This file is indexed.

/usr/include/CGAL/internal/auxiliary/graph.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
// Copyright (c) 2001  Yuri Boykov
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
/*
###################################################################
#                                                                 #
#    MAXFLOW - software for computing mincut/maxflow in a graph   #
#                        Version 2.21                             #
#    http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html     #
#                                                                 #
#    Yuri Boykov (yuri@csd.uwo.ca)                                #
#    Vladimir Kolmogorov (v.kolmogorov@cs.ucl.ac.uk)              #
#    2001                                                         #
#                                                                 #
###################################################################

1. Introduction.

This software library implements the maxflow algorithm
described in

	An Experimental Comparison of Min-Cut/Max-Flow Algorithms
	for Energy Minimization in Vision.
	Yuri Boykov and Vladimir Kolmogorov.
	In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
	September 2004

This algorithm was developed by Yuri Boykov and Vladimir Kolmogorov
at Siemens Corporate Research. To make it available for public use,
it was later reimplemented by Vladimir Kolmogorov based on open publications.

If you use this software for research purposes, you should cite
the aforementioned paper in any resulting publication.

Tested under windows, Visual C++ 6.0 compiler and unix (SunOS 5.8
and RedHat Linux 7.0, GNU c++ compiler).

##################################################################

2. Licence.

Copyright UCL Business PLC

This program is available under dual licence:

1) Under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
Note that any program that incorporates the code under this licence must, under the terms of the GNU GPL, be released under a licence compatible with the GPL. GNU GPL does not permit incorporating this program into proprietary programs. If you wish to do this, please see the alternative licence available below.
GNU General Public License can be found at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2) Proprietary Licence from UCL Business PLC.
To enable programers to include the MaxFlow software in a proprietary system (which is not allowed by the GNU GPL), this licence gives you the right to incorporate the software in your program and distribute under any licence of your choosing. The full terms of the licence and applicable fee, are available from the Licensors at: http://www.uclb-elicensing.com/optimisation_software/maxflow_computervision.html

##################################################################

3. Graph representation.

There are two versions of the algorithm using different
graph representations (adjacency list and forward star).
The former one uses more than twice as much memory as the
latter one but is 10-20% faster.

Memory allocation (assuming that all capacities are 'short' - 2 bytes):

                 |   Nodes    |   Arcs
------------------------------------------
Adjacency list   | *24 bytes  | *14 bytes
Forward star     | *28 bytes  |  6 bytes

(* means that often it should be rounded up to be a multiple of 4
- some compilers (e.g. Visual C++) seem to round up elements
of arrays unless the are structures containing only char[].)

Note that arcs are always added in pairs - in forward and reverse directions.
Arcs between nodes and terminals (the source and the sink) are
not stored as arcs, but rather as a part of nodes.

The assumption for the forward star representation is that
the maximum number of arcs per node (except the source
and the sink) is much less than ARC_BLOCK_SIZE (1024 by default).

Both versions have the same interface.

##################################################################

4. Example usage.

This section shows how to use the library to compute
a minimum cut on the following graph:

		        SOURCE
		       /       \
		     1/         \2
		     /      3    \
		   node0 -----> node1
		     |   <-----   |
		     |      4     |
		     \            /
		     5\          /6
		       \        /
		          SINK

///////////////////////////////////////////////////

#include <stdio.h>
#include "graph.h"

void main()
{
	Graph::node_id nodes[2];
	Graph *g = new Graph();

	nodes[0] = g -> add_node();
	nodes[1] = g -> add_node();
	g -> set_tweights(nodes[0], 1, 5);
	g -> set_tweights(nodes[1], 2, 6);
	g -> add_edge(nodes[0], nodes[1], 3, 4);

	Graph::flowtype flow = g -> maxflow();

	printf("Flow = %d\n", flow);
	printf("Minimum cut:\n");
	if (g->what_segment(nodes[0]) == Graph::SOURCE)
		printf("node0 is in the SOURCE set\n");
	else
		printf("node0 is in the SINK set\n");
	if (g->what_segment(nodes[1]) == Graph::SOURCE)
		printf("node1 is in the SOURCE set\n");
	else
		printf("node1 is in the SINK set\n");

	delete g;
}

///////////////////////////////////////////////////
*/

/* block.h */
/*
	Template classes Block and DBlock
	Implement adding and deleting items of the same type in blocks.

	If there there are many items then using Block or DBlock
	is more efficient than using 'new' and 'delete' both in terms
	of memory and time since
	(1) On some systems there is some minimum amount of memory
	    that 'new' can allocate (e.g., 64), so if items are
	    small that a lot of memory is wasted.
	(2) 'new' and 'delete' are designed for items of varying size.
	    If all items has the same size, then an algorithm for
	    adding and deleting can be made more efficient.
	(3) All Block and DBlock functions are inline, so there are
	    no extra function calls.

	Differences between Block and DBlock:
	(1) DBlock allows both adding and deleting items,
	    whereas Block allows only adding items.
	(2) Block has an additional operation of scanning
	    items added so far (in the order in which they were added).
	(3) Block allows to allocate several consecutive
	    items at a time, whereas DBlock can add only a single item.

	Note that no constructors or destructors are called for items.

	Example usage for items of type 'MyType':

	///////////////////////////////////////////////////
	#include "block.h"
	#define BLOCK_SIZE 1024

#include <CGAL/license/Surface_mesh_segmentation.h>

	typedef struct { int a, b; } MyType;
	MyType *ptr, *array[10000];

	...

	Block<MyType> *block = new Block<MyType>(BLOCK_SIZE);

	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		ptr = block -> New();
		ptr -> a = ptr -> b = rand();
	}

	// reading items
	for (ptr=block->ScanFirst(); ptr; ptr=block->ScanNext())
	{
		printf("%d %d\n", ptr->a, ptr->b);
	}

	delete block;

	...

	DBlock<MyType> *dblock = new DBlock<MyType>(BLOCK_SIZE);

	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		array[i] = dblock -> New();
	}

	// deleting items
	for (int i=0; i<sizeof(array); i+=2)
	{
		dblock -> Delete(array[i]);
	}

	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		array[i] = dblock -> New();
	}

	delete dblock;

	///////////////////////////////////////////////////

	Note that DBlock deletes items by marking them as
	empty (i.e., by adding them to the list of free items),
	so that this memory could be used for subsequently
	added items. Thus, at each moment the memory allocated
	is determined by the maximum number of items allocated
	simultaneously at earlier moments. All memory is
	deallocated only when the destructor is called.
*/

#ifndef __BLOCK_H__
#define __BLOCK_H__

#include <stdlib.h>

/***********************************************************************/
/***********************************************************************/
/***********************************************************************/

template <class Type> class Block
{
public:
  /* Constructor. Arguments are the block size and
     (optionally) the pointer to the function which
     will be called if allocation failed; the message
     passed to this function is "Not enough memory!" */
  Block(int size, void (*err_function)(const char *) = NULL) {
    first = last = NULL;
    block_size = size;
    error_function = err_function;
  }

  /* Destructor. Deallocates all items added so far */
  ~Block() {
    while (first) {
      block *next = first -> next;
      delete[] ((char*)first);
      first = next;
    }
  }

  /* Allocates 'num' consecutive items; returns pointer
     to the first item. 'num' cannot be greater than the
     block size since items must fit in one block */
  Type *New(int num = 1) {
    Type *t;

    if (!last || last->current + num > last->last) {
      if (last && last->next) last = last -> next;
      else {
        block *next = (block *) new char [sizeof(block) + (block_size-1)*sizeof(Type)];
        if (!next) {
          if (error_function) (*error_function)("Not enough memory!");
          exit(1);
        }
        if (last) last -> next = next;
        else first = next;
        last = next;
        last -> current = & ( last -> data[0] );
        last -> last = last -> current + block_size;
        last -> next = NULL;
      }
    }

    t = last -> current;
    last -> current += num;
    return t;
  }

  /* Returns the first item (or NULL, if no items were added) */
  Type *ScanFirst() {
    for (scan_current_block=first; scan_current_block;
         scan_current_block = scan_current_block->next) {
      scan_current_data = & ( scan_current_block -> data[0] );
      if (scan_current_data < scan_current_block -> current) return scan_current_data
            ++;
    }
    return NULL;
  }

  /* Returns the next item (or NULL, if all items have been read)
     Can be called only if previous ScanFirst() or ScanNext()
     call returned not NULL. */
  Type *ScanNext() {
    while (scan_current_data >= scan_current_block -> current) {
      scan_current_block = scan_current_block -> next;
      if (!scan_current_block) return NULL;
      scan_current_data = & ( scan_current_block -> data[0] );
    }
    return scan_current_data ++;
  }

  /* Marks all elements as empty */
  void Reset() {
    block *b;
    if (!first) return;
    for (b=first; ; b=b->next) {
      b -> current = & ( b -> data[0] );
      if (b == last) break;
    }
    last = first;
  }

  /***********************************************************************/

private:

  typedef struct block_st {
    Type					*current, *last;
    struct block_st			*next;
    Type					data[1];
  } block;

  int		block_size;
  block	*first;
  block	*last;

  block	*scan_current_block;
  Type	*scan_current_data;

  void	(*error_function)(const char *);
};

/***********************************************************************/
/***********************************************************************/
/***********************************************************************/

template <class Type> class DBlock
{
public:
  /* Constructor. Arguments are the block size and
     (optionally) the pointer to the function which
     will be called if allocation failed; the message
     passed to this function is "Not enough memory!" */
  DBlock(int size, void (*err_function)(const char *) = NULL) {
    first = NULL;
    first_free = NULL;
    block_size = size;
    error_function = err_function;
  }

  /* Destructor. Deallocates all items added so far */
  ~DBlock() {
    while (first) {
      block *next = first -> next;
      delete[] ((char*)first);
      first = next;
    }
  }

  /* Allocates one item */
  Type *New() {
    block_item *item;

    if (!first_free) {
      block *next = first;
      first = (block *) new char [sizeof(block) + (block_size-1)*sizeof(block_item)];
      if (!first) {
        if (error_function) (*error_function)("Not enough memory!");
        exit(1);
      }
      first_free = & (first -> data[0] );
      for (item=first_free; item<first_free+block_size-1; item++)
        item -> next_free = item + 1;
      item -> next_free = NULL;
      first -> next = next;
    }

    item = first_free;
    first_free = item -> next_free;
    return (Type *) item;
  }

  /* Deletes an item allocated previously */
  void Delete(Type *t) {
    ((block_item *) t) -> next_free = first_free;
    first_free = (block_item *) t;
  }

  /***********************************************************************/

private:

  typedef union block_item_st {
    Type			t;
    block_item_st	*next_free;
  } block_item;

  typedef struct block_st {
    struct block_st			*next;
    block_item				data[1];
  } block;

  int			block_size;
  block		*first;
  block_item	*first_free;

  void	(*error_function)(const char *);
};


#endif



/* graph.h */
/*
	This software library implements the maxflow algorithm
	described in

		An Experimental Comparison of Min-Cut/Max-Flow Algorithms
		for Energy Minimization in Vision.
		Yuri Boykov and Vladimir Kolmogorov.
		In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
		September 2004

	This algorithm was developed by Yuri Boykov and Vladimir Kolmogorov
	at Siemens Corporate Research. To make it available for public use,
	it was later reimplemented by Vladimir Kolmogorov based on open publications.

	If you use this software for research purposes, you should cite
	the aforementioned paper in any resulting publication.

	----------------------------------------------------------------

	For description, license, example usage, discussion of graph representation	and memory usage see README.TXT.
*/

#ifndef __GRAPH_H__
#define __GRAPH_H__

//#include "block.h"
#include <stdio.h>
/*
	Nodes, arcs and pointers to nodes are
	added in blocks for memory and time efficiency.
	Below are numbers of items in blocks
*/
#define NODE_BLOCK_SIZE 512
#define ARC_BLOCK_SIZE 1024
#define NODEPTR_BLOCK_SIZE 128

template <std::size_t size>
struct Int_to_ptr;

template<> struct Int_to_ptr<sizeof(int)> {
  typedef int type;
};
#if INT_MAX != LONG_MAX
template<> struct Int_to_ptr<sizeof(long)> {
  typedef long type;
};
#else
template<> struct Int_to_ptr<sizeof(long long)> {
  typedef long long type;
};
#endif


class Graph
{
public:
  typedef enum {
    SOURCE	= 0,
    SINK	= 1
  } termtype; /* terminals */

  /* Type of edge weights.
     Can be changed to char, int, float, double, ... */
  typedef double captype;
  /* Type of total flow */
  typedef double flowtype;

  typedef void * node_id;

  /* interface functions */

  /* Constructor. Optional argument is the pointer to the
     function which will be called if an error occurs;
     an error message is passed to this function. If this
     argument is omitted, exit(1) will be called. */
  Graph(void (*err_function)(const char *) = NULL);

  /* Destructor */
  ~Graph();

  /* Adds a node to the graph */
  node_id add_node();

  /* Adds a bidirectional edge between 'from' and 'to'
     with the weights 'cap' and 'rev_cap' */
  void add_edge(node_id from, node_id to, captype cap, captype rev_cap);

  /* Sets the weights of the edges 'SOURCE->i' and 'i->SINK'
     Can be called at most once for each node before any call to 'add_tweights'.
     Weights can be negative */
  void set_tweights(node_id i, captype cap_source, captype cap_sink);

  /* Adds new edges 'SOURCE->i' and 'i->SINK' with corresponding weights
     Can be called multiple times for each node.
     Weights can be negative */
  void add_tweights(node_id i, captype cap_source, captype cap_sink);

  /* After the maxflow is computed, this function returns to which
     segment the node 'i' belongs (Graph::SOURCE or Graph::SINK) */
  termtype what_segment(node_id i);

  /* Computes the maxflow. Can be called only once. */
  flowtype maxflow();

  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/

private:
  /* internal variables and functions */

  struct arc_forward_st;
  struct arc_reverse_st;

  typedef Int_to_ptr< sizeof(void*) >::type INTEGER;
#define IS_ODD(a) ((INTEGER)(a) & 1)
#define MAKE_ODD(a)  ((arc_forward *) ((INTEGER)(a) | 1))
#define MAKE_EVEN(a) ((arc_forward *) ((INTEGER)(a) & (~1)))
#define MAKE_ODD_REV(a)  ((arc_reverse *) ((INTEGER)(a) | 1))
#define MAKE_EVEN_REV(a) ((arc_reverse *) ((INTEGER)(a) & (~1)))
#define POINTER_TO_INTEGER(ptr) ((INTEGER) ptr)



  /* node structure */
  typedef struct node_st {
    /*
    	Usually i->first_out is the first outgoing
    	arc, and (i+1)->first_out-1 is the last outgoing arc.
    	However, it is not always possible, since
    	arcs are allocated in blocks, so arcs corresponding
    	to two consecutive nodes may be in different blocks.

    	If outgoing arcs for i are last in the arc block,
    	then a different mechanism is used. i->first_out
    	is odd in this case; the first outgoing arc
    	is (a+1), and the last outgoing arc is
    	((arc_forward *)(a->shift))-1, where
    	a = (arc_forward *) (((char *)(i->first_out)) + 1);

    	Similar mechanism is used for incoming arcs.
    */
    arc_forward_st	*first_out;	/* first outcoming arc */
    arc_reverse_st	*first_in;	/* first incoming arc */

    arc_forward_st	*parent;	/* describes node's parent
									   if IS_ODD(parent) then MAKE_EVEN(parent) points to 'arc_reverse',
									   otherwise parent points to 'arc_forward' */

    node_st			*next;		/* pointer to the next active node
									   (or to itself if it is the last node in the list) */

    int				TS;			/* timestamp showing when DIST was computed */
    int				DIST;		/* distance to the terminal */
    short			is_sink;	/* flag showing whether the node is in the source or in the sink tree */

    captype			tr_cap;		/* if tr_cap > 0 then tr_cap is residual capacity of the arc SOURCE->node
									   otherwise         -tr_cap is residual capacity of the arc node->SINK */
  } node;

  /* arc structures */
#define NEIGHBOR_NODE(i, shift) ((node *) ((char *)(i) + (shift)))
#define NEIGHBOR_NODE_REV(i, shift) ((node *) ((char *)(i) - (shift)))
  typedef struct arc_forward_st {
    INTEGER			shift;		/* node_to = NEIGHBOR_NODE(node_from, shift) */
    captype			r_cap;		/* residual capacity */
    captype			r_rev_cap;	/* residual capacity of the reverse arc*/
  } arc_forward;

  typedef struct arc_reverse_st {
    arc_forward		*sister;	/* reverse arc */
  } arc_reverse;

  /* 'pointer to node' structure */
  typedef struct nodeptr_st {
    node_st			*ptr;
    nodeptr_st		*next;
  } nodeptr;

  typedef struct node_block_st {
    node					*current;
    struct node_block_st	*next;
    node					nodes[NODE_BLOCK_SIZE];
  } node_block;

#define last_node LAST_NODE.LAST_NODE

  typedef struct arc_for_block_st {
    char					*start;		/* the actual start address of this block.
											   May be different from 'this' since 'this'
											   must be at an even address. */
    arc_forward				*current;
    struct arc_for_block_st	*next;
    arc_forward
    arcs_for[ARC_BLOCK_SIZE]; /* all arcs must be at even addresses */
    union {
      arc_forward			dummy;
      node				*LAST_NODE;	/* used in graph consruction */
    }						LAST_NODE;
  } arc_for_block;

  typedef struct arc_rev_block_st {
    char					*start;		/* the actual start address of this block.
											   May be different from 'this' since 'this'
											   must be at an even address. */
    arc_reverse				*current;
    struct arc_rev_block_st	*next;
    arc_reverse
    arcs_rev[ARC_BLOCK_SIZE]; /* all arcs must be at even addresses */
    union {
      arc_reverse			dummy;
      node				*LAST_NODE;	/* used in graph consruction */
    }						LAST_NODE;
  } arc_rev_block;

  node_block			*node_block_first;
  arc_for_block		*arc_for_block_first;
  arc_rev_block		*arc_rev_block_first;
  DBlock<nodeptr>		*nodeptr_block;

  void	(*error_function)(const char
                          *);	/* this function is called if a error occurs,
										   with a corresponding error message
										   (or exit(1) is called if it's NULL) */

  flowtype			flow;		/* total flow */

  /***********************************************************************/

  node				*queue_first[2], *queue_last[2];	/* list of active nodes */
  nodeptr				*orphan_first, *orphan_last;		/* list of pointers to orphans */
  int					TIME;								/* monotonically increasing global counter */

  /***********************************************************************/

  /* functions for processing active list */
  void set_active(node *i);
  node *next_active();

  void prepare_graph();
  void maxflow_init();
  void augment(node *s_start, node *t_start, captype *cap_middle,
               captype *rev_cap_middle);
  void process_source_orphan(node *i);
  void process_sink_orphan(node *i);
};
/* graph.cpp */


//#include <stdio.h>
//#include "graph.h"

inline Graph::Graph(void (*err_function)(const char *))
{
  error_function = err_function;
  node_block_first = NULL;
  arc_for_block_first = NULL;
  arc_rev_block_first = NULL;
  orphan_first = NULL;
  orphan_last = NULL;
  flow = 0;
}

inline Graph::~Graph()
{
  while (node_block_first) {
    node_block *next = node_block_first -> next;
    delete node_block_first;
    node_block_first = next;
  }

  while (arc_for_block_first) {
    arc_for_block *next = arc_for_block_first -> next;
    delete[] arc_for_block_first -> start;
    arc_for_block_first = next;
  }

  while (arc_rev_block_first) {
    arc_rev_block *next = arc_rev_block_first -> next;
    delete[] arc_rev_block_first -> start;
    arc_rev_block_first = next;
  }
}

inline Graph::node_id Graph::add_node()
{
  node *i;

  if (!node_block_first
      || node_block_first->current+1 > &node_block_first->nodes[NODE_BLOCK_SIZE-1]) {
    node_block *next = node_block_first;
    node_block_first = (node_block *) new node_block;
    if (!node_block_first) {
      if (error_function) (*error_function)("Not enough memory!");
      exit(1);
    }
    node_block_first -> current = & ( node_block_first -> nodes[0] );
    node_block_first -> next = next;
  }

  i = node_block_first -> current ++;
  i -> first_out = (arc_forward *) 0;
  i -> first_in = (arc_reverse *) 0;

  i -> tr_cap = 0;

  return (node_id) i;
}

inline void Graph::add_edge(node_id from, node_id to, captype cap,
                            captype rev_cap)
{
  arc_forward *a_for;
  arc_reverse *a_rev;

  if (!arc_for_block_first
      || arc_for_block_first->current+1 >
      &arc_for_block_first->arcs_for[ARC_BLOCK_SIZE]) {
    arc_for_block *next = arc_for_block_first;
    char *ptr = new char[sizeof(arc_for_block)+1];
    if (!ptr) {
      if (error_function) (*error_function)("Not enough memory!");
      exit(1);
    }
    if (IS_ODD(ptr)) arc_for_block_first = (arc_for_block *) (ptr + 1);
    else              arc_for_block_first = (arc_for_block *) ptr;
    arc_for_block_first -> start = ptr;
    arc_for_block_first -> current = & ( arc_for_block_first -> arcs_for[0] );
    arc_for_block_first -> next = next;
  }

  if (!arc_rev_block_first
      || arc_rev_block_first->current+1 >
      &arc_rev_block_first->arcs_rev[ARC_BLOCK_SIZE]) {
    arc_rev_block *next = arc_rev_block_first;
    char *ptr = new char[sizeof(arc_rev_block)+1];
    if (!ptr) {
      if (error_function) (*error_function)("Not enough memory!");
      exit(1);
    }
    if (IS_ODD(ptr)) arc_rev_block_first = (arc_rev_block *) (ptr + 1);
    else              arc_rev_block_first = (arc_rev_block *) ptr;
    arc_rev_block_first -> start = ptr;
    arc_rev_block_first -> current = & ( arc_rev_block_first -> arcs_rev[0] );
    arc_rev_block_first -> next = next;
  }

  a_for = arc_for_block_first -> current ++;
  a_rev = arc_rev_block_first -> current ++;

  a_rev -> sister = (arc_forward *) from;
  a_for -> shift  = POINTER_TO_INTEGER(to);
  a_for -> r_cap = cap;
  a_for -> r_rev_cap = rev_cap;

  ((node *)from) -> first_out =
    (arc_forward *) (POINTER_TO_INTEGER(((node *)from) -> first_out) + 1);
  ((node *)to) -> first_in =
    (arc_reverse *) (POINTER_TO_INTEGER(((node *)to) -> first_in) + 1);
}

inline void Graph::set_tweights(node_id i, captype cap_source, captype cap_sink)
{
  flow += (cap_source < cap_sink) ? cap_source : cap_sink;
  ((node*)i) -> tr_cap = cap_source - cap_sink;
}

inline void Graph::add_tweights(node_id i, captype cap_source, captype cap_sink)
{
  captype delta = ((node*)i) -> tr_cap;
  if (delta > 0) cap_source += delta;
  else           cap_sink   -= delta;
  flow += (cap_source < cap_sink) ? cap_source : cap_sink;
  ((node*)i) -> tr_cap = cap_source - cap_sink;
}

/*
	Converts arcs added by 'add_edge()' calls
	to a forward star graph representation.

	Linear time algorithm.
	No or little additional memory is allocated
	during this process
	(it may be necessary to allocate additional
	arc blocks, since arcs corresponding to the
	same node must be contiguous, i.e. be in one
	arc block.)
*/
inline void Graph::prepare_graph()
{
  node *i;
  arc_for_block *ab_for, *ab_for_first;
  arc_rev_block *ab_rev, *ab_rev_first, *ab_rev_scan;
  arc_forward *a_for;
  arc_reverse *a_rev, *a_rev_scan, *a_rev_tmp=new arc_reverse;
  node_block *nb;
  bool for_flag = false, rev_flag = false;
  INTEGER k;

  if (!arc_rev_block_first) {
    node_id from = add_node(), to = add_node();
    add_edge(from, to, 1, 0);
  }

  /* FIRST STAGE */
  a_rev_tmp->sister = NULL;
  for (a_rev=arc_rev_block_first->current;
       a_rev<&arc_rev_block_first->arcs_rev[ARC_BLOCK_SIZE]; a_rev++) {
    a_rev -> sister = NULL;
  }

  ab_for = ab_for_first = arc_for_block_first;
  ab_rev = ab_rev_first = ab_rev_scan = arc_rev_block_first;
  a_for = &ab_for->arcs_for[0];
  a_rev = a_rev_scan = &ab_rev->arcs_rev[0];

  for (nb=node_block_first; nb; nb=nb->next) {
    for (i=&nb->nodes[0]; i<nb->current; i++) {
      /* outgoing arcs */
      k = POINTER_TO_INTEGER(i -> first_out);
      if (a_for + k > &ab_for->arcs_for[ARC_BLOCK_SIZE]) {
        if (k > ARC_BLOCK_SIZE) {
          if (error_function) (*error_function)("# of arcs per node exceeds block size!");
          exit(1);
        }
        if (for_flag) ab_for = NULL;
        else          {
          ab_for = ab_for -> next;
          ab_rev_scan = ab_rev_scan -> next;
        }
        if (ab_for == NULL) {
          arc_for_block *next = arc_for_block_first;
          char *ptr = new char[sizeof(arc_for_block)+1];
          if (!ptr) {
            if (error_function) (*error_function)("Not enough memory!");
            exit(1);
          }
          if (IS_ODD(ptr)) arc_for_block_first = (arc_for_block *) (ptr + 1);
          else              arc_for_block_first = (arc_for_block *) ptr;
          arc_for_block_first -> start = ptr;
          arc_for_block_first -> current = & ( arc_for_block_first -> arcs_for[0] );
          arc_for_block_first -> next = next;
          ab_for = arc_for_block_first;
          for_flag = true;
        } else a_rev_scan = &ab_rev_scan->arcs_rev[0];
        a_for = &ab_for->arcs_for[0];
      }
      if (ab_rev_scan) {
        a_rev_scan += k;
        i -> parent = (arc_forward *) a_rev_scan;
      } else i -> parent = (arc_forward *) a_rev_tmp;
      a_for += k;
      i -> first_out = a_for;
      ab_for -> last_node = i;

      /* incoming arcs */
      k = POINTER_TO_INTEGER(i -> first_in);
      if (a_rev + k > &ab_rev->arcs_rev[ARC_BLOCK_SIZE]) {
        if (k > ARC_BLOCK_SIZE) {
          if (error_function) (*error_function)("# of arcs per node exceeds block size!");
          exit(1);
        }
        if (rev_flag) ab_rev = NULL;
        else          ab_rev = ab_rev -> next;
        if (ab_rev == NULL) {
          arc_rev_block *next = arc_rev_block_first;
          char *ptr = new char[sizeof(arc_rev_block)+1];
          if (!ptr) {
            if (error_function) (*error_function)("Not enough memory!");
            exit(1);
          }
          if (IS_ODD(ptr)) arc_rev_block_first = (arc_rev_block *) (ptr + 1);
          else              arc_rev_block_first = (arc_rev_block *) ptr;
          arc_rev_block_first -> start = ptr;
          arc_rev_block_first -> current = & ( arc_rev_block_first -> arcs_rev[0] );
          arc_rev_block_first -> next = next;
          ab_rev = arc_rev_block_first;
          rev_flag = true;
        }
        a_rev = &ab_rev->arcs_rev[0];
      }
      a_rev += k;
      i -> first_in = a_rev;
      ab_rev -> last_node = i;
    }
    /* i is the last node in block */
    i -> first_out = a_for;
    i -> first_in  = a_rev;
  }

  /* SECOND STAGE */
  for (ab_for=arc_for_block_first; ab_for; ab_for=ab_for->next) {
    ab_for -> current = ab_for -> last_node -> first_out;
  }

  for ( ab_for=ab_for_first, ab_rev=ab_rev_first;
        ab_for;
        ab_for=ab_for->next, ab_rev=ab_rev->next )
    for ( a_for=&ab_for->arcs_for[0], a_rev=&ab_rev->arcs_rev[0];
          a_for<&ab_for->arcs_for[ARC_BLOCK_SIZE];
          a_for++, a_rev++ ) {
      arc_forward *af;
      arc_reverse *ar;
      node *from;
      INTEGER shift = 0, shift_new;
      captype r_cap=0, r_rev_cap=0, r_cap_new, r_rev_cap_new;

      if (!(from=(node *)(a_rev->sister))) continue;
      af = a_for;
      ar = a_rev;

      do {
        ar -> sister = NULL;

        shift_new = ((char *)(af->shift)) - (char *)from;
        r_cap_new = af -> r_cap;
        r_rev_cap_new = af -> r_rev_cap;
        if (shift) {
          af -> shift = shift;
          af -> r_cap = r_cap;
          af -> r_rev_cap = r_rev_cap;
        }
        shift = shift_new;
        r_cap = r_cap_new;
        r_rev_cap = r_rev_cap_new;

        af = -- from -> first_out;
        if ((arc_reverse *)(from->parent) != a_rev_tmp) {
          from -> parent = (arc_forward *)(((arc_reverse *)(from -> parent)) - 1);
          ar = (arc_reverse *)(from -> parent);
        }
      } while ( (from=(node *)(ar->sister)) );

      af -> shift = shift;
      af -> r_cap = r_cap;
      af -> r_rev_cap = r_rev_cap;
    }

  for (ab_for=arc_for_block_first; ab_for; ab_for=ab_for->next) {
    i = ab_for -> last_node;
    a_for = i -> first_out;
    ab_for -> current -> shift     = a_for -> shift;
    ab_for -> current -> r_cap     = a_for -> r_cap;
    ab_for -> current -> r_rev_cap = a_for -> r_rev_cap;
    a_for -> shift = POINTER_TO_INTEGER(ab_for -> current + 1);
    i -> first_out = (arc_forward *) (((char *)a_for) - 1);
  }

  /* THIRD STAGE */
  for (ab_rev=arc_rev_block_first; ab_rev; ab_rev=ab_rev->next) {
    ab_rev -> current = ab_rev -> last_node -> first_in;
  }

  for (nb=node_block_first; nb; nb=nb->next)
    for (i=&nb->nodes[0]; i<nb->current; i++) {
      arc_forward *a_for_first, *a_for_last;

      a_for_first = i -> first_out;
      if (IS_ODD(a_for_first)) {
        a_for_first = (arc_forward *) (((char *)a_for_first) + 1);
        a_for_last = (arc_forward *) ((a_for_first ++) -> shift);
      } else a_for_last = (i + 1) -> first_out;

      for (a_for=a_for_first; a_for<a_for_last; a_for++) {
        node *to = NEIGHBOR_NODE(i, a_for -> shift);
        a_rev = -- to -> first_in;
        a_rev -> sister = a_for;
      }
    }

  for (ab_rev=arc_rev_block_first; ab_rev; ab_rev=ab_rev->next) {
    i = ab_rev -> last_node;
    a_rev = i -> first_in;
    ab_rev -> current -> sister = a_rev -> sister;
    a_rev -> sister = (arc_forward *) (ab_rev -> current + 1);
    i -> first_in = (arc_reverse *) (((char *)a_rev) - 1);
  }
  delete a_rev_tmp;
}

/* maxflow.cpp */

//#include <stdio.h>
//#include "graph.h"

/*
	special constants for node->parent
*/
#define TERMINAL ( (arc_forward *) 1 )		/* to terminal */
#define ORPHAN   ( (arc_forward *) 2 )		/* orphan */

#define INFINITE_D 1000000000		/* infinite distance to the terminal */

/***********************************************************************/

/*
	Functions for processing active list.
	i->next points to the next node in the list
	(or to i, if i is the last node in the list).
	If i->next is NULL iff i is not in the list.

	There are two queues. Active nodes are added
	to the end of the second queue and read from
	the front of the first queue. If the first queue
	is empty, it is replaced by the second queue
	(and the second queue becomes empty).
*/

inline void Graph::set_active(node *i)
{
  if (!i->next) {
    /* it's not in the list yet */
    if (queue_last[1]) queue_last[1] -> next = i;
    else               queue_first[1]        = i;
    queue_last[1] = i;
    i -> next = i;
  }
}

/*
	Returns the next active node.
	If it is connected to the sink, it stays in the list,
	otherwise it is removed from the list
*/
inline Graph::node * Graph::next_active()
{
  node *i;

  while ( 1 ) {
    if (!(i=queue_first[0])) {
      queue_first[0] = i = queue_first[1];
      queue_last[0]  = queue_last[1];
      queue_first[1] = NULL;
      queue_last[1]  = NULL;
      if (!i) return NULL;
    }

    /* remove it from the active list */
    if (i->next == i) queue_first[0] = queue_last[0] = NULL;
    else              queue_first[0] = i -> next;
    i -> next = NULL;

    /* a node in the list is active iff it has a parent */
    if (i->parent) return i;
  }
}

/***********************************************************************/

inline void Graph::maxflow_init()
{
  node *i;
  node_block *nb;

  queue_first[0] = queue_last[0] = NULL;
  queue_first[1] = queue_last[1] = NULL;
  orphan_first = NULL;

  for (nb=node_block_first; nb; nb=nb->next)
    for (i=&nb->nodes[0]; i<nb->current; i++) {
      i -> next = NULL;
      i -> TS = 0;
      if (i->tr_cap > 0) {
        /* i is connected to the source */
        i -> is_sink = 0;
        i -> parent = TERMINAL;
        set_active(i);
        i -> TS = 0;
        i -> DIST = 1;
      } else if (i->tr_cap < 0) {
        /* i is connected to the sink */
        i -> is_sink = 1;
        i -> parent = TERMINAL;
        set_active(i);
        i -> TS = 0;
        i -> DIST = 1;
      } else {
        i -> parent = NULL;
      }
    }
  TIME = 0;
}

/***********************************************************************/

inline void Graph::augment(node *s_start, node *t_start, captype *cap_middle,
                           captype *rev_cap_middle)
{
  node *i;
  arc_forward *a;
  captype bottleneck;
  nodeptr *np;


  /* 1. Finding bottleneck capacity */
  /* 1a - the source tree */
  bottleneck = *cap_middle;
  for (i=s_start; ; ) {
    a = i -> parent;
    if (a == TERMINAL) break;
    if (IS_ODD(a)) {
      a = MAKE_EVEN(a);
      if (bottleneck > a->r_cap) bottleneck = a -> r_cap;
      i = NEIGHBOR_NODE_REV(i, a -> shift);
    } else {
      if (bottleneck > a->r_rev_cap) bottleneck = a -> r_rev_cap;
      i = NEIGHBOR_NODE(i, a -> shift);
    }
  }
  if (bottleneck > i->tr_cap) bottleneck = i -> tr_cap;
  /* 1b - the sink tree */
  for (i=t_start; ; ) {
    a = i -> parent;
    if (a == TERMINAL) break;
    if (IS_ODD(a)) {
      a = MAKE_EVEN(a);
      if (bottleneck > a->r_rev_cap) bottleneck = a -> r_rev_cap;
      i = NEIGHBOR_NODE_REV(i, a -> shift);
    } else {
      if (bottleneck > a->r_cap) bottleneck = a -> r_cap;
      i = NEIGHBOR_NODE(i, a -> shift);
    }
  }
  if (bottleneck > - i->tr_cap) bottleneck = - i -> tr_cap;


  /* 2. Augmenting */
  /* 2a - the source tree */
  *rev_cap_middle += bottleneck;
  *cap_middle -= bottleneck;
  for (i=s_start; ; ) {
    a = i -> parent;
    if (a == TERMINAL) break;
    if (IS_ODD(a)) {
      a = MAKE_EVEN(a);
      a -> r_rev_cap += bottleneck;
      a -> r_cap -= bottleneck;
      if (!a->r_cap) {
        /* add i to the adoption list */
        i -> parent = ORPHAN;
        np = nodeptr_block -> New();
        np -> ptr = i;
        np -> next = orphan_first;
        orphan_first = np;
      }
      i = NEIGHBOR_NODE_REV(i, a -> shift);
    } else {
      a -> r_cap += bottleneck;
      a -> r_rev_cap -= bottleneck;
      if (!a->r_rev_cap) {
        /* add i to the adoption list */
        i -> parent = ORPHAN;
        np = nodeptr_block -> New();
        np -> ptr = i;
        np -> next = orphan_first;
        orphan_first = np;
      }
      i = NEIGHBOR_NODE(i, a -> shift);
    }
  }
  i -> tr_cap -= bottleneck;
  if (!i->tr_cap) {
    /* add i to the adoption list */
    i -> parent = ORPHAN;
    np = nodeptr_block -> New();
    np -> ptr = i;
    np -> next = orphan_first;
    orphan_first = np;
  }
  /* 2b - the sink tree */
  for (i=t_start; ; ) {
    a = i -> parent;
    if (a == TERMINAL) break;
    if (IS_ODD(a)) {
      a = MAKE_EVEN(a);
      a -> r_cap += bottleneck;
      a -> r_rev_cap -= bottleneck;
      if (!a->r_rev_cap) {
        /* add i to the adoption list */
        i -> parent = ORPHAN;
        np = nodeptr_block -> New();
        np -> ptr = i;
        np -> next = orphan_first;
        orphan_first = np;
      }
      i = NEIGHBOR_NODE_REV(i, a -> shift);
    } else {
      a -> r_rev_cap += bottleneck;
      a -> r_cap -= bottleneck;
      if (!a->r_cap) {
        /* add i to the adoption list */
        i -> parent = ORPHAN;
        np = nodeptr_block -> New();
        np -> ptr = i;
        np -> next = orphan_first;
        orphan_first = np;
      }
      i = NEIGHBOR_NODE(i, a -> shift);
    }
  }
  i -> tr_cap += bottleneck;
  if (!i->tr_cap) {
    /* add i to the adoption list */
    i -> parent = ORPHAN;
    np = nodeptr_block -> New();
    np -> ptr = i;
    np -> next = orphan_first;
    orphan_first = np;
  }


  flow += bottleneck;
}

/***********************************************************************/

inline void Graph::process_source_orphan(node *i)
{
  node *j;
  arc_forward *a0_for, *a0_for_first, *a0_for_last;
  arc_reverse *a0_rev, *a0_rev_first, *a0_rev_last;
  arc_forward *a0_min = NULL, *a;
  nodeptr *np;
  int d, d_min = INFINITE_D;

  /* trying to find a new parent */
  a0_for_first = i -> first_out;
  if (IS_ODD(a0_for_first)) {
    a0_for_first = (arc_forward *) (((char *)a0_for_first) + 1);
    a0_for_last = (arc_forward *) ((a0_for_first ++) -> shift);
  } else a0_for_last = (i + 1) -> first_out;
  a0_rev_first = i -> first_in;
  if (IS_ODD(a0_rev_first)) {
    a0_rev_first = (arc_reverse *) (((char *)a0_rev_first) + 1);
    a0_rev_last  = (arc_reverse *) ((a0_rev_first ++) -> sister);
  } else a0_rev_last = (i + 1) -> first_in;


  for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++)
    if (a0_for->r_rev_cap) {
      j = NEIGHBOR_NODE(i, a0_for -> shift);
      if (!j->is_sink && (a=j->parent)) {
        /* checking the origin of j */
        d = 0;
        while ( 1 ) {
          if (j->TS == TIME) {
            d += j -> DIST;
            break;
          }
          a = j -> parent;
          d ++;
          if (a==TERMINAL) {
            j -> TS = TIME;
            j -> DIST = 1;
            break;
          }
          if (a==ORPHAN) {
            d = INFINITE_D;
            break;
          }
          if (IS_ODD(a))
            j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
          else
            j = NEIGHBOR_NODE(j, a -> shift);
        }
        if (d<INFINITE_D) { /* j originates from the source - done */
          if (d<d_min) {
            a0_min = a0_for;
            d_min = d;
          }
          /* set marks along the path */
          for (j=NEIGHBOR_NODE(i, a0_for->shift); j->TS!=TIME; ) {
            j -> TS = TIME;
            j -> DIST = d --;
            a = j->parent;
            if (IS_ODD(a))
              j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
            else
              j = NEIGHBOR_NODE(j, a -> shift);
          }
        }
      }
    }
  for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++) {
    a0_for = a0_rev -> sister;
    if (a0_for->r_cap) {
      j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
      if (!j->is_sink && (a=j->parent)) {
        /* checking the origin of j */
        d = 0;
        while ( 1 ) {
          if (j->TS == TIME) {
            d += j -> DIST;
            break;
          }
          a = j -> parent;
          d ++;
          if (a==TERMINAL) {
            j -> TS = TIME;
            j -> DIST = 1;
            break;
          }
          if (a==ORPHAN) {
            d = INFINITE_D;
            break;
          }
          if (IS_ODD(a))
            j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
          else
            j = NEIGHBOR_NODE(j, a -> shift);
        }
        if (d<INFINITE_D) { /* j originates from the source - done */
          if (d<d_min) {
            a0_min = MAKE_ODD(a0_for);
            d_min = d;
          }
          /* set marks along the path */
          for (j=NEIGHBOR_NODE_REV(i,a0_for->shift); j->TS!=TIME; ) {
            j -> TS = TIME;
            j -> DIST = d --;
            a = j->parent;
            if (IS_ODD(a))
              j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
            else
              j = NEIGHBOR_NODE(j, a -> shift);
          }
        }
      }
    }
  }

  if ( (i->parent = a0_min) ) {
    i -> TS = TIME;
    i -> DIST = d_min + 1;
  } else {
    /* no parent is found */
    i -> TS = 0;

    /* process neighbors */
    for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++) {
      j = NEIGHBOR_NODE(i, a0_for -> shift);
      if (!j->is_sink && (a=j->parent)) {
        if (a0_for->r_rev_cap) set_active(j);
        if (a!=TERMINAL && a!=ORPHAN && IS_ODD(a)
            && NEIGHBOR_NODE_REV(j, MAKE_EVEN(a)->shift)==i) {
          /* add j to the adoption list */
          j -> parent = ORPHAN;
          np = nodeptr_block -> New();
          np -> ptr = j;
          if (orphan_last) orphan_last -> next = np;
          else             orphan_first        = np;
          orphan_last = np;
          np -> next = NULL;
        }
      }
    }
    for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++) {
      a0_for = a0_rev -> sister;
      j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
      if (!j->is_sink && (a=j->parent)) {
        if (a0_for->r_cap) set_active(j);
        if (a!=TERMINAL && a!=ORPHAN && !IS_ODD(a) && NEIGHBOR_NODE(j, a->shift)==i) {
          /* add j to the adoption list */
          j -> parent = ORPHAN;
          np = nodeptr_block -> New();
          np -> ptr = j;
          if (orphan_last) orphan_last -> next = np;
          else             orphan_first        = np;
          orphan_last = np;
          np -> next = NULL;
        }
      }
    }
  }
}

inline void Graph::process_sink_orphan(node *i)
{
  node *j;
  arc_forward *a0_for, *a0_for_first, *a0_for_last;
  arc_reverse *a0_rev, *a0_rev_first, *a0_rev_last;
  arc_forward *a0_min = NULL, *a;
  nodeptr *np;
  int d, d_min = INFINITE_D;

  /* trying to find a new parent */
  a0_for_first = i -> first_out;
  if (IS_ODD(a0_for_first)) {
    a0_for_first = (arc_forward *) (((char *)a0_for_first) + 1);
    a0_for_last = (arc_forward *) ((a0_for_first ++) -> shift);
  } else a0_for_last = (i + 1) -> first_out;
  a0_rev_first = i -> first_in;
  if (IS_ODD(a0_rev_first)) {
    a0_rev_first = (arc_reverse *) (((char *)a0_rev_first) + 1);
    a0_rev_last  = (arc_reverse *) ((a0_rev_first ++) -> sister);
  } else a0_rev_last = (i + 1) -> first_in;


  for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++)
    if (a0_for->r_cap) {
      j = NEIGHBOR_NODE(i, a0_for -> shift);
      if (j->is_sink && (a=j->parent)) {
        /* checking the origin of j */
        d = 0;
        while ( 1 ) {
          if (j->TS == TIME) {
            d += j -> DIST;
            break;
          }
          a = j -> parent;
          d ++;
          if (a==TERMINAL) {
            j -> TS = TIME;
            j -> DIST = 1;
            break;
          }
          if (a==ORPHAN) {
            d = INFINITE_D;
            break;
          }
          if (IS_ODD(a))
            j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
          else
            j = NEIGHBOR_NODE(j, a -> shift);
        }
        if (d<INFINITE_D) { /* j originates from the sink - done */
          if (d<d_min) {
            a0_min = a0_for;
            d_min = d;
          }
          /* set marks along the path */
          for (j=NEIGHBOR_NODE(i, a0_for->shift); j->TS!=TIME; ) {
            j -> TS = TIME;
            j -> DIST = d --;
            a = j->parent;
            if (IS_ODD(a))
              j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
            else
              j = NEIGHBOR_NODE(j, a -> shift);
          }
        }
      }
    }
  for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++) {
    a0_for = a0_rev -> sister;
    if (a0_for->r_rev_cap) {
      j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
      if (j->is_sink && (a=j->parent)) {
        /* checking the origin of j */
        d = 0;
        while ( 1 ) {
          if (j->TS == TIME) {
            d += j -> DIST;
            break;
          }
          a = j -> parent;
          d ++;
          if (a==TERMINAL) {
            j -> TS = TIME;
            j -> DIST = 1;
            break;
          }
          if (a==ORPHAN) {
            d = INFINITE_D;
            break;
          }
          if (IS_ODD(a))
            j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
          else
            j = NEIGHBOR_NODE(j, a -> shift);
        }
        if (d<INFINITE_D) { /* j originates from the sink - done */
          if (d<d_min) {
            a0_min = MAKE_ODD(a0_for);
            d_min = d;
          }
          /* set marks along the path */
          for (j=NEIGHBOR_NODE_REV(i,a0_for->shift); j->TS!=TIME; ) {
            j -> TS = TIME;
            j -> DIST = d --;
            a = j->parent;
            if (IS_ODD(a))
              j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
            else
              j = NEIGHBOR_NODE(j, a -> shift);
          }
        }
      }
    }
  }

  if ( (i->parent = a0_min) ) {
    i -> TS = TIME;
    i -> DIST = d_min + 1;
  } else {
    /* no parent is found */
    i -> TS = 0;

    /* process neighbors */
    for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++) {
      j = NEIGHBOR_NODE(i, a0_for -> shift);
      if (j->is_sink && (a=j->parent)) {
        if (a0_for->r_cap) set_active(j);
        if (a!=TERMINAL && a!=ORPHAN && IS_ODD(a)
            && NEIGHBOR_NODE_REV(j, MAKE_EVEN(a)->shift)==i) {
          /* add j to the adoption list */
          j -> parent = ORPHAN;
          np = nodeptr_block -> New();
          np -> ptr = j;
          if (orphan_last) orphan_last -> next = np;
          else             orphan_first        = np;
          orphan_last = np;
          np -> next = NULL;
        }
      }
    }
    for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++) {
      a0_for = a0_rev -> sister;
      j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
      if (j->is_sink && (a=j->parent)) {
        if (a0_for->r_rev_cap) set_active(j);
        if (a!=TERMINAL && a!=ORPHAN && !IS_ODD(a) && NEIGHBOR_NODE(j, a->shift)==i) {
          /* add j to the adoption list */
          j -> parent = ORPHAN;
          np = nodeptr_block -> New();
          np -> ptr = j;
          if (orphan_last) orphan_last -> next = np;
          else             orphan_first        = np;
          orphan_last = np;
          np -> next = NULL;
        }
      }
    }
  }
}

/***********************************************************************/

inline Graph::flowtype Graph::maxflow()
{
  node *i, *j, *current_node = NULL, *s_start, *t_start=NULL;
  captype *cap_middle=NULL, *rev_cap_middle=NULL;
  arc_forward *a_for, *a_for_first, *a_for_last;
  arc_reverse *a_rev, *a_rev_first, *a_rev_last;
  nodeptr *np, *np_next;

  prepare_graph();
  maxflow_init();
  nodeptr_block = new DBlock<nodeptr>(NODEPTR_BLOCK_SIZE, error_function);

  while ( 1 ) {
    if ( (i=current_node) ) {
      i -> next = NULL; /* remove active flag */
      if (!i->parent) i = NULL;
    }
    if (!i) {
      if (!(i = next_active())) break;
    }

    /* growth */
    s_start = NULL;

    a_for_first = i -> first_out;
    if (IS_ODD(a_for_first)) {
      a_for_first = (arc_forward *) (((char *)a_for_first) + 1);
      a_for_last = (arc_forward *) ((a_for_first ++) -> shift);
    } else a_for_last = (i + 1) -> first_out;
    a_rev_first = i -> first_in;
    if (IS_ODD(a_rev_first)) {
      a_rev_first = (arc_reverse *) (((char *)a_rev_first) + 1);
      a_rev_last = (arc_reverse *) ((a_rev_first ++) -> sister);
    } else a_rev_last = (i + 1) -> first_in;

    if (!i->is_sink) {
      /* grow source tree */
      for (a_for=a_for_first; a_for<a_for_last; a_for++)
        if (a_for->r_cap) {
          j = NEIGHBOR_NODE(i, a_for -> shift);
          if (!j->parent) {
            j -> is_sink = 0;
            j -> parent = MAKE_ODD(a_for);
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
            set_active(j);
          } else if (j->is_sink) {
            s_start = i;
            t_start = j;
            cap_middle     = & ( a_for -> r_cap );
            rev_cap_middle = & ( a_for -> r_rev_cap );
            break;
          } else if (j->TS <= i->TS &&
                     j->DIST > i->DIST) {
            /* heuristic - trying to make the distance from j to the source shorter */
            j -> parent = MAKE_ODD(a_for);
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
          }
        }
      if (!s_start)
        for (a_rev=a_rev_first; a_rev<a_rev_last; a_rev++) {
          a_for = a_rev -> sister;
          if (a_for->r_rev_cap) {
            j = NEIGHBOR_NODE_REV(i, a_for -> shift);
            if (!j->parent) {
              j -> is_sink = 0;
              j -> parent = a_for;
              j -> TS = i -> TS;
              j -> DIST = i -> DIST + 1;
              set_active(j);
            } else if (j->is_sink) {
              s_start = i;
              t_start = j;
              cap_middle     = & ( a_for -> r_rev_cap );
              rev_cap_middle = & ( a_for -> r_cap );
              break;
            } else if (j->TS <= i->TS &&
                       j->DIST > i->DIST) {
              /* heuristic - trying to make the distance from j to the source shorter */
              j -> parent = a_for;
              j -> TS = i -> TS;
              j -> DIST = i -> DIST + 1;
            }
          }
        }
    } else {
      /* grow sink tree */
      for (a_for=a_for_first; a_for<a_for_last; a_for++)
        if (a_for->r_rev_cap) {
          j = NEIGHBOR_NODE(i, a_for -> shift);
          if (!j->parent) {
            j -> is_sink = 1;
            j -> parent = MAKE_ODD(a_for);
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
            set_active(j);
          } else if (!j->is_sink) {
            s_start = j;
            t_start = i;
            cap_middle     = & ( a_for -> r_rev_cap );
            rev_cap_middle = & ( a_for -> r_cap );
            break;
          } else if (j->TS <= i->TS &&
                     j->DIST > i->DIST) {
            /* heuristic - trying to make the distance from j to the sink shorter */
            j -> parent = MAKE_ODD(a_for);
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
          }
        }
      for (a_rev=a_rev_first; a_rev<a_rev_last; a_rev++) {
        a_for = a_rev -> sister;
        if (a_for->r_cap) {
          j = NEIGHBOR_NODE_REV(i, a_for -> shift);
          if (!j->parent) {
            j -> is_sink = 1;
            j -> parent = a_for;
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
            set_active(j);
          } else if (!j->is_sink) {
            s_start = j;
            t_start = i;
            cap_middle     = & ( a_for -> r_cap );
            rev_cap_middle = & ( a_for -> r_rev_cap );
            break;
          } else if (j->TS <= i->TS &&
                     j->DIST > i->DIST) {
            /* heuristic - trying to make the distance from j to the sink shorter */
            j -> parent = a_for;
            j -> TS = i -> TS;
            j -> DIST = i -> DIST + 1;
          }
        }
      }
    }

    TIME ++;

    if (s_start) {
      i -> next = i; /* set active flag */
      current_node = i;

      /* augmentation */
      augment(s_start, t_start, cap_middle, rev_cap_middle);
      /* augmentation end */

      /* adoption */
      while ( (np=orphan_first) ) {
        np_next = np -> next;
        np -> next = NULL;

        while ( (np=orphan_first) ) {
          orphan_first = np -> next;
          i = np -> ptr;
          nodeptr_block -> Delete(np);
          if (!orphan_first) orphan_last = NULL;
          if (i->is_sink) process_sink_orphan(i);
          else            process_source_orphan(i);
        }

        orphan_first = np_next;
      }
      /* adoption end */
    } else current_node = NULL;
  }

  delete nodeptr_block;

  return flow;
}

/***********************************************************************/

inline Graph::termtype Graph::what_segment(node_id i)
{
  if (((node*)i)->parent && !((node*)i)->is_sink) return SOURCE;
  return SINK;
}

#endif