/usr/lib/llvm-4.0/include/polly/ScheduleOptimizer.h is in libclang-common-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | //===------ polly/ScheduleOptimizer.h - The Schedule Optimizer *- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCHEDULE_OPTIMIZER_H
#define POLLY_SCHEDULE_OPTIMIZER_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "isl/ctx.h"
struct isl_schedule;
struct isl_schedule_node;
struct isl_union_map;
/// Parameters of the micro kernel.
///
/// Parameters, which determine sizes of rank-1 (i.e., outer product) update
/// used in the optimized matrix multiplication.
///
struct MicroKernelParamsTy {
int Mr;
int Nr;
};
/// Parameters of the macro kernel.
///
/// Parameters, which determine sizes of blocks of partitioned matrices
/// used in the optimized matrix multiplication.
///
struct MacroKernelParamsTy {
int Mc;
int Nc;
int Kc;
};
namespace polly {
extern bool DisablePollyTiling;
class Scop;
} // namespace polly
class ScheduleTreeOptimizer {
public:
/// Apply schedule tree transformations.
///
/// This function takes an (possibly already optimized) schedule tree and
/// applies a set of additional optimizations on the schedule tree. The
/// transformations applied include:
///
/// - Tiling
/// - Prevectorization
///
/// @param Schedule The schedule object the transformations will be applied
/// to.
/// @param TTI Target Transform Info.
/// @returns The transformed schedule.
static __isl_give isl_schedule *
optimizeSchedule(__isl_take isl_schedule *Schedule,
const llvm::TargetTransformInfo *TTI = nullptr);
/// Apply schedule tree transformations.
///
/// This function takes a node in an (possibly already optimized) schedule
/// tree and applies a set of additional optimizations on this schedule tree
/// node and its descendants. The transformations applied include:
///
/// - Tiling
/// - Prevectorization
///
/// @param Node The schedule object post-transformations will be applied to.
/// @param TTI Target Transform Info.
/// @returns The transformed schedule.
static __isl_give isl_schedule_node *
optimizeScheduleNode(__isl_take isl_schedule_node *Node,
const llvm::TargetTransformInfo *TTI = nullptr);
/// Decide if the @p NewSchedule is profitable for @p S.
///
/// @param S The SCoP we optimize.
/// @param NewSchedule The new schedule we computed.
///
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
static bool isProfitableSchedule(polly::Scop &S,
__isl_keep isl_schedule *NewSchedule);
/// Isolate a set of partial tile prefixes.
///
/// This set should ensure that it contains only partial tile prefixes that
/// have exactly VectorWidth iterations.
///
/// @param Node A schedule node band, which is a parent of a band node,
/// that contains a vector loop.
/// @return Modified isl_schedule_node.
static __isl_give isl_schedule_node *
isolateFullPartialTiles(__isl_take isl_schedule_node *Node, int VectorWidth);
private:
/// Tile a schedule node.
///
/// @param Node The node to tile.
/// @param Identifier An name that identifies this kind of tiling and
/// that is used to mark the tiled loops in the
/// generated AST.
/// @param TileSizes A vector of tile sizes that should be used for
/// tiling.
/// @param DefaultTileSize A default tile size that is used for dimensions
/// that are not covered by the TileSizes vector.
static __isl_give isl_schedule_node *
tileNode(__isl_take isl_schedule_node *Node, const char *Identifier,
llvm::ArrayRef<int> TileSizes, int DefaultTileSize);
/// Tile a schedule node and unroll point loops.
///
/// @param Node The node to register tile.
/// @param TileSizes A vector of tile sizes that should be used for
/// tiling.
/// @param DefaultTileSize A default tile size that is used for dimensions
static __isl_give isl_schedule_node *
applyRegisterTiling(__isl_take isl_schedule_node *Node,
llvm::ArrayRef<int> TileSizes, int DefaultTileSize);
/// Apply the BLIS matmul optimization pattern.
///
/// Apply the BLIS matmul optimization pattern. BLIS implements gemm as three
/// nested loops around a macro-kernel, plus two packing routines.
/// The macro-kernel is implemented in terms of two additional loops around
/// a micro-kernel. The micro-kernel is a loop around a rank-1
/// (i.e., outer product) update.
///
/// For a detailed description please see [1].
///
/// The order of the loops defines the data reused in the BLIS implementation
/// of gemm ([1]). In particular, elements of the matrix B, the second
/// operand of matrix multiplication, are reused between iterations of the
/// innermost loop. To keep the reused data in cache, only elements of matrix
/// A, the first operand of matrix multiplication, should be evicted during
/// an iteration of the innermost loop. To provide such a cache replacement
/// policy, elements of the matrix A can, in particular, be loaded first and,
/// consequently, be least-recently-used.
///
/// In our case matrices are stored in row-major order instead of
/// column-major order used in the BLIS implementation ([1]). It affects only
/// on the form of the BLIS micro kernel and the computation of its
/// parameters. In particular, reused elements of the matrix B are
/// successively multiplied by specific elements of the matrix A.
///
/// Refs.:
/// [1] - Analytical Modeling is Enough for High Performance BLIS
/// Tze Meng Low, Francisco D Igual, Tyler M Smith, Enrique S Quintana-Orti
/// Technical Report, 2014
/// http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMicroKernelParams
/// @see getMacroKernelParams
///
/// TODO: Implement the packing transformation.
///
/// @param Node The node that contains a band to be optimized. The node
/// is required to successfully pass
/// ScheduleTreeOptimizer::isMatrMultPattern.
static __isl_give isl_schedule_node *
optimizeMatMulPattern(__isl_take isl_schedule_node *Node,
const llvm::TargetTransformInfo *TTI);
/// Check if this node is a band node we want to tile.
///
/// We look for innermost band nodes where individual dimensions are marked as
/// permutable.
///
/// @param Node The node to check.
static bool isTileableBandNode(__isl_keep isl_schedule_node *Node);
/// Pre-vectorizes one scheduling dimension of a schedule band.
///
/// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
/// sinks the resulting point loop.
///
/// Example (DimToVectorize=0, VectorWidth=4):
///
/// | Before transformation:
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// | After transformation:
/// |
/// | for (it = 0; it < 32; it+=1)
/// | for (j = 0; j < 128; j++)
/// | for (ip = 0; ip <= 3; ip++)
/// | A(4 * it + ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static __isl_give isl_schedule_node *
prevectSchedBand(__isl_take isl_schedule_node *Node, unsigned DimToVectorize,
int VectorWidth);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We are looking for an innermost band node and apply the following
/// transformations:
///
/// - Tile the band
/// - if the band is tileable
/// - if the band has more than one loop dimension
///
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We apply the following
/// transformations:
///
/// - Tile the band
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl_schedule_node *standardBandOpts(__isl_take isl_schedule_node *Node,
void *User);
/// Check if this node contains a partial schedule that could
/// probably be optimized with analytical modeling.
///
/// isMatrMultPattern tries to determine whether the following conditions
/// are true:
/// 1. the partial schedule contains only one statement.
/// 2. there are exactly three input dimensions.
/// 3. all memory accesses of the statement will have stride 0 or 1, if we
/// interchange loops (switch the variable used in the inner loop to
/// the outer loop).
/// 4. all memory accesses of the statement except from the last one, are
/// read memory access and the last one is write memory access.
/// 5. all subscripts of the last memory access of the statement don't
/// contain the variable used in the inner loop.
/// If this is the case, we could try to use an approach that is similar to
/// the one used to get close-to-peak performance of matrix multiplications.
///
/// @param Node The node to check.
static bool isMatrMultPattern(__isl_keep isl_schedule_node *Node);
/// Create the BLIS macro-kernel.
///
/// We create the BLIS macro-kernel by applying a combination of tiling
/// of dimensions of the band node and interchanging of two innermost
/// modified dimensions. The values of of MacroKernelParams's fields are used
/// as tile sizes.
///
/// @param Node The schedule node to be modified.
/// @param MacroKernelParams Parameters of the macro kernel
/// to be used as tile sizes.
static __isl_give isl_schedule_node *
createMacroKernel(__isl_take isl_schedule_node *Node,
MacroKernelParamsTy MacroKernelParams);
/// Create the BLIS macro-kernel.
///
/// We create the BLIS macro-kernel by applying a combination of tiling
/// of dimensions of the band node and interchanging of two innermost
/// modified dimensions. The values passed in MicroKernelParam are used
/// as tile sizes.
///
/// @param Node The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro kernel
/// to be used as tile sizes.
/// @see MicroKernelParamsTy
static __isl_give isl_schedule_node *
createMicroKernel(__isl_take isl_schedule_node *Node,
MicroKernelParamsTy MicroKernelParams);
};
#endif
|