
  /// Note that there can also be a scalar write access for %PHI if used in a
  /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
  /// well as a memory object %PHI.s2a.
  PHI,

  /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
  ///
  /// For PHI nodes in the Scop's exit block a special memory object kind is
  /// used. The modeling used is identical to MemoryKind::PHI, with the
  /// exception
  /// that there are no READs from these memory objects. The PHINode's
  /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
  /// write directly to the escaping value's ".s2a" alloca.
  ExitPHI
};

/// Maps from a loop to the affine function expressing its backedge taken count.
/// The backedge taken count already enough to express iteration domain as we
/// only allow loops with canonical induction variable.
/// A canonical induction variable is:
/// an integer recurrence that starts at 0 and increments by one each time
/// through the loop.
using LoopBoundMapType = std::map<const Loop *, const SCEV *>;

using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;

/// A class to store information about arrays in the SCoP.
///
/// Objects are accessible via the ScoP, MemoryAccess or the id associated with
/// the MemoryAccess access function.
///
class ScopArrayInfo {
public:
  /// Construct a ScopArrayInfo object.
  ///
  /// @param BasePtr        The array base pointer.
  /// @param ElementType    The type of the elements stored in the array.
  /// @param IslCtx         The isl context used to create the base pointer id.
  /// @param DimensionSizes A vector containing the size of each dimension.
  /// @param Kind           The kind of the array object.
  /// @param DL             The data layout of the module.
  /// @param S              The scop this array object belongs to.
  /// @param BaseName       The optional name of this memory reference.
  ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
                ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
                const DataLayout &DL, Scop *S, const char *BaseName = nullptr);

  /// Destructor to free the isl id of the base pointer.
  ~ScopArrayInfo();

  ///  Update the element type of the ScopArrayInfo object.
  ///
  ///  Memory accesses referencing this ScopArrayInfo object may use
  ///  different element sizes. This function ensures the canonical element type
  ///  stored is small enough to model accesses to the current element type as
  ///  well as to @p NewElementType.
  ///
  ///  @param NewElementType An element type that is used to access this array.
  void updateElementType(Type *NewElementType);

  ///  Update the sizes of the ScopArrayInfo object.
  ///
  ///  A ScopArrayInfo object may be created without all outer dimensions being
  ///  available. This function is called when new memory accesses are added for
  ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
  ///  additional outer array dimensions, if needed.
  ///
  ///  @param Sizes       A vector of array sizes where the rightmost array
  ///                     sizes need to match the innermost array sizes already
  ///                     defined in SAI.
  ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
  ///                          with old sizes
  bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);

  /// Make the ScopArrayInfo model a Fortran array.
  /// It receives the Fortran array descriptor and stores this.
  /// It also adds a piecewise expression for the outermost dimension
  /// since this information is available for Fortran arrays at runtime.
  void applyAndSetFAD(Value *FAD);

  /// Get the FortranArrayDescriptor corresponding to this array if it exists,
  /// nullptr otherwise.
  Value *getFortranArrayDescriptor() const { return this->FAD; }

  /// Set the base pointer to @p BP.
  void setBasePtr(Value *BP) { BasePtr = BP; }

  /// Return the base pointer.
  Value *getBasePtr() const { return BasePtr; }

  // Set IsOnHeap to the value in parameter.
  void setIsOnHeap(bool value) { IsOnHeap = value; }

  /// For indirect accesses return the origin SAI of the BP, else null.
  const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }

  /// The set of derived indirect SAIs for this origin SAI.
  const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
    return DerivedSAIs;
  }

  /// Return the number of dimensions.
  unsigned getNumberOfDimensions() const {
    if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
        Kind == MemoryKind::Value)
      return 0;
    return DimensionSizes.size();
  }

  /// Return the size of dimension @p dim as SCEV*.
  //
  //  Scalars do not have array dimensions and the first dimension of
  //  a (possibly multi-dimensional) array also does not carry any size
  //  information, in case the array is not newly created.
  const SCEV *getDimensionSize(unsigned Dim) const {
    assert(Dim < getNumberOfDimensions() && "Invalid dimension");
    return DimensionSizes[Dim];
  }

  /// Return the size of dimension @p dim as isl::pw_aff.
  //
  //  Scalars do not have array dimensions and the first dimension of
  //  a (possibly multi-dimensional) array also does not carry any size
  //  information, in case the array is not newly created.
  isl::pw_aff getDimensionSizePw(unsigned Dim) const {
    assert(Dim < getNumberOfDimensions() && "Invalid dimension");
    return DimensionSizesPw[Dim];
  }

  /// Get the canonical element type of this array.
  ///
  /// @returns The canonical element type of this array.
  Type *getElementType() const { return ElementType; }

  /// Get element size in bytes.
  int getElemSizeInBytes() const;

  /// Get the name of this memory reference.
  std::string getName() const;

  /// Return the isl id for the base pointer.
  isl::id getBasePtrId() const;

  /// Return what kind of memory this represents.
  MemoryKind getKind() const { return Kind; }

  /// Is this array info modeling an llvm::Value?
  bool isValueKind() const { return Kind == MemoryKind::Value; }

  /// Is this array info modeling special PHI node memory?
  ///
  /// During code generation of PHI nodes, there is a need for two kinds of
  /// virtual storage. The normal one as it is used for all scalar dependences,
  /// where the result of the PHI node is stored and later loaded from as well
  /// as a second one where the incoming values of the PHI nodes are stored
  /// into and reloaded when the PHI is executed. As both memories use the
  /// original PHI node as virtual base pointer, we have this additional
  /// attribute to distinguish the PHI node specific array modeling from the
  /// normal scalar array modeling.
  bool isPHIKind() const { return Kind == MemoryKind::PHI; }

  /// Is this array info modeling an MemoryKind::ExitPHI?
  bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }

  /// Is this array info modeling an array?
  bool isArrayKind() const { return Kind == MemoryKind::Array; }

  /// Is this array allocated on heap
  ///
  /// This property is only relevant if the array is allocated by Polly instead
  /// of pre-existing. If false, it is allocated using alloca instead malloca.
  bool isOnHeap() const { return IsOnHeap; }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Dump a readable representation to stderr.
  void dump() const;
#endif

  /// Print a readable representation to @p OS.
  ///
  /// @param SizeAsPwAff Print the size as isl::pw_aff
  void print(raw_ostream &OS, bool SizeAsPwAff = false) const;

  /// Access the ScopArrayInfo associated with an access function.
  static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);

  /// Access the ScopArrayInfo associated with an isl Id.
  static const ScopArrayInfo *getFromId(isl::id Id);

  /// Get the space of this array access.
  isl::space getSpace() const;

  /// If the array is read only
  bool isReadOnly();

  /// Verify that @p Array is compatible to this ScopArrayInfo.
  ///
  /// Two arrays are compatible if their dimensionality, the sizes of their
  /// dimensions, and their element sizes match.
  ///
  /// @param Array The array to compare against.
  ///
  /// @returns True, if the arrays are compatible, False otherwise.
  bool isCompatibleWith(const ScopArrayInfo *Array) const;

private:
  void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
    DerivedSAIs.insert(DerivedSAI);
  }

  /// For indirect accesses this is the SAI of the BP origin.
  const ScopArrayInfo *BasePtrOriginSAI;

  /// For origin SAIs the set of derived indirect SAIs.
  SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;

  /// The base pointer.
  AssertingVH<Value> BasePtr;

  /// The canonical element type of this array.
  ///
  /// The canonical element type describes the minimal accessible element in
  /// this array. Not all elements accessed, need to be of the very same type,
  /// but the allocation size of the type of the elements loaded/stored from/to
  /// this array needs to be a multiple of the allocation size of the canonical
  /// type.
  Type *ElementType;

  /// The isl id for the base pointer.
  isl::id Id;

  /// True if the newly allocated array is on heap.
  bool IsOnHeap = false;

  /// The sizes of each dimension as SCEV*.
  SmallVector<const SCEV *, 4> DimensionSizes;

  /// The sizes of each dimension as isl::pw_aff.
  SmallVector<isl::pw_aff, 4> DimensionSizesPw;

  /// The type of this scop array info object.
  ///
  /// We distinguish between SCALAR, PHI and ARRAY objects.
  MemoryKind Kind;

  /// The data layout of the module.
  const DataLayout &DL;

  /// The scop this SAI object belongs to.
  Scop &S;

  /// If this array models a Fortran array, then this points
  /// to the Fortran array descriptor.
  Value *FAD = nullptr;
};

/// Represent memory accesses in statements.
class MemoryAccess {
  friend class Scop;
  friend class ScopStmt;
  friend class ScopBuilder;

public:
  /// The access type of a memory access
  ///
  /// There are three kind of access types:
  ///
  /// * A read access
  ///
  /// A certain set of memory locations are read and may be used for internal
  /// calculations.
  ///
  /// * A must-write access
  ///
  /// A certain set of memory locations is definitely written. The old value is
  /// replaced by a newly calculated value. The old value is not read or used at
  /// all.
  ///
  /// * A may-write access
  ///
  /// A certain set of memory locations may be written. The memory location may
  /// contain a new value if there is actually a write or the old value may
  /// remain, if no write happens.
  enum AccessType {
    READ = 0x1,
    MUST_WRITE = 0x2,
    MAY_WRITE = 0x3,
  };

  /// Reduction access type
  ///
  /// Commutative and associative binary operations suitable for reductions
  enum ReductionType {
    RT_NONE, ///< Indicate no reduction at all
    RT_ADD,  ///< Addition
    RT_MUL,  ///< Multiplication
    RT_BOR,  ///< Bitwise Or
    RT_BXOR, ///< Bitwise XOr
    RT_BAND, ///< Bitwise And
  };

private:
  /// A unique identifier for this memory access.
  ///
  /// The identifier is unique between all memory accesses belonging to the same
  /// scop statement.
  isl::id Id;

  /// What is modeled by this MemoryAccess.
  /// @see MemoryKind
  MemoryKind Kind;

  /// Whether it a reading or writing access, and if writing, whether it
  /// is conditional (MAY_WRITE).
  enum AccessType AccType;

  /// Reduction type for reduction like accesses, RT_NONE otherwise
  ///
  /// An access is reduction like if it is part of a load-store chain in which
  /// both access the same memory location (use the same LLVM-IR value
  /// as pointer reference). Furthermore, between the load and the store there
  /// is exactly one binary operator which is known to be associative and
  /// commutative.
  ///
  /// TODO:
  ///
  /// We can later lift the constraint that the same LLVM-IR value defines the
  /// memory location to handle scops such as the following:
  ///
  ///    for i
  ///      for j
  ///        sum[i+j] = sum[i] + 3;
  ///
  /// Here not all iterations access the same memory location, but iterations
  /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
  /// subsequent transformations do not only need check if a statement is
  /// reduction like, but they also need to verify that that the reduction
  /// property is only exploited for statement instances that load from and
  /// store to the same data location. Doing so at dependence analysis time
  /// could allow us to handle the above example.
  ReductionType RedType = RT_NONE;

  /// Parent ScopStmt of this access.
  ScopStmt *Statement;

  /// The domain under which this access is not modeled precisely.
  ///
  /// The invalid domain for an access describes all parameter combinations
  /// under which the statement looks to be executed but is in fact not because
  /// some assumption/restriction makes the access invalid.
  isl::set InvalidDomain;

  // Properties describing the accessed array.
  // TODO: It might be possible to move them to ScopArrayInfo.
  // @{

  /// The base address (e.g., A for A[i+j]).
  ///
  /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
  /// pointer of the memory access.
  /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
  /// MemoryKind::ExitPHI is the PHI node itself.
  /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
  /// instruction defining the value.
  AssertingVH<Value> BaseAddr;

  /// Type a single array element wrt. this access.
  Type *ElementType;

  /// Size of each dimension of the accessed array.
  SmallVector<const SCEV *, 4> Sizes;
  // @}

  // Properties describing the accessed element.
  // @{

  /// The access instruction of this memory access.
  ///
  /// For memory accesses of kind MemoryKind::Array the access instruction is
  /// the Load or Store instruction performing the access.
  ///
  /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
  /// access instruction of a load access is the PHI instruction. The access
  /// instruction of a PHI-store is the incoming's block's terminator
  /// instruction.
  ///
  /// For memory accesses of kind MemoryKind::Value the access instruction of a
  /// load access is nullptr because generally there can be multiple
  /// instructions in the statement using the same llvm::Value. The access
  /// instruction of a write access is the instruction that defines the
  /// llvm::Value.
  Instruction *AccessInstruction = nullptr;

  /// Incoming block and value of a PHINode.
  SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;

  /// The value associated with this memory access.
  ///
  ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
  ///    or the stored value. If the access instruction is a memory intrinsic it
  ///    the access value is also the memory intrinsic.
  ///  - For accesses of kind MemoryKind::Value it is the access instruction
  ///    itself.
  ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
  ///    PHI node itself (for both, READ and WRITE accesses).
  ///
  AssertingVH<Value> AccessValue;

  /// Are all the subscripts affine expression?
  bool IsAffine = true;

  /// Subscript expression for each dimension.
  SmallVector<const SCEV *, 4> Subscripts;

  /// Relation from statement instances to the accessed array elements.
  ///
  /// In the common case this relation is a function that maps a set of loop
  /// indices to the memory address from which a value is loaded/stored:
  ///
  ///      for i
  ///        for j
  ///    S:     A[i + 3 j] = ...
  ///
  ///    => { S[i,j] -> A[i + 3j] }
  ///
  /// In case the exact access function is not known, the access relation may
  /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
  /// element accessible through A might be accessed.
  ///
  /// In case of an access to a larger element belonging to an array that also
  /// contains smaller elements, the access relation models the larger access
  /// with multiple smaller accesses of the size of the minimal array element
  /// type:
  ///
  ///      short *A;
  ///
  ///      for i
  ///    S:     A[i] = *((double*)&A[4 * i]);
  ///
  ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
  isl::map AccessRelation;

  /// Updated access relation read from JSCOP file.
  isl::map NewAccessRelation;

  /// Fortran arrays whose sizes are not statically known are stored in terms
  /// of a descriptor struct. This maintains a raw pointer to the memory,
  /// along with auxiliary fields with information such as dimensions.
  /// We hold a reference to the descriptor corresponding to a MemoryAccess
  /// into a Fortran array. FAD for "Fortran Array Descriptor"
  AssertingVH<Value> FAD;
  // @}

  isl::basic_map createBasicAccessMap(ScopStmt *Statement);

  void assumeNoOutOfBound();

  /// Compute bounds on an over approximated  access relation.
  ///
  /// @param ElementSize The size of one element accessed.
  void computeBoundsOnAccessRelation(unsigned ElementSize);

  /// Get the original access function as read from IR.
  isl::map getOriginalAccessRelation() const;

  /// Return the space in which the access relation lives in.
  isl::space getOriginalAccessRelationSpace() const;

  /// Get the new access function imported or set by a pass
  isl::map getNewAccessRelation() const;

  /// Fold the memory access to consider parametric offsets
  ///
  /// To recover memory accesses with array size parameters in the subscript
  /// expression we post-process the delinearization results.
  ///
  /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
  /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
  /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
  /// range of exp1(i) - may be preferable. Specifically, for cases where we
  /// know exp1(i) is negative, we want to choose the latter expression.
  ///
  /// As we commonly do not have any information about the range of exp1(i),
  /// we do not choose one of the two options, but instead create a piecewise
  /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
  /// negative. For a 2D array such an access function is created by applying
  /// the piecewise map:
  ///
  /// [i,j] -> [i, j] :      j >= 0
  /// [i,j] -> [i-1, j+N] :  j <  0
  ///
  /// We can generalize this mapping to arbitrary dimensions by applying this
  /// piecewise mapping pairwise from the rightmost to the leftmost access
  /// dimension. It would also be possible to cover a wider range by introducing
  /// more cases and adding multiple of Ns to these cases. However, this has
  /// not yet been necessary.
  /// The introduction of different cases necessarily complicates the memory
  /// access function, but cases that can be statically proven to not happen
  /// will be eliminated later on.
  void foldAccessRelation();

  /// Create the access relation for the underlying memory intrinsic.
  void buildMemIntrinsicAccessRelation();

  /// Assemble the access relation from all available information.
  ///
  /// In particular, used the information passes in the constructor and the
  /// parent ScopStmt set by setStatment().
  ///
  /// @param SAI Info object for the accessed array.
  void buildAccessRelation(const ScopArrayInfo *SAI);

  /// Carry index overflows of dimensions with constant size to the next higher
  /// dimension.
  ///
  /// For dimensions that have constant size, modulo the index by the size and
  /// add up the carry (floored division) to the next higher dimension. This is
  /// how overflow is defined in row-major order.
  /// It happens e.g. when ScalarEvolution computes the offset to the base
  /// pointer and would algebraically sum up all lower dimensions' indices of
  /// constant size.
  ///
  /// Example:
  ///   float (*A)[4];
  ///   A[1][6] -> A[2][2]
  void wrapConstantDimensions();

public:
  /// Create a new MemoryAccess.
  ///
  /// @param Stmt       The parent statement.
  /// @param AccessInst The instruction doing the access.
  /// @param BaseAddr   The accessed array's address.
  /// @param ElemType   The type of the accessed array elements.
  /// @param AccType    Whether read or write access.
  /// @param IsAffine   Whether the subscripts are affine expressions.
  /// @param Kind       The kind of memory accessed.
  /// @param Subscripts Subscript expressions
  /// @param Sizes      Dimension lengths of the accessed array.
  MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
               Value *BaseAddress, Type *ElemType, bool Affine,
               ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
               Value *AccessValue, MemoryKind Kind);

  /// Create a new MemoryAccess that corresponds to @p AccRel.
  ///
  /// Along with @p Stmt and @p AccType it uses information about dimension
  /// lengths of the accessed array, the type of the accessed array elements,
  /// the name of the accessed array that is derived from the object accessible
  /// via @p AccRel.
  ///
  /// @param Stmt       The parent statement.
  /// @param AccType    Whether read or write access.
  /// @param AccRel     The access relation that describes the memory access.
  MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);

  MemoryAccess(const MemoryAccess &) = delete;
  MemoryAccess &operator=(const MemoryAccess &) = delete;
  ~MemoryAccess();

  /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
  ///
  /// @param IncomingBlock The PHI's incoming block.
  /// @param IncomingValue The value when reaching the PHI from the @p
  ///                      IncomingBlock.
  void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
    assert(!isRead());
    assert(isAnyPHIKind());
    Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
  }

  /// Return the list of possible PHI/ExitPHI values.
  ///
  /// After code generation moves some PHIs around during region simplification,
  /// we cannot reliably locate the original PHI node and its incoming values
  /// anymore. For this reason we remember these explicitly for all PHI-kind
  /// accesses.
  ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
    assert(isAnyPHIKind());
    return Incoming;
  }

  /// Get the type of a memory access.
  enum AccessType getType() { return AccType; }

  /// Is this a reduction like access?
  bool isReductionLike() const { return RedType != RT_NONE; }

  /// Is this a read memory access?
  bool isRead() const { return AccType == MemoryAccess::READ; }

  /// Is this a must-write memory access?
  bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }

  /// Is this a may-write memory access?
  bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }

  /// Is this a write memory access?
  bool isWrite() const { return isMustWrite() || isMayWrite(); }

  /// Is this a memory intrinsic access (memcpy, memset, memmove)?
  bool isMemoryIntrinsic() const {
    return isa<MemIntrinsic>(getAccessInstruction());
  }

  /// Check if a new access relation was imported or set by a pass.
  bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }

  /// Return the newest access relation of this access.
  ///
  /// There are two possibilities:
  ///   1) The original access relation read from the LLVM-IR.
  ///   2) A new access relation imported from a json file or set by another
  ///      pass (e.g., for privatization).
  ///
  /// As 2) is by construction "newer" than 1) we return the new access
  /// relation if present.
  ///
  isl::map getLatestAccessRelation() const {
    return hasNewAccessRelation() ? getNewAccessRelation()
                                  : getOriginalAccessRelation();
  }

  /// Old name of getLatestAccessRelation().
  isl::map getAccessRelation() const { return getLatestAccessRelation(); }

  /// Get an isl map describing the memory address accessed.
  ///
  /// In most cases the memory address accessed is well described by the access
  /// relation obtained with getAccessRelation. However, in case of arrays
  /// accessed with types of different size the access relation maps one access
  /// to multiple smaller address locations. This method returns an isl map that
  /// relates each dynamic statement instance to the unique memory location
  /// that is loaded from / stored to.
  ///
  /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
  /// will return the address function { S[i] -> A[4i] }.
  ///
  /// @returns The address function for this memory access.
  isl::map getAddressFunction() const;

  /// Return the access relation after the schedule was applied.
  isl::pw_multi_aff
  applyScheduleToAccessRelation(isl::union_map Schedule) const;

  /// Get an isl string representing the access function read from IR.
  std::string getOriginalAccessRelationStr() const;

  /// Get an isl string representing a new access function, if available.
  std::string getNewAccessRelationStr() const;

  /// Get an isl string representing the latest access relation.
  std::string getAccessRelationStr() const;

  /// Get the original base address of this access (e.g. A for A[i+j]) when
  /// detected.
  ///
  /// This address may differ from the base address referenced by the original
  /// ScopArrayInfo to which this array belongs, as this memory access may
  /// have been canonicalized to a ScopArrayInfo which has a different but
  /// identically-valued base pointer in case invariant load hoisting is
  /// enabled.
  Value *getOriginalBaseAddr() const { return BaseAddr; }

  /// Get the detection-time base array isl::id for this access.
  isl::id getOriginalArrayId() const;

  /// Get the base array isl::id for this access, modifiable through
  /// setNewAccessRelation().
  isl::id getLatestArrayId() const;

  /// Old name of getOriginalArrayId().
  isl::id getArrayId() const { return getOriginalArrayId(); }

  /// Get the detection-time ScopArrayInfo object for the base address.
  const ScopArrayInfo *getOriginalScopArrayInfo() const;

  /// Get the ScopArrayInfo object for the base address, or the one set
  /// by setNewAccessRelation().
  const ScopArrayInfo *getLatestScopArrayInfo() const;

  /// Legacy name of getOriginalScopArrayInfo().
  const ScopArrayInfo *getScopArrayInfo() const {
    return getOriginalScopArrayInfo();
  }

  /// Return a string representation of the access's reduction type.
  const std::string getReductionOperatorStr() const;

  /// Return a string representation of the reduction type @p RT.
  static const std::string getReductionOperatorStr(ReductionType RT);

  /// Return the element type of the accessed array wrt. this access.
  Type *getElementType() const { return ElementType; }

  /// Return the access value of this memory access.
  Value *getAccessValue() const { return AccessValue; }

  /// Return llvm::Value that is stored by this access, if available.
  ///
  /// PHI nodes may not have a unique value available that is stored, as in
  /// case of region statements one out of possibly several llvm::Values
  /// might be stored. In this case nullptr is returned.
  Value *tryGetValueStored() {
    assert(isWrite() && "Only write statement store values");
    if (isAnyPHIKind()) {
      if (Incoming.size() == 1)
        return Incoming[0].second;
      return nullptr;
    }
    return AccessValue;
  }

  /// Return the access instruction of this memory access.
  Instruction *getAccessInstruction() const { return AccessInstruction; }

  /// Return the number of access function subscript.
  unsigned getNumSubscripts() const { return Subscripts.size(); }

  /// Return the access function subscript in the dimension @p Dim.
  const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }

  /// Compute the isl representation for the SCEV @p E wrt. this access.
  ///
  /// Note that this function will also adjust the invalid context accordingly.
  isl::pw_aff getPwAff(const SCEV *E);

  /// Get the invalid domain for this access.
  isl::set getInvalidDomain() const { return InvalidDomain; }

  /// Get the invalid context for this access.
  isl::set getInvalidContext() const { return getInvalidDomain().params(); }

  /// Get the stride of this memory access in the specified Schedule. Schedule
  /// is a map from the statement to a schedule where the innermost dimension is
  /// the dimension of the innermost loop containing the statement.
  isl::set getStride(isl::map Schedule) const;

  /// Get the FortranArrayDescriptor corresponding to this memory access if
  /// it exists, and nullptr otherwise.
  Value *getFortranArrayDescriptor() const { return this->FAD; }

  /// Is the stride of the access equal to a certain width? Schedule is a map
  /// from the statement to a schedule where the innermost dimension is the
  /// dimension of the innermost loop containing the statement.
  bool isStrideX(isl::map Schedule, int StrideWidth) const;

  /// Is consecutive memory accessed for a given statement instance set?
  /// Schedule is a map from the statement to a schedule where the innermost
  /// dimension is the dimension of the innermost loop containing the
  /// statement.
  bool isStrideOne(isl::map Schedule) const;

  /// Is always the same memory accessed for a given statement instance set?
  /// Schedule is a map from the statement to a schedule where the innermost
  /// dimension is the dimension of the innermost loop containing the
  /// statement.
  bool isStrideZero(isl::map Schedule) const;

  /// Return the kind when this access was first detected.
  MemoryKind getOriginalKind() const {
    assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
           getOriginalScopArrayInfo()->getKind() == Kind);
    return Kind;
  }

  /// Return the kind considering a potential setNewAccessRelation.
  MemoryKind getLatestKind() const {
    return getLatestScopArrayInfo()->getKind();
  }

  /// Whether this is an access of an explicit load or store in the IR.
  bool isOriginalArrayKind() const {
    return getOriginalKind() == MemoryKind::Array;
  }

  /// Whether storage memory is either an custom .s2a/.phiops alloca
  /// (false) or an existing pointer into an array (true).
  bool isLatestArrayKind() const {
    return getLatestKind() == MemoryKind::Array;
  }

  /// Old name of isOriginalArrayKind.
  bool isArrayKind() const { return isOriginalArrayKind(); }

  /// Whether this access is an array to a scalar memory object, without
  /// considering changes by setNewAccessRelation.
  ///
  /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
  /// MemoryKind::ExitPHI.
  bool isOriginalScalarKind() const {
    return getOriginalKind() != MemoryKind::Array;
  }

  /// Whether this access is an array to a scalar memory object, also
  /// considering changes by setNewAccessRelation.
  bool isLatestScalarKind() const {
    return getLatestKind() != MemoryKind::Array;
  }

  /// Old name of isOriginalScalarKind.
  bool isScalarKind() const { return isOriginalScalarKind(); }

  /// Was this MemoryAccess detected as a scalar dependences?
  bool isOriginalValueKind() const {
    return getOriginalKind() == MemoryKind::Value;
  }

  /// Is this MemoryAccess currently modeling scalar dependences?
  bool isLatestValueKind() const {
    return getLatestKind() == MemoryKind::Value;
  }

  /// Old name of isOriginalValueKind().
  bool isValueKind() const { return isOriginalValueKind(); }

  /// Was this MemoryAccess detected as a special PHI node access?
  bool isOriginalPHIKind() const {
    return getOriginalKind() == MemoryKind::PHI;
  }

  /// Is this MemoryAccess modeling special PHI node accesses, also
  /// considering a potential change by setNewAccessRelation?
  bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }

  /// Old name of isOriginalPHIKind.
  bool isPHIKind() const { return isOriginalPHIKind(); }

  /// Was this MemoryAccess detected as the accesses of a PHI node in the
  /// SCoP's exit block?
  bool isOriginalExitPHIKind() const {
    return getOriginalKind() == MemoryKind::ExitPHI;
  }

  /// Is this MemoryAccess modeling the accesses of a PHI node in the
  /// SCoP's exit block? Can be changed to an array access using
  /// setNewAccessRelation().
  bool isLatestExitPHIKind() const {
    return getLatestKind() == MemoryKind::ExitPHI;
  }

  /// Old name of isOriginalExitPHIKind().
  bool isExitPHIKind() const { return isOriginalExitPHIKind(); }

  /// Was this access detected as one of the two PHI types?
  bool isOriginalAnyPHIKind() const {
    return isOriginalPHIKind() || isOriginalExitPHIKind();
  }

  /// Does this access originate from one of the two PHI types? Can be
  /// changed to an array access using setNewAccessRelation().
  bool isLatestAnyPHIKind() const {
    return isLatestPHIKind() || isLatestExitPHIKind();
  }

  /// Old name of isOriginalAnyPHIKind().
  bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }

  /// Get the statement that contains this memory access.
  ScopStmt *getStatement() const { return Statement; }

  /// Get the reduction type of this access
  ReductionType getReductionType() const { return RedType; }

  /// Set the array descriptor corresponding to the Array on which the
  /// memory access is performed.
  void setFortranArrayDescriptor(Value *FAD);

  /// Update the original access relation.
  ///
  /// We need to update the original access relation during scop construction,
  /// when unifying the memory accesses that access the same scop array info
  /// object. After the scop has been constructed, the original access relation
  /// should not be changed any more. Instead setNewAccessRelation should
  /// be called.
  void setAccessRelation(isl::map AccessRelation);

  /// Set the updated access relation read from JSCOP file.
  void setNewAccessRelation(isl::map NewAccessRelation);

  /// Return whether the MemoryyAccess is a partial access. That is, the access
  /// is not executed in some instances of the parent statement's domain.
  bool isLatestPartialAccess() const;

  /// Mark this a reduction like access
  void markAsReductionLike(ReductionType RT) { RedType = RT; }

  /// Align the parameters in the access relation to the scop context
  void realignParams();

  /// Update the dimensionality of the memory access.
  ///
  /// During scop construction some memory accesses may not be constructed with
  /// their full dimensionality, but outer dimensions may have been omitted if
  /// they took the value 'zero'. By updating the dimensionality of the
  /// statement we add additional zero-valued dimensions to match the
  /// dimensionality of the ScopArrayInfo object that belongs to this memory
  /// access.
  void updateDimensionality();

  /// Get identifier for the memory access.
  ///
  /// This identifier is unique for all accesses that belong to the same scop
  /// statement.
  isl::id getId() const;

  /// Print the MemoryAccess.
  ///
  /// @param OS The output stream the MemoryAccess is printed to.
  void print(raw_ostream &OS) const;

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Print the MemoryAccess to stderr.
  void dump() const;
#endif

  /// Is the memory access affine?
  bool isAffine() const { return IsAffine; }
};

raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);

/// Ordered list type to hold accesses.
using MemoryAccessList = std::forward_list<MemoryAccess *>;

/// Helper structure for invariant memory accesses.
struct InvariantAccess {
  /// The memory access that is (partially) invariant.
  MemoryAccess *MA;

  /// The context under which the access is not invariant.
  isl::set NonHoistableCtx;
};

/// Ordered container type to hold invariant accesses.
using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;

/// Type for equivalent invariant accesses and their domain context.
struct InvariantEquivClassTy {
  /// The pointer that identifies this equivalence class
  const SCEV *IdentifyingPointer;

  /// Memory accesses now treated invariant
  ///
  /// These memory accesses access the pointer location that identifies
  /// this equivalence class. They are treated as invariant and hoisted during
  /// code generation.
  MemoryAccessList InvariantAccesses;

  /// The execution context under which the memory location is accessed
  ///
  /// It is the union of the execution domains of the memory accesses in the
  /// InvariantAccesses list.
  isl::set ExecutionContext;

  /// The type of the invariant access
  ///
  /// It is used to differentiate between differently typed invariant loads from
  /// the same location.
  Type *AccessType;
};

/// Type for invariant accesses equivalence classes.
using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;

/// Statement of the Scop
///
/// A Scop statement represents an instruction in the Scop.
///
/// It is further described by its iteration domain, its schedule and its data
/// accesses.
/// At the moment every statement represents a single basic block of LLVM-IR.
class ScopStmt {
  friend class ScopBuilder;

public:
  /// Create the ScopStmt from a BasicBlock.
  ScopStmt(Scop &parent, BasicBlock &bb, Loop *SurroundingLoop,
           std::vector<Instruction *> Instructions, int Count);

  /// Create an overapproximating ScopStmt for the region @p R.
  ///
  /// @param EntryBlockInstructions The list of instructions that belong to the
  ///                               entry block of the region statement.
  ///                               Instructions are only tracked for entry
  ///                               blocks for now. We currently do not allow
  ///                               to modify the instructions of blocks later
  ///                               in the region statement.
  ScopStmt(Scop &parent, Region &R, Loop *SurroundingLoop,
           std::vector<Instruction *> EntryBlockInstructions);

  /// Create a copy statement.
  ///
  /// @param Stmt       The parent statement.
  /// @param SourceRel  The source location.
  /// @param TargetRel  The target location.
  /// @param Domain     The original domain under which the copy statement would
  ///                   be executed.
  ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
           isl::set Domain);

  ScopStmt(const ScopStmt &) = delete;
  const ScopStmt &operator=(const ScopStmt &) = delete;
  ~ScopStmt();

private:
  /// Polyhedral description
  //@{

  /// The Scop containing this ScopStmt.
  Scop &Parent;

  /// The domain under which this statement is not modeled precisely.
  ///
  /// The invalid domain for a statement describes all parameter combinations
  /// under which the statement looks to be executed but is in fact not because
  /// some assumption/restriction makes the statement/scop invalid.
  isl::set InvalidDomain;

  /// The iteration domain describes the set of iterations for which this
  /// statement is executed.
  ///
  /// Example:
  ///     for (i = 0; i < 100 + b; ++i)
  ///       for (j = 0; j < i; ++j)
  ///         S(i,j);
  ///
  /// 'S' is executed for different values of i and j. A vector of all
  /// induction variables around S (i, j) is called iteration vector.
  /// The domain describes the set of possible iteration vectors.
  ///
  /// In this case it is:
  ///
  ///     Domain: 0 <= i <= 100 + b
  ///             0 <= j <= i
  ///
  /// A pair of statement and iteration vector (S, (5,3)) is called statement
  /// instance.
  isl::set Domain;

  /// The memory accesses of this statement.
  ///
  /// The only side effects of a statement are its memory accesses.
  using MemoryAccessVec = SmallVector<MemoryAccess *, 8>;
  MemoryAccessVec MemAccs;

  /// Mapping from instructions to (scalar) memory accesses.
  DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;

  /// The set of values defined elsewhere required in this ScopStmt and
  ///        their MemoryKind::Value READ MemoryAccesses.
  DenseMap<Value *, MemoryAccess *> ValueReads;

  /// The set of values defined in this ScopStmt that are required
  ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
  DenseMap<Instruction *, MemoryAccess *> ValueWrites;

  /// Map from PHI nodes to its incoming value when coming from this
  ///        statement.
  ///
  /// Non-affine subregions can have multiple exiting blocks that are incoming
  /// blocks of the PHI nodes. This map ensures that there is only one write
  /// operation for the complete subregion. A PHI selecting the relevant value
  /// will be inserted.
  DenseMap<PHINode *, MemoryAccess *> PHIWrites;

  /// Map from PHI nodes to its read access in this statement.
  DenseMap<PHINode *, MemoryAccess *> PHIReads;

  //@}

  /// A SCoP statement represents either a basic block (affine/precise case) or
  /// a whole region (non-affine case).
  ///
  /// Only one of the following two members will therefore be set and indicate
  /// which kind of statement this is.
  ///
  ///{

  /// The BasicBlock represented by this statement (in the affine case).
  BasicBlock *BB = nullptr;

  /// The region represented by this statement (in the non-affine case).
  Region *R = nullptr;

  ///}

  /// The isl AST build for the new generated AST.
  isl::ast_build Build;

  SmallVector<Loop *, 4> NestLoops;

  std::string BaseName;

  /// The closest loop that contains this statement.
  Loop *SurroundingLoop;

  /// Vector for Instructions in this statement.
  std::vector<Instruction *> Instructions;

  /// Remove @p MA from dictionaries pointing to them.
  void removeAccessData(MemoryAccess *MA);

public:
  /// Get an isl_ctx pointer.
  isl::ctx getIslCtx() const;

  /// Get the iteration domain of this ScopStmt.
  ///
  /// @return The iteration domain of this ScopStmt.
  isl::set getDomain() const;

  /// Get the space of the iteration domain
  ///
  /// @return The space of the iteration domain
  isl::space getDomainSpace() const;

  /// Get the id of the iteration domain space
  ///
  /// @return The id of the iteration domain space
  isl::id getDomainId() const;

  /// Get an isl string representing this domain.
  std::string getDomainStr() const;

  /// Get the schedule function of this ScopStmt.
  ///
  /// @return The schedule function of this ScopStmt, if it does not contain
  /// extension nodes, and nullptr, otherwise.
  isl::map getSchedule() const;

  /// Get an isl string representing this schedule.
  ///
  /// @return An isl string representing this schedule, if it does not contain
  /// extension nodes, and an empty string, otherwise.
  std::string getScheduleStr() const;

  /// Get the invalid domain for this statement.
  isl::set getInvalidDomain() const { return InvalidDomain; }

  /// Get the invalid context for this statement.
  isl::set getInvalidContext() const { return getInvalidDomain().params(); }

  /// Set the invalid context for this statement to @p ID.
  void setInvalidDomain(isl::set ID);

  /// Get the BasicBlock represented by this ScopStmt (if any).
  ///
  /// @return The BasicBlock represented by this ScopStmt, or null if the
  ///         statement represents a region.
  BasicBlock *getBasicBlock() const { return BB; }

  /// Return true if this statement represents a single basic block.
  bool isBlockStmt() const { return BB != nullptr; }

  /// Return true if this is a copy statement.
  bool isCopyStmt() const { return BB == nullptr && R == nullptr; }

  /// Get the region represented by this ScopStmt (if any).
  ///
  /// @return The region represented by this ScopStmt, or null if the statement
  ///         represents a basic block.
  Region *getRegion() const { return R; }

  /// Return true if this statement represents a whole region.
  bool isRegionStmt() const { return R != nullptr; }

  /// Return a BasicBlock from this statement.
  ///
  /// For block statements, it returns the BasicBlock itself. For subregion
  /// statements, return its entry block.
  BasicBlock *getEntryBlock() const;

  /// Return whether @p L is boxed within this statement.
  bool contains(const Loop *L) const {
    // Block statements never contain loops.
    if (isBlockStmt())
      return false;

    return getRegion()->contains(L);
  }

  /// Return whether this statement represents @p BB.
  bool represents(BasicBlock *BB) const {
    if (isCopyStmt())
      return false;
    if (isBlockStmt())
      return BB == getBasicBlock();
    return getRegion()->contains(BB);
  }

  /// Return whether this statement contains @p Inst.
  bool contains(Instruction *Inst) const {
    if (!Inst)
      return false;
    if (isBlockStmt())
      return std::find(Instructions.begin(), Instructions.end(), Inst) !=
             Instructions.end();
    return represents(Inst->getParent());
  }

  /// Return the closest innermost loop that contains this statement, but is not
  /// contained in it.
  ///
  /// For block statement, this is just the loop that contains the block. Region
  /// statements can contain boxed loops, so getting the loop of one of the
  /// region's BBs might return such an inner loop. For instance, the region's
  /// entry could be a header of a loop, but the region might extend to BBs
  /// after the loop exit. Similarly, the region might only contain parts of the
  /// loop body and still include the loop header.
  ///
  /// Most of the time the surrounding loop is the top element of #NestLoops,
  /// except when it is empty. In that case it return the loop that the whole
  /// SCoP is contained in. That can be nullptr if there is no such loop.
  Loop *getSurroundingLoop() const {
    assert(!isCopyStmt() &&
           "No surrounding loop for artificially created statements");
    return SurroundingLoop;
  }

  /// Return true if this statement does not contain any accesses.
  bool isEmpty() const { return MemAccs.empty(); }

  /// Find all array accesses for @p Inst.
  ///
  /// @param Inst The instruction accessing an array.
  ///
  /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
  ///         If there is no such access, it returns nullptr.
  const MemoryAccessList *
  lookupArrayAccessesFor(const Instruction *Inst) const {
    auto It = InstructionToAccess.find(Inst);
    if (It == InstructionToAccess.end())
      return nullptr;
    if (It->second.empty())
      return nullptr;
    return &It->second;
  }

  /// Return the only array access for @p Inst, if existing.
  ///
  /// @param Inst The instruction for which to look up the access.
  /// @returns The unique array memory access related to Inst or nullptr if
  ///          no array access exists
  MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
    auto It = InstructionToAccess.find(Inst);
    if (It == InstructionToAccess.end())
      return nullptr;

    MemoryAccess *ArrayAccess = nullptr;

    for (auto Access : It->getSecond()) {
      if (!Access->isArrayKind())
        continue;

      assert(!ArrayAccess && "More then one array access for instruction");

      ArrayAccess = Access;
    }

    return ArrayAccess;
  }

  /// Return the only array access for @p Inst.
  ///
  /// @param Inst The instruction for which to look up the access.
  /// @returns The unique array memory access related to Inst.
  MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
    MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);

    assert(ArrayAccess && "No array access found for instruction!");
    return *ArrayAccess;
  }

  /// Return the MemoryAccess that writes the value of an instruction
  ///        defined in this statement, or nullptr if not existing, respectively
  ///        not yet added.
  MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
    assert((isRegionStmt() && R->contains(Inst)) ||
           (!isRegionStmt() && Inst->getParent() == BB));
    return ValueWrites.lookup(Inst);
  }

  /// Return the MemoryAccess that reloads a value, or nullptr if not
  ///        existing, respectively not yet added.
  MemoryAccess *lookupValueReadOf(Value *Inst) const {
    return ValueReads.lookup(Inst);
  }

  /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
  /// existing, respectively not yet added.
  MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
    return PHIReads.lookup(PHI);
  }

  /// Return the PHI write MemoryAccess for the incoming values from any
  ///        basic block in this ScopStmt, or nullptr if not existing,
  ///        respectively not yet added.
  MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
    assert(isBlockStmt() || R->getExit() == PHI->getParent());
    return PHIWrites.lookup(PHI);
  }

  /// Return the input access of the value, or null if no such MemoryAccess
  /// exists.
  ///
  /// The input access is the MemoryAccess that makes an inter-statement value
  /// available in this statement by reading it at the start of this statement.
  /// This can be a MemoryKind::Value if defined in another statement or a
  /// MemoryKind::PHI if the value is a PHINode in this statement.
  MemoryAccess *lookupInputAccessOf(Value *Val) const {
    if (isa<PHINode>(Val))
      if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
        assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
                                          "statement cannot read a .s2a and "
                                          ".phiops simultaneously");
        return InputMA;
      }

    if (auto *InputMA = lookupValueReadOf(Val))
      return InputMA;

    return nullptr;
  }

  /// Add @p Access to this statement's list of accesses.
  ///
  /// @param Access  The access to add.
  /// @param Prepend If true, will add @p Access before all other instructions
  ///                (instead of appending it).
  void addAccess(MemoryAccess *Access, bool Preprend = false);

  /// Remove a MemoryAccess from this statement.
  ///
  /// Note that scalar accesses that are caused by MA will
  /// be eliminated too.
  void removeMemoryAccess(MemoryAccess *MA);

  /// Remove @p MA from this statement.
  ///
  /// In contrast to removeMemoryAccess(), no other access will be eliminated.
  void removeSingleMemoryAccess(MemoryAccess *MA);

  using iterator = MemoryAccessVec::iterator;
  using const_iterator = MemoryAccessVec::const_iterator;

  iterator begin() { return MemAccs.begin(); }
  iterator end() { return MemAccs.end(); }
  const_iterator begin() const { return MemAccs.begin(); }
  const_iterator end() const { return MemAccs.end(); }
  size_t size() const { return MemAccs.size(); }

  unsigned getNumIterators() const;

  Scop *getParent() { return &Parent; }
  const Scop *getParent() const { return &Parent; }

  const std::vector<Instruction *> &getInstructions() const {
    return Instructions;
  }

  /// Set the list of instructions for this statement. It replaces the current
  /// list.
  void setInstructions(ArrayRef<Instruction *> Range) {
    Instructions.assign(Range.begin(), Range.end());
  }

  std::vector<Instruction *>::const_iterator insts_begin() const {
    return Instructions.begin();
  }

  std::vector<Instruction *>::const_iterator insts_end() const {
    return Instructions.end();
  }

  /// The range of instructions in this statement.
  iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
    return {insts_begin(), insts_end()};
  }

  /// Insert an instruction before all other instructions in this statement.
  void prependInstruction(Instruction *Inst) {
    Instructions.insert(Instructions.begin(), Inst);
  }

  const char *getBaseName() const;

  /// Set the isl AST build.
  void setAstBuild(isl::ast_build B) { Build = B; }

  /// Get the isl AST build.
  isl::ast_build getAstBuild() const { return Build; }

  /// Restrict the domain of the statement.
  ///
  /// @param NewDomain The new statement domain.
  void restrictDomain(isl::set NewDomain);

  /// Get the loop for a dimension.
  ///
  /// @param Dimension The dimension of the induction variable
  /// @return The loop at a certain dimension.
  Loop *getLoopForDimension(unsigned Dimension) const;

  /// Align the parameters in the statement to the scop context
  void realignParams();

  /// Print the ScopStmt.
  ///
  /// @param OS                The output stream the ScopStmt is printed to.
  /// @param PrintInstructions Whether to print the statement's instructions as
  ///                          well.
  void print(raw_ostream &OS, bool PrintInstructions) const;

  /// Print the instructions in ScopStmt.
  ///
  void printInstructions(raw_ostream &OS) const;

  /// Check whether there is a value read access for @p V in this statement, and
  /// if not, create one.
  ///
  /// This allows to add MemoryAccesses after the initial creation of the Scop
  /// by ScopBuilder.
  ///
  /// @return The already existing or newly created MemoryKind::Value READ
  /// MemoryAccess.
  ///
  /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
  MemoryAccess *ensureValueRead(Value *V);

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Print the ScopStmt to stderr.
  void dump() const;
#endif
};

/// Print ScopStmt S to raw_ostream OS.
raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);

/// Static Control Part
///
/// A Scop is the polyhedral representation of a control flow region detected
/// by the Scop detection. It is generated by translating the LLVM-IR and
/// abstracting its effects.
///
/// A Scop consists of a set of:
///
///   * A set of statements executed in the Scop.
///
///   * A set of global parameters
///   Those parameters are scalar integer values, which are constant during
///   execution.
///
///   * A context
///   This context contains information about the values the parameters
///   can take and relations between different parameters.
class Scop {
public:
  /// Type to represent a pair of minimal/maximal access to an array.
  using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;

  /// Vector of minimal/maximal accesses to different arrays.
  using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;

  /// Pair of minimal/maximal access vectors representing
  /// read write and read only accesses
  using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;

  /// Vector of pair of minimal/maximal access vectors representing
  /// non read only and read only accesses for each alias group.
  using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;

private:
  friend class ScopBuilder;

  /// Isl context.
  ///
  /// We need a shared_ptr with reference counter to delete the context when all
  /// isl objects are deleted. We will distribute the shared_ptr to all objects
  /// that use the context to create isl objects, and increase the reference
  /// counter. By doing this, we guarantee that the context is deleted when we
  /// delete the last object that creates isl objects with the context. This
  /// declaration needs to be the first in class to gracefully destroy all isl
  /// objects before the context.
  std::shared_ptr<isl_ctx> IslCtx;

  ScalarEvolution *SE;
  DominatorTree *DT;

  /// The underlying Region.
  Region &R;

  /// The name of the SCoP (identical to the regions name)
  std::string name;

  /// The ID to be assigned to the next Scop in a function
  static int NextScopID;

  /// The name of the function currently under consideration
  static std::string CurrentFunc;

  // Access functions of the SCoP.
  //
  // This owns all the MemoryAccess objects of the Scop created in this pass.
  AccFuncVector AccessFunctions;

  /// Flag to indicate that the scheduler actually optimized the SCoP.
  bool IsOptimized = false;

  /// True if the underlying region has a single exiting block.
  bool HasSingleExitEdge;

  /// Flag to remember if the SCoP contained an error block or not.
  bool HasErrorBlock = false;

  /// Max loop depth.
  unsigned MaxLoopDepth = 0;

  /// Number of copy statements.
  unsigned CopyStmtsNum = 0;

  /// Flag to indicate if the Scop is to be skipped.
  bool SkipScop = false;

  using StmtSet = std::list<ScopStmt>;

  /// The statements in this Scop.
  StmtSet Stmts;

  /// Parameters of this Scop
  ParameterSetTy Parameters;

  /// Mapping from parameters to their ids.
  DenseMap<const SCEV *, isl::id> ParameterIds;

  /// The context of the SCoP created during SCoP detection.
  ScopDetection::DetectionContext &DC;

  /// OptimizationRemarkEmitter object for displaying diagnostic remarks
  OptimizationRemarkEmitter &ORE;

  /// A map from basic blocks to vector of SCoP statements. Currently this
  /// vector comprises only of a single statement.
  DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;

  /// A map from instructions to SCoP statements.
  DenseMap<Instruction *, ScopStmt *> InstStmtMap;

  /// A map from basic blocks to their domains.
  DenseMap<BasicBlock *, isl::set> DomainMap;

  /// Constraints on parameters.
  isl::set Context = nullptr;

  /// The affinator used to translate SCEVs to isl expressions.
  SCEVAffinator Affinator;

  using ArrayInfoMapTy =
      std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
               std::unique_ptr<ScopArrayInfo>>;

  using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;

  using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;

  /// A map to remember ScopArrayInfo objects for all base pointers.
  ///
  /// As PHI nodes may have two array info objects associated, we add a flag
  /// that distinguishes between the PHI node specific ArrayInfo object
  /// and the normal one.
  ArrayInfoMapTy ScopArrayInfoMap;

  /// A map to remember ScopArrayInfo objects for all names of memory
  ///        references.
  ArrayNameMapTy ScopArrayNameMap;

  /// A set to remember ScopArrayInfo objects.
  /// @see Scop::ScopArrayInfoMap
  ArrayInfoSetTy ScopArrayInfoSet;

  /// The assumptions under which this scop was built.
  ///
  /// When constructing a scop sometimes the exact representation of a statement
  /// or condition would be very complex, but there is a common case which is a
  /// lot simpler, but which is only valid under certain assumptions. The
  /// assumed context records the assumptions taken during the construction of
  /// this scop and that need to be code generated as a run-time test.
  isl::set AssumedContext;

  /// The restrictions under which this SCoP was built.
  ///
  /// The invalid context is similar to the assumed context as it contains
  /// constraints over the parameters. However, while we need the constraints
  /// in the assumed context to be "true" the constraints in the invalid context
  /// need to be "false". Otherwise they behave the same.
  isl::set InvalidContext;

  /// Helper struct to remember assumptions.
  struct Assumption {
    /// The kind of the assumption (e.g., WRAPPING).
    AssumptionKind Kind;

    /// Flag to distinguish assumptions and restrictions.
    AssumptionSign Sign;

    /// The valid/invalid context if this is an assumption/restriction.
    isl::set Set;

    /// The location that caused this assumption.
    DebugLoc Loc;

    /// An optional block whose domain can simplify the assumption.
    BasicBlock *BB;
  };

  /// Collection to hold taken assumptions.
  ///
  /// There are two reasons why we want to record assumptions first before we
  /// add them to the assumed/invalid context:
  ///   1) If the SCoP is not profitable or otherwise invalid without the
  ///      assumed/invalid context we do not have to compute it.
  ///   2) Information about the context are gathered rather late in the SCoP
  ///      construction (basically after we know all parameters), thus the user
  ///      might see overly complicated assumptions to be taken while they will
  ///      only be simplified later on.
  SmallVector<Assumption, 8> RecordedAssumptions;

  /// The schedule of the SCoP
  ///
  /// The schedule of the SCoP describes the execution order of the statements
  /// in the scop by assigning each statement instance a possibly
  /// multi-dimensional execution time. The schedule is stored as a tree of
  /// schedule nodes.
  ///
  /// The most common nodes in a schedule tree are so-called band nodes. Band
  /// nodes map statement instances into a multi dimensional schedule space.
  /// This space can be seen as a multi-dimensional clock.
  ///
  /// Example:
  ///
  /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
  ///
  /// s0 = i (Year of execution)
  /// s1 = j (Day of execution)
  ///
  /// or to (9, 20) by this schedule:
  ///
  /// s0 = i + j (Year of execution)
  /// s1 = 20 (Day of execution)
  ///
  /// The order statement instances are executed is defined by the
  /// schedule vectors they are mapped to. A statement instance
  /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
  /// the schedule vector of A is lexicographic smaller than the schedule
  /// vector of B.
  ///
  /// Besides band nodes, schedule trees contain additional nodes that specify
  /// a textual ordering between two subtrees or filter nodes that filter the
  /// set of statement instances that will be scheduled in a subtree. There
  /// are also several other nodes. A full description of the different nodes
  /// in a schedule tree is given in the isl manual.
  isl::schedule Schedule = nullptr;

  /// The set of minimal/maximal accesses for each alias group.
  ///
  /// When building runtime alias checks we look at all memory instructions and
  /// build so called alias groups. Each group contains a set of accesses to
  /// different base arrays which might alias with each other. However, between
  /// alias groups there is no aliasing possible.
  ///
  /// In a program with int and float pointers annotated with tbaa information
  /// we would probably generate two alias groups, one for the int pointers and
  /// one for the float pointers.
  ///
  /// During code generation we will create a runtime alias check for each alias
  /// group to ensure the SCoP is executed in an alias free environment.
  MinMaxVectorPairVectorTy MinMaxAliasGroups;

  /// Mapping from invariant loads to the representing invariant load of
  ///        their equivalence class.
  ValueToValueMap InvEquivClassVMap;

  /// List of invariant accesses.
  InvariantEquivClassesTy InvariantEquivClasses;

  /// The smallest array index not yet assigned.
  long ArrayIdx = 0;

  /// The smallest statement index not yet assigned.
  long StmtIdx = 0;

  /// A number that uniquely represents a Scop within its function
  const int ID;

  /// Map of values to the MemoryAccess that writes its definition.
  ///
  /// There must be at most one definition per llvm::Instruction in a SCoP.
  DenseMap<Value *, MemoryAccess *> ValueDefAccs;

  /// Map of values to the MemoryAccess that reads a PHI.
  DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;

  /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
  /// scalar.
  DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;

  /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
  /// MemoryKind::ExitPHI scalar.
  DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
      PHIIncomingAccs;

  /// Return the ID for a new Scop within a function
  static int getNextID(std::string ParentFunc);

  /// Scop constructor; invoked from ScopBuilder::buildScop.
  Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
       ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE);

  //@}

  /// Initialize this ScopBuilder.
  void init(AliasAnalysis &AA, AssumptionCache &AC, DominatorTree &DT,
            LoopInfo &LI);

  /// Propagate domains that are known due to graph properties.
  ///
  /// As a CFG is mostly structured we use the graph properties to propagate
  /// domains without the need to compute all path conditions. In particular, if
  /// a block A dominates a block B and B post-dominates A we know that the
  /// domain of B is a superset of the domain of A. As we do not have
  /// post-dominator information available here we use the less precise region
  /// information. Given a region R, we know that the exit is always executed if
  /// the entry was executed, thus the domain of the exit is a superset of the
  /// domain of the entry. In case the exit can only be reached from within the
  /// region the domains are in fact equal. This function will use this property
  /// to avoid the generation of condition constraints that determine when a
  /// branch is taken. If @p BB is a region entry block we will propagate its
  /// domain to the region exit block. Additionally, we put the region exit
  /// block in the @p FinishedExitBlocks set so we can later skip edges from
  /// within the region to that block.
  ///
  /// @param BB                 The block for which the domain is currently
  ///                           propagated.
  /// @param BBLoop             The innermost affine loop surrounding @p BB.
  /// @param FinishedExitBlocks Set of region exits the domain was set for.
  /// @param LI                 The LoopInfo for the current function.
  /// @param InvalidDomainMap   BB to InvalidDomain map for the BB of current
  ///                           region.
  void propagateDomainConstraintsToRegionExit(
      BasicBlock *BB, Loop *BBLoop,
      SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI,
      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Compute the union of predecessor domains for @p BB.
  ///
  /// To compute the union of all domains of predecessors of @p BB this
  /// function applies similar reasoning on the CFG structure as described for
  ///   @see propagateDomainConstraintsToRegionExit
  ///
  /// @param BB     The block for which the predecessor domains are collected.
  /// @param Domain The domain under which BB is executed.
  /// @param DT     The DominatorTree for the current function.
  /// @param LI     The LoopInfo for the current function.
  ///
  /// @returns The domain under which @p BB is executed.
  isl::set getPredecessorDomainConstraints(BasicBlock *BB, isl::set Domain,
                                           DominatorTree &DT, LoopInfo &LI);

  /// Add loop carried constraints to the header block of the loop @p L.
  ///
  /// @param L                The loop to process.
  /// @param LI               The LoopInfo for the current function.
  /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
  ///                         region.
  ///
  /// @returns True if there was no problem and false otherwise.
  bool addLoopBoundsToHeaderDomain(
      Loop *L, LoopInfo &LI,
      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Compute the branching constraints for each basic block in @p R.
  ///
  /// @param R                The region we currently build branching conditions
  ///                         for.
  /// @param DT               The DominatorTree for the current function.
  /// @param LI               The LoopInfo for the current function.
  /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
  ///                         region.
  ///
  /// @returns True if there was no problem and false otherwise.
  bool buildDomainsWithBranchConstraints(
      Region *R, DominatorTree &DT, LoopInfo &LI,
      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Propagate the domain constraints through the region @p R.
  ///
  /// @param R                The region we currently build branching conditions
  /// for.
  /// @param DT               The DominatorTree for the current function.
  /// @param LI               The LoopInfo for the current function.
  /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
  ///                         region.
  ///
  /// @returns True if there was no problem and false otherwise.
  bool propagateDomainConstraints(
      Region *R, DominatorTree &DT, LoopInfo &LI,
      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Propagate invalid domains of statements through @p R.
  ///
  /// This method will propagate invalid statement domains through @p R and at
  /// the same time add error block domains to them. Additionally, the domains
  /// of error statements and those only reachable via error statements will be
  /// replaced by an empty set. Later those will be removed completely.
  ///
  /// @param R                The currently traversed region.
  /// @param DT               The DominatorTree for the current function.
  /// @param LI               The LoopInfo for the current function.
  /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
  ///                         region.
  //
  /// @returns True if there was no problem and false otherwise.
  bool propagateInvalidStmtDomains(
      Region *R, DominatorTree &DT, LoopInfo &LI,
      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Compute the domain for each basic block in @p R.
  ///
  /// @param R                The region we currently traverse.
  /// @param DT               The DominatorTree for the current function.
  /// @param LI               The LoopInfo for the current function.
  /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
  ///                         region.
  ///
  /// @returns True if there was no problem and false otherwise.
  bool buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI,
                    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Add parameter constraints to @p C that imply a non-empty domain.
  isl::set addNonEmptyDomainConstraints(isl::set C) const;

  /// Return the access for the base ptr of @p MA if any.
  MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);

  /// Check if the base ptr of @p MA is in the SCoP but not hoistable.
  bool hasNonHoistableBasePtrInScop(MemoryAccess *MA, isl::union_map Writes);

  /// Create equivalence classes for required invariant accesses.
  ///
  /// These classes will consolidate multiple required invariant loads from the
  /// same address in order to keep the number of dimensions in the SCoP
  /// description small. For each such class equivalence class only one
  /// representing element, hence one required invariant load, will be chosen
  /// and modeled as parameter. The method
  /// Scop::getRepresentingInvariantLoadSCEV() will replace each element from an
  /// equivalence class with the representing element that is modeled. As a
  /// consequence Scop::getIdForParam() will only return an id for the
  /// representing element of each equivalence class, thus for each required
  /// invariant location.
  void buildInvariantEquivalenceClasses();

  /// Return the context under which the access cannot be hoisted.
  ///
  /// @param Access The access to check.
  /// @param Writes The set of all memory writes in the scop.
  ///
  /// @return Return the context under which the access cannot be hoisted or a
  ///         nullptr if it cannot be hoisted at all.
  isl::set getNonHoistableCtx(MemoryAccess *Access, isl::union_map Writes);

  /// Verify that all required invariant loads have been hoisted.
  ///
  /// Invariant load hoisting is not guaranteed to hoist all loads that were
  /// assumed to be scop invariant during scop detection. This function checks
  /// for cases where the hoisting failed, but where it would have been
  /// necessary for our scop modeling to be correct. In case of insufficient
  /// hoisting the scop is marked as invalid.
  ///
  /// In the example below Bound[1] is required to be invariant:
  ///
  /// for (int i = 1; i < Bound[0]; i++)
  ///   for (int j = 1; j < Bound[1]; j++)
  ///     ...
  void verifyInvariantLoads();

  /// Hoist invariant memory loads and check for required ones.
  ///
  /// We first identify "common" invariant loads, thus loads that are invariant
  /// and can be hoisted. Then we check if all required invariant loads have
  /// been identified as (common) invariant. A load is a required invariant load
  /// if it was assumed to be invariant during SCoP detection, e.g., to assume
  /// loop bounds to be affine or runtime alias checks to be placeable. In case
  /// a required invariant load was not identified as (common) invariant we will
  /// drop this SCoP. An example for both "common" as well as required invariant
  /// loads is given below:
  ///
  /// for (int i = 1; i < *LB[0]; i++)
  ///   for (int j = 1; j < *LB[1]; j++)
  ///     A[i][j] += A[0][0] + (*V);
  ///
  /// Common inv. loads: V, A[0][0], LB[0], LB[1]
  /// Required inv. loads: LB[0], LB[1], (V, if it may alias with A or LB)
  void hoistInvariantLoads();

  /// Canonicalize arrays with base pointers from the same equivalence class.
  ///
  /// Some context: in our normal model we assume that each base pointer is
  /// related to a single specific memory region, where memory regions
  /// associated with different base pointers are disjoint. Consequently we do
  /// not need to compute additional data dependences that model possible
  /// overlaps of these memory regions. To verify our assumption we compute
  /// alias checks that verify that modeled arrays indeed do not overlap. In
  /// case an overlap is detected the runtime check fails and we fall back to
  /// the original code.
  ///
  /// In case of arrays where the base pointers are know to be identical,
  /// because they are dynamically loaded by accesses that are in the same
  /// invariant load equivalence class, such run-time alias check would always
  /// be false.
  ///
  /// This function makes sure that we do not generate consistently failing
  /// run-time checks for code that contains distinct arrays with known
  /// equivalent base pointers. It identifies for each invariant load
  /// equivalence class a single canonical array and canonicalizes all memory
  /// accesses that reference arrays that have base pointers that are known to
  /// be equal to the base pointer of such a canonical array to this canonical
  /// array.
  ///
  /// We currently do not canonicalize arrays for which certain memory accesses
  /// have been hoisted as loop invariant.
  void canonicalizeDynamicBasePtrs();

  /// Check if @p MA can always be hoisted without execution context.
  bool canAlwaysBeHoisted(MemoryAccess *MA, bool StmtInvalidCtxIsEmpty,
                          bool MAInvalidCtxIsEmpty,
                          bool NonHoistableCtxIsEmpty);

  /// Add invariant loads listed in @p InvMAs with the domain of @p Stmt.
  void addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs);

  /// Create an id for @p Param and store it in the ParameterIds map.
  void createParameterId(const SCEV *Param);

  /// Build the Context of the Scop.
  void buildContext();

  /// Add user provided parameter constraints to context (source code).
  void addUserAssumptions(AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI,
                          DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);

  /// Add user provided parameter constraints to context (command line).
  void addUserContext();

  /// Add the bounds of the parameters to the context.
  void addParameterBounds();

  /// Simplify the assumed and invalid context.
  void simplifyContexts();

  /// Get the representing SCEV for @p S if applicable, otherwise @p S.
  ///
  /// Invariant loads of the same location are put in an equivalence class and
  /// only one of them is chosen as a representing element that will be
  /// modeled as a parameter. The others have to be normalized, i.e.,
  /// replaced by the representing element of their equivalence class, in order
  /// to get the correct parameter value, e.g., in the SCEVAffinator.
  ///
  /// @param S The SCEV to normalize.
  ///
  /// @return The representing SCEV for invariant loads or @p S if none.
  const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;

  /// Create a new SCoP statement for @p BB.
  ///
  /// A new statement for @p BB will be created and added to the statement
  /// vector
  /// and map.
  ///
  /// @param BB              The basic block we build the statement for.
  /// @param SurroundingLoop The loop the created statement is contained in.
  /// @param Instructions    The instructions in the statement.
  /// @param Count           The index of the created statement in @p BB.
  void addScopStmt(BasicBlock *BB, Loop *SurroundingLoop,
                   std::vector<Instruction *> Instructions, int Count);

  /// Create a new SCoP statement for @p R.
  ///
  /// A new statement for @p R will be created and added to the statement vector
  /// and map.
  ///
  /// @param R                      The region we build the statement for.
  /// @param SurroundingLoop        The loop the created statement is contained
  ///                               in.
  /// @param EntryBlockInstructions The (interesting) instructions in the
  ///                               entry block of the region statement.
  void addScopStmt(Region *R, Loop *SurroundingLoop,
                   std::vector<Instruction *> EntryBlockInstructions);

  /// Update access dimensionalities.
  ///
  /// When detecting memory accesses different accesses to the same array may
  /// have built with different dimensionality, as outer zero-values dimensions
  /// may not have been recognized as separate dimensions. This function goes
  /// again over all memory accesses and updates their dimensionality to match
  /// the dimensionality of the underlying ScopArrayInfo object.
  void updateAccessDimensionality();

  /// Fold size constants to the right.
  ///
  /// In case all memory accesses in a given dimension are multiplied with a
  /// common constant, we can remove this constant from the individual access
  /// functions and move it to the size of the memory access. We do this as this
  /// increases the size of the innermost dimension, consequently widens the
  /// valid range the array subscript in this dimension can evaluate to, and
  /// as a result increases the likelihood that our delinearization is
  /// correct.
  ///
  /// Example:
  ///
  ///    A[][n]
  ///    S[i,j] -> A[2i][2j+1]
  ///    S[i,j] -> A[2i][2j]
  ///
  ///    =>
  ///
  ///    A[][2n]
  ///    S[i,j] -> A[i][2j+1]
  ///    S[i,j] -> A[i][2j]
  ///
  /// Constants in outer dimensions can arise when the elements of a parametric
  /// multi-dimensional array are not elementary data types, but e.g.,
  /// structures.
  void foldSizeConstantsToRight();

  /// Fold memory accesses to handle parametric offset.
  ///
  /// As a post-processing step, we 'fold' memory accesses to parametric
  /// offsets in the access functions. @see MemoryAccess::foldAccess for
  /// details.
  void foldAccessRelations();

  /// Assume that all memory accesses are within bounds.
  ///
  /// After we have built a model of all memory accesses, we need to assume
  /// that the model we built matches reality -- aka. all modeled memory
  /// accesses always remain within bounds. We do this as last step, after
  /// all memory accesses have been modeled and canonicalized.
  void assumeNoOutOfBounds();

  /// Remove statements from the list of scop statements.
  ///
  /// @param ShouldDelete A function that returns true if the statement passed
  ///                     to it should be deleted.
  void removeStmts(std::function<bool(ScopStmt &)> ShouldDelete);

  /// Removes @p Stmt from the StmtMap.
  void removeFromStmtMap(ScopStmt &Stmt);

  /// Removes all statements where the entry block of the statement does not
  /// have a corresponding domain in the domain map.
  void removeStmtNotInDomainMap();

  /// Mark arrays that have memory accesses with FortranArrayDescriptor.
  void markFortranArrays();

  /// Finalize all access relations.
  ///
  /// When building up access relations, temporary access relations that
  /// correctly represent each individual access are constructed. However, these
  /// access relations can be inconsistent or non-optimal when looking at the
  /// set of accesses as a whole. This function finalizes the memory accesses
  /// and constructs a globally consistent state.
  void finalizeAccesses();

  /// Construct the schedule of this SCoP.
  ///
  /// @param LI The LoopInfo for the current function.
  void buildSchedule(LoopInfo &LI);

  /// A loop stack element to keep track of per-loop information during
  ///        schedule construction.
  using LoopStackElementTy = struct LoopStackElement {
    // The loop for which we keep information.
    Loop *L;

    // The (possibly incomplete) schedule for this loop.
    isl::schedule Schedule;

    // The number of basic blocks in the current loop, for which a schedule has
    // already been constructed.
    unsigned NumBlocksProcessed;

    LoopStackElement(Loop *L, isl::schedule S, unsigned NumBlocksProcessed)
        : L(L), Schedule(S), NumBlocksProcessed(NumBlocksProcessed) {}
  };

  /// The loop stack used for schedule construction.
  ///
  /// The loop stack keeps track of schedule information for a set of nested
  /// loops as well as an (optional) 'nullptr' loop that models the outermost
  /// schedule dimension. The loops in a loop stack always have a parent-child
  /// relation where the loop at position n is the parent of the loop at
  /// position n + 1.
  using LoopStackTy = SmallVector<LoopStackElementTy, 4>;

  /// Construct schedule information for a given Region and add the
  ///        derived information to @p LoopStack.
  ///
  /// Given a Region we derive schedule information for all RegionNodes
  /// contained in this region ensuring that the assigned execution times
  /// correctly model the existing control flow relations.
  ///
  /// @param R              The region which to process.
  /// @param LoopStack      A stack of loops that are currently under
  ///                       construction.
  /// @param LI The LoopInfo for the current function.
  void buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI);

  /// Build Schedule for the region node @p RN and add the derived
  ///        information to @p LoopStack.
  ///
  /// In case @p RN is a BasicBlock or a non-affine Region, we construct the
  /// schedule for this @p RN and also finalize loop schedules in case the
  /// current @p RN completes the loop.
  ///
  /// In case @p RN is a not-non-affine Region, we delegate the construction to
  /// buildSchedule(Region *R, ...).
  ///
  /// @param RN             The RegionNode region traversed.
  /// @param LoopStack      A stack of loops that are currently under
  ///                       construction.
  /// @param LI The LoopInfo for the current function.
  void buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI);

  /// Collect all memory access relations of a given type.
  ///
  /// @param Predicate A predicate function that returns true if an access is
  ///                  of a given type.
  ///
  /// @returns The set of memory accesses in the scop that match the predicate.
  isl::union_map
  getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);

  /// @name Helper functions for printing the Scop.
  ///
  //@{
  void printContext(raw_ostream &OS) const;
  void printArrayInfo(raw_ostream &OS) const;
  void printStatements(raw_ostream &OS, bool PrintInstructions) const;
  void printAliasAssumptions(raw_ostream &OS) const;
  //@}

public:
  Scop(const Scop &) = delete;
  Scop &operator=(const Scop &) = delete;
  ~Scop();

  /// Get the count of copy statements added to this Scop.
  ///
  /// @return The count of copy statements added to this Scop.
  unsigned getCopyStmtsNum() { return CopyStmtsNum; }

  /// Create a new copy statement.
  ///
  /// A new statement will be created and added to the statement vector.
  ///
  /// @param Stmt       The parent statement.
  /// @param SourceRel  The source location.
  /// @param TargetRel  The target location.
  /// @param Domain     The original domain under which the copy statement would
  ///                   be executed.
  ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
                        isl::set Domain);

  /// Add the access function to all MemoryAccess objects of the Scop
  ///        created in this pass.
  void addAccessFunction(MemoryAccess *Access) {
    AccessFunctions.emplace_back(Access);

    // Register value definitions.
    if (Access->isWrite() && Access->isOriginalValueKind()) {
      assert(!ValueDefAccs.count(Access->getAccessValue()) &&
             "there can be just one definition per value");
      ValueDefAccs[Access->getAccessValue()] = Access;
    } else if (Access->isRead() && Access->isOriginalPHIKind()) {
      PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
      assert(!PHIReadAccs.count(PHI) &&
             "there can be just one PHI read per PHINode");
      PHIReadAccs[PHI] = Access;
    }
  }

  /// Add metadata for @p Access.
  void addAccessData(MemoryAccess *Access);

  /// Remove the metadata stored for @p Access.
  void removeAccessData(MemoryAccess *Access);

  /// Return the scalar evolution.
  ScalarEvolution *getSE() const;

  /// Return the dominator tree.
  DominatorTree *getDT() const { return DT; }

  /// Return the LoopInfo used for this Scop.
  LoopInfo *getLI() const { return Affinator.getLI(); }

  /// Get the count of parameters used in this Scop.
  ///
  /// @return The count of parameters used in this Scop.
  size_t getNumParams() const { return Parameters.size(); }

  /// Take a list of parameters and add the new ones to the scop.
  void addParams(const ParameterSetTy &NewParameters);

  /// Return an iterator range containing the scop parameters.
  iterator_range<ParameterSetTy::iterator> parameters() const {
    return make_range(Parameters.begin(), Parameters.end());
  }

  /// Return whether this scop is empty, i.e. contains no statements that
  /// could be executed.
  bool isEmpty() const { return Stmts.empty(); }

  const StringRef getName() const { return name; }

  using array_iterator = ArrayInfoSetTy::iterator;
  using const_array_iterator = ArrayInfoSetTy::const_iterator;
  using array_range = iterator_range<ArrayInfoSetTy::iterator>;
  using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;

  inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }

  inline array_iterator array_end() { return ScopArrayInfoSet.end(); }

  inline const_array_iterator array_begin() const {
    return ScopArrayInfoSet.begin();
  }

  inline const_array_iterator array_end() const {
    return ScopArrayInfoSet.end();
  }

  inline array_range arrays() {
    return array_range(array_begin(), array_end());
  }

  inline const_array_range arrays() const {
    return const_array_range(array_begin(), array_end());
  }

  /// Return the isl_id that represents a certain parameter.
  ///
  /// @param Parameter A SCEV that was recognized as a Parameter.
  ///
  /// @return The corresponding isl_id or NULL otherwise.
  isl::id getIdForParam(const SCEV *Parameter) const;

  /// Get the maximum region of this static control part.
  ///
  /// @return The maximum region of this static control part.
  inline const Region &getRegion() const { return R; }
  inline Region &getRegion() { return R; }

  /// Return the function this SCoP is in.
  Function &getFunction() const { return *R.getEntry()->getParent(); }

  /// Check if @p L is contained in the SCoP.
  bool contains(const Loop *L) const { return R.contains(L); }

  /// Check if @p BB is contained in the SCoP.
  bool contains(const BasicBlock *BB) const { return R.contains(BB); }

  /// Check if @p I is contained in the SCoP.
  bool contains(const Instruction *I) const { return R.contains(I); }

  /// Return the unique exit block of the SCoP.
  BasicBlock *getExit() const { return R.getExit(); }

  /// Return the unique exiting block of the SCoP if any.
  BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }

  /// Return the unique entry block of the SCoP.
  BasicBlock *getEntry() const { return R.getEntry(); }

  /// Return the unique entering block of the SCoP if any.
  BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }

  /// Return true if @p BB is the exit block of the SCoP.
  bool isExit(BasicBlock *BB) const { return getExit() == BB; }

  /// Return a range of all basic blocks in the SCoP.
  Region::block_range blocks() const { return R.blocks(); }

  /// Return true if and only if @p BB dominates the SCoP.
  bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;

  /// Get the maximum depth of the loop.
  ///
  /// @return The maximum depth of the loop.
  inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }

  /// Return the invariant equivalence class for @p Val if any.
  InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);

  /// Return the set of invariant accesses.
  InvariantEquivClassesTy &getInvariantAccesses() {
    return InvariantEquivClasses;
  }

  /// Check if the scop has any invariant access.
  bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }

  /// Mark the SCoP as optimized by the scheduler.
  void markAsOptimized() { IsOptimized = true; }

  /// Check if the SCoP has been optimized by the scheduler.
  bool isOptimized() const { return IsOptimized; }

  /// Mark the SCoP to be skipped by ScopPass passes.
  void markAsToBeSkipped() { SkipScop = true; }

  /// Check if the SCoP is to be skipped by ScopPass passes.
  bool isToBeSkipped() const { return SkipScop; }

  /// Return the ID of the Scop
  int getID() const { return ID; }

  /// Get the name of the entry and exit blocks of this Scop.
  ///
  /// These along with the function name can uniquely identify a Scop.
  ///
  /// @return std::pair whose first element is the entry name & second element
  ///         is the exit name.
  std::pair<std::string, std::string> getEntryExitStr() const;

  /// Get the name of this Scop.
  std::string getNameStr() const;

  /// Get the constraint on parameter of this Scop.
  ///
  /// @return The constraint on parameter of this Scop.
  isl::set getContext() const;

  /// Return space of isl context parameters.
  ///
  /// Returns the set of context parameters that are currently constrained. In
  /// case the full set of parameters is needed, see @getFullParamSpace.
  isl::space getParamSpace() const;

  /// Return the full space of parameters.
  ///
  /// getParamSpace will only return the parameters of the context that are
  /// actually constrained, whereas getFullParamSpace will return all
  //  parameters. This is useful in cases, where we need to ensure all
  //  parameters are available, as certain isl functions will abort if this is
  //  not the case.
  isl::space getFullParamSpace() const;

  /// Get the assumed context for this Scop.
  ///
  /// @return The assumed context of this Scop.
  isl::set getAssumedContext() const;

  /// Return true if the optimized SCoP can be executed.
  ///
  /// In addition to the runtime check context this will also utilize the domain
  /// constraints to decide it the optimized version can actually be executed.
  ///
  /// @returns True if the optimized SCoP can be executed.
  bool hasFeasibleRuntimeContext() const;

  /// Check if the assumption in @p Set is trivial or not.
  ///
  /// @param Set  The relations between parameters that are assumed to hold.
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  ///             (needed/assumptions) or negative (invalid/restrictions).
  ///
  /// @returns True if the assumption @p Set is not trivial.
  bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);

  /// Track and report an assumption.
  ///
  /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
  /// -pass-remarks-analysis=polly-scops' to output the assumptions.
  ///
  /// @param Kind The assumption kind describing the underlying cause.
  /// @param Set  The relations between parameters that are assumed to hold.
  /// @param Loc  The location in the source that caused this assumption.
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  ///             (needed/assumptions) or negative (invalid/restrictions).
  /// @param BB   The block in which this assumption was taken. Used to
  ///             calculate hotness when emitting remark.
  ///
  /// @returns True if the assumption is not trivial.
  bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                       AssumptionSign Sign, BasicBlock *BB);

  /// Add assumptions to assumed context.
  ///
  /// The assumptions added will be assumed to hold during the execution of the
  /// scop. However, as they are generally not statically provable, at code
  /// generation time run-time checks will be generated that ensure the
  /// assumptions hold.
  ///
  /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
  ///          that assumptions do not change the set of statement instances
  ///          executed.
  ///
  /// @param Kind The assumption kind describing the underlying cause.
  /// @param Set  The relations between parameters that are assumed to hold.
  /// @param Loc  The location in the source that caused this assumption.
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  ///             (needed/assumptions) or negative (invalid/restrictions).
  /// @param BB   The block in which this assumption was taken. Used to
  ///             calculate hotness when emitting remark.
  void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                     AssumptionSign Sign, BasicBlock *BB);

  /// Record an assumption for later addition to the assumed context.
  ///
  /// This function will add the assumption to the RecordedAssumptions. This
  /// collection will be added (@see addAssumption) to the assumed context once
  /// all paramaters are known and the context is fully built.
  ///
  /// @param Kind The assumption kind describing the underlying cause.
  /// @param Set  The relations between parameters that are assumed to hold.
  /// @param Loc  The location in the source that caused this assumption.
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  ///             (needed/assumptions) or negative (invalid/restrictions).
  /// @param BB   The block in which this assumption was taken. If it is
  ///             set, the domain of that block will be used to simplify the
  ///             actual assumption in @p Set once it is added. This is useful
  ///             if the assumption was created prior to the domain.
  void recordAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                        AssumptionSign Sign, BasicBlock *BB = nullptr);

  /// Add all recorded assumptions to the assumed context.
  void addRecordedAssumptions();

  /// Mark the scop as invalid.
  ///
  /// This method adds an assumption to the scop that is always invalid. As a
  /// result, the scop will not be optimized later on. This function is commonly
  /// called when a condition makes it impossible (or too compile time
  /// expensive) to process this scop any further.
  ///
  /// @param Kind The assumption kind describing the underlying cause.
  /// @param Loc  The location in the source that triggered .
  /// @param BB   The BasicBlock where it was triggered.
  void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);

  /// Get the invalid context for this Scop.
  ///
  /// @return The invalid context of this Scop.
  isl::set getInvalidContext() const;

  /// Return true if and only if the InvalidContext is trivial (=empty).
  bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }

  /// A vector of memory accesses that belong to an alias group.
  using AliasGroupTy = SmallVector<MemoryAccess *, 4>;

  /// A vector of alias groups.
  using AliasGroupVectorTy = SmallVector<Scop::AliasGroupTy, 4>;

  /// Build the alias checks for this SCoP.
  bool buildAliasChecks(AliasAnalysis &AA);

  /// Build all alias groups for this SCoP.
  ///
  /// @returns True if __no__ error occurred, false otherwise.
  bool buildAliasGroups(AliasAnalysis &AA);

  /// Build alias groups for all memory accesses in the Scop.
  ///
  /// Using the alias analysis and an alias set tracker we build alias sets
  /// for all memory accesses inside the Scop. For each alias set we then map
  /// the aliasing pointers back to the memory accesses we know, thus obtain
  /// groups of memory accesses which might alias. We also collect the set of
  /// arrays through which memory is written.
  ///
  /// @param AA A reference to the alias analysis.
  ///
  /// @returns A pair consistent of a vector of alias groups and a set of arrays
  ///          through which memory is written.
  std::tuple<AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
  buildAliasGroupsForAccesses(AliasAnalysis &AA);

  ///  Split alias groups by iteration domains.
  ///
  ///  We split each group based on the domains of the minimal/maximal accesses.
  ///  That means two minimal/maximal accesses are only in a group if their
  ///  access domains intersect. Otherwise, they are in different groups.
  ///
  ///  @param AliasGroups The alias groups to split
  void splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups);

  /// Build a given alias group and its access data.
  ///
  /// @param AliasGroup     The alias group to build.
  /// @param HasWriteAccess A set of arrays through which memory is not only
  ///                       read, but also written.
  ///
  /// @returns True if __no__ error occurred, false otherwise.
  bool buildAliasGroup(Scop::AliasGroupTy &AliasGroup,
                       DenseSet<const ScopArrayInfo *> HasWriteAccess);

  /// Return all alias groups for this SCoP.
  const MinMaxVectorPairVectorTy &getAliasGroups() const {
    return MinMaxAliasGroups;
  }

  /// Get an isl string representing the context.
  std::string getContextStr() const;

  /// Get an isl string representing the assumed context.
  std::string getAssumedContextStr() const;

  /// Get an isl string representing the invalid context.
  std::string getInvalidContextStr() const;

  /// Return the list of ScopStmts that represent the given @p BB.
  ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;

  /// Return the last statement representing @p BB.
  ///
  /// Of the sequence of statements that represent a @p BB, this is the last one
  /// to be executed. It is typically used to determine which instruction to add
  /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
  /// to be executed last, only that the incoming value is available in it.
  ScopStmt *getLastStmtFor(BasicBlock *BB) const;

  /// Return the ScopStmts that represents the Region @p R, or nullptr if
  ///        it is not represented by any statement in this Scop.
  ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;

  /// Return the ScopStmts that represents @p RN; can return nullptr if
  ///        the RegionNode is not within the SCoP or has been removed due to
  ///        simplifications.
  ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;

  /// Return the ScopStmt an instruction belongs to, or nullptr if it
  ///        does not belong to any statement in this Scop.
  ScopStmt *getStmtFor(Instruction *Inst) const {
    return InstStmtMap.lookup(Inst);
  }

  /// Return the number of statements in the SCoP.
  size_t getSize() const { return Stmts.size(); }

  /// @name Statements Iterators
  ///
  /// These iterators iterate over all statements of this Scop.
  //@{
  using iterator = StmtSet::iterator;
  using const_iterator = StmtSet::const_iterator;

  iterator begin() { return Stmts.begin(); }
  iterator end() { return Stmts.end(); }
  const_iterator begin() const { return Stmts.begin(); }
  const_iterator end() const { return Stmts.end(); }

  using reverse_iterator = StmtSet::reverse_iterator;
  using const_reverse_iterator = StmtSet::const_reverse_iterator;

  reverse_iterator rbegin() { return Stmts.rbegin(); }
  reverse_iterator rend() { return Stmts.rend(); }
  const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
  const_reverse_iterator rend() const { return Stmts.rend(); }
  //@}

  /// Return the set of required invariant loads.
  const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
    return DC.RequiredILS;
  }

  /// Add @p LI to the set of required invariant loads.
  void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }

  /// Return true if and only if @p LI is a required invariant load.
  bool isRequiredInvariantLoad(LoadInst *LI) const {
    return getRequiredInvariantLoads().count(LI);
  }

  /// Return the set of boxed (thus overapproximated) loops.
  const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }

  /// Return true if and only if @p R is a non-affine subregion.
  bool isNonAffineSubRegion(const Region *R) {
    return DC.NonAffineSubRegionSet.count(R);
  }

  const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }

  /// Return the (possibly new) ScopArrayInfo object for @p Access.
  ///
  /// @param ElementType The type of the elements stored in this array.
  /// @param Kind        The kind of the array info object.
  /// @param BaseName    The optional name of this memory reference.
  ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
                                          ArrayRef<const SCEV *> Sizes,
                                          MemoryKind Kind,
                                          const char *BaseName = nullptr);

  /// Create an array and return the corresponding ScopArrayInfo object.
  ///
  /// @param ElementType The type of the elements stored in this array.
  /// @param BaseName    The name of this memory reference.
  /// @param Sizes       The sizes of dimensions.
  ScopArrayInfo *createScopArrayInfo(Type *ElementType,
                                     const std::string &BaseName,
                                     const std::vector<unsigned> &Sizes);

  /// Return the cached ScopArrayInfo object for @p BasePtr.
  ///
  /// @param BasePtr   The base pointer the object has been stored for.
  /// @param Kind      The kind of array info object.
  ///
  /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
  ///          available.
  const ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);

  /// Return the cached ScopArrayInfo object for @p BasePtr.
  ///
  /// @param BasePtr   The base pointer the object has been stored for.
  /// @param Kind      The kind of array info object.
  ///
  /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
  ///          available).
  const ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);

  /// Invalidate ScopArrayInfo object for base address.
  ///
  /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
  /// @param Kind    The Kind of the ScopArrayInfo object.
  void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
    auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
    if (It == ScopArrayInfoMap.end())
      return;
    ScopArrayInfoSet.remove(It->second.get());
    ScopArrayInfoMap.erase(It);
  }

  void setContext(isl::set NewContext);

  /// Align the parameters in the statement to the scop context
  void realignParams();

  /// Return true if this SCoP can be profitably optimized.
  ///
  /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
  ///                               as profitably optimizable.
  ///
  /// @return Whether this SCoP can be profitably optimized.
  bool isProfitable(bool ScalarsAreUnprofitable) const;

  /// Return true if the SCoP contained at least one error block.
  bool hasErrorBlock() const { return HasErrorBlock; }

  /// Return true if the underlying region has a single exiting block.
  bool hasSingleExitEdge() const { return HasSingleExitEdge; }

  /// Print the static control part.
  ///
  /// @param OS The output stream the static control part is printed to.
  /// @param PrintInstructions Whether to print the statement's instructions as
  ///                          well.
  void print(raw_ostream &OS, bool PrintInstructions) const;

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Print the ScopStmt to stderr.
  void dump() const;
#endif

  /// Get the isl context of this static control part.
  ///
  /// @return The isl context of this static control part.
  isl::ctx getIslCtx() const;

  /// Directly return the shared_ptr of the context.
  const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }

  /// Compute the isl representation for the SCEV @p E
  ///
  /// @param E  The SCEV that should be translated.
  /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
  ///           SCEVs known to not reference any loops in the SCoP can be
  ///           passed without a @p BB.
  /// @param NonNegative Flag to indicate the @p E has to be non-negative.
  ///
  /// Note that this function will always return a valid isl_pw_aff. However, if
  /// the translation of @p E was deemed to complex the SCoP is invalidated and
  /// a dummy value of appropriate dimension is returned. This allows to bail
  /// for complex cases without "error handling code" needed on the users side.
  PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
                  bool NonNegative = false);

  /// Compute the isl representation for the SCEV @p E
  ///
  /// This function is like @see Scop::getPwAff() but strips away the invalid
  /// domain part associated with the piecewise affine function.
  isl::pw_aff getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr);

  /// Return the domain of @p Stmt.
  ///
  /// @param Stmt The statement for which the conditions should be returned.
  isl::set getDomainConditions(const ScopStmt *Stmt) const;

  /// Return the domain of @p BB.
  ///
  /// @param BB The block for which the conditions should be returned.
  isl::set getDomainConditions(BasicBlock *BB) const;

  /// Get a union set containing the iteration domains of all statements.
  isl::union_set getDomains() const;

  /// Get a union map of all may-writes performed in the SCoP.
  isl::union_map getMayWrites();

  /// Get a union map of all must-writes performed in the SCoP.
  isl::union_map getMustWrites();

  /// Get a union map of all writes performed in the SCoP.
  isl::union_map getWrites();

  /// Get a union map of all reads performed in the SCoP.
  isl::union_map getReads();

  /// Get a union map of all memory accesses performed in the SCoP.
  isl::union_map getAccesses();

  /// Get a union map of all memory accesses performed in the SCoP.
  ///
  /// @param Array The array to which the accesses should belong.
  isl::union_map getAccesses(ScopArrayInfo *Array);

  /// Get the schedule of all the statements in the SCoP.
  ///
  /// @return The schedule of all the statements in the SCoP, if the schedule of
  /// the Scop does not contain extension nodes, and nullptr, otherwise.
  isl::union_map getSchedule() const;

  /// Get a schedule tree describing the schedule of all statements.
  isl::schedule getScheduleTree() const;

  /// Update the current schedule
  ///
  /// NewSchedule The new schedule (given as a flat union-map).
  void setSchedule(isl::union_map NewSchedule);

  /// Update the current schedule
  ///
  /// NewSchedule The new schedule (given as schedule tree).
  void setScheduleTree(isl::schedule NewSchedule);

  /// Intersects the domains of all statements in the SCoP.
  ///
  /// @return true if a change was made
  bool restrictDomains(isl::union_set Domain);

  /// Get the depth of a loop relative to the outermost loop in the Scop.
  ///
  /// This will return
  ///    0 if @p L is an outermost loop in the SCoP
  ///   >0 for other loops in the SCoP
  ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
  int getRelativeLoopDepth(const Loop *L) const;

  /// Find the ScopArrayInfo associated with an isl Id
  ///        that has name @p Name.
  ScopArrayInfo *getArrayInfoByName(const std::string BaseName);

  /// Check whether @p Schedule contains extension nodes.
  ///
  /// @return true if @p Schedule contains extension nodes.
  static bool containsExtensionNode(isl::schedule Schedule);

  /// Simplify the SCoP representation.
  ///
  /// @param AfterHoisting Whether it is called after invariant load hoisting.
  ///                      When true, also removes statements without
  ///                      side-effects.
  void simplifySCoP(bool AfterHoisting);

  /// Get the next free array index.
  ///
  /// This function returns a unique index which can be used to identify an
  /// array.
  long getNextArrayIdx() { return ArrayIdx++; }

  /// Get the next free statement index.
  ///
  /// This function returns a unique index which can be used to identify a
  /// statement.
  long getNextStmtIdx() { return StmtIdx++; }

  /// Return the MemoryAccess that writes an llvm::Value, represented by a
  /// ScopArrayInfo.
  ///
  /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
  /// Zero is possible for read-only values.
  MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;

  /// Return all MemoryAccesses that us an llvm::Value, represented by a
  /// ScopArrayInfo.
  ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;

  /// Return the MemoryAccess that represents an llvm::PHINode.
  ///
  /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
  /// for them.
  MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;

  /// Return all MemoryAccesses for all incoming statements of a PHINode,
  /// represented by a ScopArrayInfo.
  ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;

  /// Return whether @p Inst has a use outside of this SCoP.
  bool isEscaping(Instruction *Inst);

  struct ScopStatistics {
    int NumAffineLoops = 0;
    int NumBoxedLoops = 0;

    int NumValueWrites = 0;
    int NumValueWritesInLoops = 0;
    int NumPHIWrites = 0;
    int NumPHIWritesInLoops = 0;
    int NumSingletonWrites = 0;
    int NumSingletonWritesInLoops = 0;
  };

  /// Collect statistic about this SCoP.
  ///
  /// These are most commonly used for LLVM's static counters (Statistic.h) in
  /// various places. If statistics are disabled, only zeros are returned to
  /// avoid the overhead.
  ScopStatistics getStatistics() const;
};

/// Print Scop scop to raw_ostream OS.
raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);

/// The legacy pass manager's analysis pass to compute scop information
///        for a region.
class ScopInfoRegionPass : public RegionPass {
  /// The Scop pointer which is used to construct a Scop.
  std::unique_ptr<Scop> S;

public:
  static char ID; // Pass identification, replacement for typeid

  ScopInfoRegionPass() : RegionPass(ID) {}
  ~ScopInfoRegionPass() override = default;

  /// Build Scop object, the Polly IR of static control
  ///        part for the current SESE-Region.
  ///
  /// @return If the current region is a valid for a static control part,
  ///         return the Polly IR representing this static control part,
  ///         return null otherwise.
  Scop *getScop() { return S.get(); }
  const Scop *getScop() const { return S.get(); }

  /// Calculate the polyhedral scop information for a given Region.
  bool runOnRegion(Region *R, RGPassManager &RGM) override;

  void releaseMemory() override { S.reset(); }

  void print(raw_ostream &O, const Module *M = nullptr) const override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};

class ScopInfo {
public:
  using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
  using reverse_iterator = RegionToScopMapTy::reverse_iterator;
  using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
  using iterator = RegionToScopMapTy::iterator;
  using const_iterator = RegionToScopMapTy::const_iterator;

private:
  /// A map of Region to its Scop object containing
  ///        Polly IR of static control part.
  RegionToScopMapTy RegionToScopMap;
  const DataLayout &DL;
  ScopDetection &SD;
  ScalarEvolution &SE;
  LoopInfo &LI;
  AliasAnalysis &AA;
  DominatorTree &DT;
  AssumptionCache &AC;
  OptimizationRemarkEmitter &ORE;

public:
  ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
           LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
           AssumptionCache &AC, OptimizationRemarkEmitter &ORE);

  /// Get the Scop object for the given Region.
  ///
  /// @return If the given region is the maximal region within a scop, return
  ///         the scop object. If the given region is a subregion, return a
  ///         nullptr. Top level region containing the entry block of a function
  ///         is not considered in the scop creation.
  Scop *getScop(Region *R) const {
    auto MapIt = RegionToScopMap.find(R);
    if (MapIt != RegionToScopMap.end())
      return MapIt->second.get();
    return nullptr;
  }

  /// Recompute the Scop-Information for a function.
  ///
  /// This invalidates any iterators.
  void recompute();

  /// Handle invalidation explicitly
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &Inv);

  iterator begin() { return RegionToScopMap.begin(); }
  iterator end() { return RegionToScopMap.end(); }
  const_iterator begin() const { return RegionToScopMap.begin(); }
  const_iterator end() const { return RegionToScopMap.end(); }
  reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
  reverse_iterator rend() { return RegionToScopMap.rend(); }
  const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
  const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
  bool empty() const { return RegionToScopMap.empty(); }
};

struct ScopInfoAnalysis : public AnalysisInfoMixin<ScopInfoAnalysis> {
  static AnalysisKey Key;

  using Result = ScopInfo;

  Result run(Function &, FunctionAnalysisManager &);
};

struct ScopInfoPrinterPass : public PassInfoMixin<ScopInfoPrinterPass> {
  ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}

  PreservedAnalyses run(Function &, FunctionAnalysisManager &);

  raw_ostream &Stream;
};

//===----------------------------------------------------------------------===//
/// The legacy pass manager's analysis pass to compute scop information
///        for the whole function.
///
/// This pass will maintain a map of the maximal region within a scop to its
/// scop object for all the feasible scops present in a function.
/// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
/// region pass manager.
class ScopInfoWrapperPass : public FunctionPass {
  std::unique_ptr<ScopInfo> Result;

public:
  ScopInfoWrapperPass() : FunctionPass(ID) {}
  ~ScopInfoWrapperPass() override = default;

  static char ID; // Pass identification, replacement for typeid

  ScopInfo *getSI() { return Result.get(); }
  const ScopInfo *getSI() const { return Result.get(); }

  /// Calculate all the polyhedral scops for a given function.
  bool runOnFunction(Function &F) override;

  void releaseMemory() override { Result.reset(); }

  void print(raw_ostream &O, const Module *M = nullptr) const override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};

} // end namespace polly

#endif // POLLY_SCOPINFO_H