/usr/include/CGAL/estimate_scale.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 | // Copyright (c) 2013 INRIA Sophia-Antipolis (France).
// Copyright (c) 2016 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Simon Giraudot
#ifndef CGAL_ESTIMATE_SCALE_H
#define CGAL_ESTIMATE_SCALE_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <CGAL/assertions.h>
#include <CGAL/hierarchy_simplify_point_set.h>
#include <CGAL/random_simplify_point_set.h>
#include <CGAL/Point_set_2.h>
#include <fstream>
#include <iterator>
#include <list>
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {
template <class Kernel, class PointType>
class Quick_multiscale_approximate_knn_distance
{
};
template <class Kernel>
class Quick_multiscale_approximate_knn_distance<Kernel, typename Kernel::Point_3>
{
typedef typename Kernel::FT FT;
typedef Search_traits_3<Kernel> Tree_traits;
typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
typedef typename Neighbor_search::iterator Iterator;
template <typename ValueType, typename PointPMap>
struct Pmap_unary_function : public std::unary_function<ValueType, typename Kernel::Point_3>
{
PointPMap point_pmap;
Pmap_unary_function (PointPMap point_pmap) : point_pmap (point_pmap) { }
const typename Kernel::Point_3& operator() (const ValueType& v) const { return get(point_pmap, v); }
};
std::size_t m_cluster_size;
std::vector<Tree*> m_trees;
std::vector<FT> m_weights;
std::vector<FT> m_precomputed_factor;
public:
template <typename InputIterator, typename PointPMap>
Quick_multiscale_approximate_knn_distance (InputIterator first,
InputIterator beyond,
PointPMap point_pmap,
std::size_t cluster_size = 25)
: m_cluster_size (cluster_size)
{
typedef Pmap_unary_function<typename std::iterator_traits<InputIterator>::value_type,
PointPMap> Unary_f;
m_trees.push_back (new Tree (boost::make_transform_iterator (first, Unary_f(point_pmap)),
boost::make_transform_iterator (beyond, Unary_f(point_pmap))));
m_weights.push_back (1.);
std::size_t nb_pts = m_trees[0]->size();
std::size_t nb_trees = 0;
while (nb_pts > m_cluster_size)
{
nb_trees ++;
nb_pts /= m_cluster_size;
}
m_trees.reserve (nb_trees);
m_weights.reserve (nb_trees);
InputIterator first_unused = beyond;
nb_pts = m_trees[0]->size();
for (std::size_t i = 1; i < nb_trees; ++ i)
{
first_unused
= CGAL::hierarchy_simplify_point_set (first, first_unused, point_pmap,
static_cast<unsigned int>(m_cluster_size), 1./3.);
m_trees.push_back (new Tree(boost::make_transform_iterator (first, Unary_f(point_pmap)),
boost::make_transform_iterator (first_unused, Unary_f(point_pmap))));
m_weights.push_back (m_trees[0]->size() / (FT)(m_trees.back()->size()));
}
}
~Quick_multiscale_approximate_knn_distance()
{
for (std::size_t i = 0; i < m_trees.size(); ++ i)
delete m_trees[i];
}
template <typename InputIterator, typename PointPMap>
std::size_t compute_k_scale (InputIterator query, PointPMap point_pmap)
{
std::size_t out;
FT dummy;
compute_scale (query, point_pmap, out, dummy);
return out;
}
template <typename InputIterator, typename PointPMap>
FT compute_range_scale (InputIterator query, PointPMap point_pmap)
{
std::size_t dummy;
FT out;
compute_scale (query, point_pmap, dummy, out);
return out;
}
void precompute_factors ()
{
FT nb = 0.;
for (std::size_t t = 0; t < m_trees.size(); ++ t)
{
std::size_t size = (t == (m_trees.size() - 1)
? m_trees[t]->size()
: static_cast<std::size_t>(m_weights[t+1] / m_weights[t]));
for (std::size_t i = (t == 0 ? 0 : 1); i < size; ++ i)
{
nb += m_weights[t];
if (nb < 6.) // do not consider values under 6
continue;
m_precomputed_factor.push_back (0.91666666 * std::log (nb));
}
}
}
template <typename InputIterator, typename PointPMap>
void compute_scale (InputIterator query, PointPMap point_pmap,
std::size_t& k, FT& d)
{
if (m_precomputed_factor.empty())
precompute_factors();
k = 0;
d = 0.;
FT dist_min = (std::numeric_limits<FT>::max)();
FT sum_sq_distances = 0.;
FT nb = 0.;
std::size_t index = 0;
for (std::size_t t = 0; t < m_trees.size(); ++ t)
{
Neighbor_search search (*(m_trees[t]), get(point_pmap, *query),
static_cast<unsigned int>((t == (m_trees.size() - 1)
? m_trees[t]->size()
: m_weights[t+1] / m_weights[t])));
Iterator it = search.begin();
if (t != 0) // Skip first point except on first scale
++ it;
for (; it != search.end(); ++ it)
{
sum_sq_distances += m_weights[t] * it->second;
nb += m_weights[t];
if (nb < 6.) // do not consider values under 6
continue;
// sqrt(sum_sq_distances / nb) / nb^(5/12)
// Computed in log space with precomputed factor for time optimization
FT dist = 0.5 * std::log (sum_sq_distances) - m_precomputed_factor[index ++];
if (dist < dist_min)
{
dist_min = dist;
k = (std::size_t)nb;
d = it->second;
}
}
}
}
};
template <class Kernel>
class Quick_multiscale_approximate_knn_distance<Kernel, typename Kernel::Point_2>
{
typedef typename Kernel::FT FT;
typedef CGAL::Point_set_2<Kernel> Point_set;
typedef typename Point_set::Vertex_handle Vertex_handle;
template <typename ValueType, typename PointPMap>
struct Pmap_unary_function : public std::unary_function<ValueType, typename Kernel::Point_2>
{
PointPMap point_pmap;
Pmap_unary_function (PointPMap point_pmap) : point_pmap (point_pmap) { }
const typename Kernel::Point_2& operator() (const ValueType& v) const { return get(point_pmap, v); }
};
template <typename PointPMap>
struct Pmap_to_3d
{
PointPMap point_pmap;
typedef typename Kernel::Point_3 value_type;
typedef const value_type& reference;
typedef typename boost::property_traits<PointPMap>::key_type key_type;
typedef boost::lvalue_property_map_tag category;
Pmap_to_3d () { }
Pmap_to_3d (PointPMap point_pmap)
: point_pmap (point_pmap) { }
friend inline value_type get (const Pmap_to_3d& ppmap, key_type i)
{
typename Kernel::Point_2 p2 = get(ppmap.point_pmap, i);
return value_type (p2.x(), p2.y(), 0.);
}
};
struct Sort_by_distance_to_point
{
const typename Kernel::Point_2& ref;
Sort_by_distance_to_point (const typename Kernel::Point_2& ref) : ref (ref) { }
bool operator() (const Vertex_handle& a, const Vertex_handle& b)
{
return (CGAL::squared_distance (a->point(), ref)
< CGAL::squared_distance (b->point(), ref));
}
};
std::size_t m_cluster_size;
std::vector<Point_set*> m_point_sets;
std::vector<FT> m_weights;
std::vector<FT> m_precomputed_factor;
public:
template <typename InputIterator, typename PointPMap>
Quick_multiscale_approximate_knn_distance (InputIterator first,
InputIterator beyond,
PointPMap point_pmap,
std::size_t cluster_size = 25)
: m_cluster_size (cluster_size)
{
typedef Pmap_unary_function<typename std::iterator_traits<InputIterator>::value_type,
PointPMap> Unary_f;
m_point_sets.push_back (new Point_set (boost::make_transform_iterator (first, Unary_f(point_pmap)),
boost::make_transform_iterator (beyond, Unary_f(point_pmap))));
m_weights.push_back (1.);
std::size_t nb_pts = m_point_sets[0]->number_of_vertices();
std::size_t nb_trees = 0;
while (nb_pts > m_cluster_size)
{
nb_trees ++;
nb_pts /= m_cluster_size;
}
m_point_sets.reserve (nb_trees);
m_weights.reserve (nb_trees);
InputIterator first_unused = beyond;
nb_pts = m_point_sets[0]->number_of_vertices();
for (std::size_t i = 1; i < nb_trees; ++ i)
{
first_unused
= CGAL::hierarchy_simplify_point_set (first, first_unused, Pmap_to_3d<PointPMap> (point_pmap),
static_cast<unsigned int>(m_cluster_size), 1./3.);
m_point_sets.push_back (new Point_set (boost::make_transform_iterator (first, Unary_f(point_pmap)),
boost::make_transform_iterator (first_unused, Unary_f(point_pmap))));
m_weights.push_back (nb_pts / (FT)(m_point_sets.back()->number_of_vertices()));
}
m_cluster_size = cluster_size;
}
~Quick_multiscale_approximate_knn_distance()
{
for (std::size_t i = 0; i < m_point_sets.size(); ++ i)
delete m_point_sets[i];
}
template <typename InputIterator, typename PointPMap>
std::size_t compute_k_scale (InputIterator query, PointPMap point_pmap)
{
std::size_t out;
FT dummy;
compute_scale (query, point_pmap, out, dummy);
return out;
}
template <typename InputIterator, typename PointPMap>
FT compute_range_scale (InputIterator query, PointPMap point_pmap)
{
std::size_t dummy;
FT out;
compute_scale (query, point_pmap, dummy, out);
return out;
}
void precompute_factors ()
{
FT nb = 0.;
for (std::size_t t = 0; t < m_point_sets.size(); ++ t)
{
std::size_t size = (t == m_point_sets.size() - 1
? m_point_sets[t]->number_of_vertices()
: static_cast<std::size_t>(m_weights[t+1] / m_weights[t]));
for (std::size_t i = (t == 0 ? 0 : 1); i < size; ++ i)
{
nb += m_weights[t];
if (nb < 6.) // do not consider values under 6
continue;
m_precomputed_factor.push_back (1.25 * std::log (nb));
}
}
}
template <typename InputIterator, typename PointPMap>
void compute_scale (InputIterator query, PointPMap point_pmap,
std::size_t& k, FT& d)
{
if (m_precomputed_factor.empty())
precompute_factors();
k = 0;
d = 0.;
FT dist_min = (std::numeric_limits<FT>::max)();
FT sum_sq_distances = 0.;
FT nb = 0.;
std::size_t index = 0;
const typename Kernel::Point_2& pquery = get(point_pmap, *query);
for (std::size_t t = 0; t < m_point_sets.size(); ++ t)
{
std::size_t size = ((t == m_point_sets.size() - 1)
? m_point_sets[t]->number_of_vertices()
: static_cast<std::size_t>(m_weights[t+1] / m_weights[t]));
std::vector<Vertex_handle> neighbors;
neighbors.reserve (size);
m_point_sets[t]->nearest_neighbors (pquery, size, std::back_inserter (neighbors));
std::sort (neighbors.begin(), neighbors.end(),
Sort_by_distance_to_point (pquery));
for (std::size_t n = (t == 0 ? 0 : 1); n < neighbors.size(); ++ n)
{
FT sq_dist = CGAL::squared_distance (pquery, neighbors[n]->point());
sum_sq_distances += m_weights[t] * sq_dist;
nb += m_weights[t];
if (nb < 6.) // do not consider values under 6
continue;
// sqrt(sum_sq_distances / nb) / nb^(3/4)
// Computed in log space with precomputed factor for time optimization
FT dist = 0.5 * std::log (sum_sq_distances) - m_precomputed_factor[index ++];
if (dist < dist_min)
{
dist_min = dist;
k = (std::size_t)nb;
d = sq_dist;
}
}
}
}
};
} /* namespace internal */
/// \endcond
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/// \ingroup PkgPointSetProcessingAlgorithms
/// Estimates the local scale in a K nearest neighbors sense on a set
/// of user-defined query points. The computed scales correspond to
/// the smallest scales such that the K subsets of points have the
/// appearance of a surface in 3D or the appearance of a curve in 2D
/// (see \ref Point_set_processing_3Scale).
///
///
/// @tparam SamplesInputIterator iterator over input sample points.
/// @tparam SamplesPointPMap is a model of `ReadablePropertyMap` with
/// value type `Point_3<Kernel>` or `Point_2<Kernel>`. It can
/// be omitted if the value type of `SamplesInputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam QueriesInputIterator iterator over points where scale
/// should be computed.
/// @tparam QueriesInputIterator is a model of `ReadablePropertyMap`
/// with value type `Point_3<Kernel>` or `Point_2<Kernel>`. It
/// can be omitted if the value type of `QueriesInputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam OutputIterator is used to store the computed scales. It accepts
/// values of type `std::size_t`.
/// @tparam Kernel Geometric traits class. It can be omitted and
/// deduced automatically from the value type of `SamplesPointPMap`.
///
/// @note This function accepts both 2D and 3D points, but sample
/// points and query must have the same dimension.
// This variant requires all parameters.
template <typename SamplesInputIterator,
typename SamplesPointPMap,
typename QueriesInputIterator,
typename QueriesPointPMap,
typename OutputIterator,
typename Kernel
>
OutputIterator
estimate_local_k_neighbor_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
SamplesPointPMap samples_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
QueriesPointPMap queries_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
OutputIterator output, ///< output iterator to store the computed scales
const Kernel& /*kernel*/) ///< geometric traits.
{
typedef typename boost::property_traits<SamplesPointPMap>::value_type Point_d;
// Build multi-scale KD-tree
internal::Quick_multiscale_approximate_knn_distance<Kernel, Point_d> kdtree (first, beyond, samples_pmap);
// Compute local scales everywhere
for (QueriesInputIterator it = first_query; it != beyond_query; ++ it)
*(output ++) = kdtree.compute_k_scale (it, queries_pmap);
return output;
}
/// \ingroup PkgPointSetProcessingAlgorithms
/// Estimates the global scale in a K nearest neighbors sense. The
/// computed scale corresponds to the smallest scale such that the K
/// subsets of points have the appearance of a surface in 3D or the
/// appearance of a curve in 2D (see \ref Point_set_processing_3Scale).
///
///
/// @tparam InputIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap` with
/// value type `Point_3<Kernel>` or `Point_2<Kernel>`. It can
/// be omitted if the value type of `InputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam Kernel Geometric traits class. It can be omitted and
/// deduced automatically from the value type of `PointPMap`.
///
/// @note This function accepts both 2D and 3D points.
///
/// @return The estimated scale in the K nearest neighbors sense.
// This variant requires all parameters.
template <typename InputIterator,
typename PointPMap,
typename Kernel
>
std::size_t
estimate_global_k_neighbor_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
const Kernel& kernel) ///< geometric traits.
{
std::vector<std::size_t> scales;
estimate_local_k_neighbor_scales (first, beyond, point_pmap,
first, beyond, point_pmap,
std::back_inserter (scales),
kernel);
std::sort (scales.begin(), scales.end());
return scales[scales.size() / 2];
}
/// \ingroup PkgPointSetProcessingAlgorithms
/// Estimates the local scale in a range sense on a set of
/// user-defined query points. The computed scales correspond to the
/// smallest scales such that the subsets of points included in the
/// sphere range have the appearance of a surface in 3D or the
/// appearance of a curve in 2D (see \ref Point_set_processing_3Scale).
///
///
/// @tparam SamplesInputIterator iterator over input sample points.
/// @tparam SamplesPointPMap is a model of `ReadablePropertyMap` with
/// value type `Point_3<Kernel>` or `Point_2<Kernel>`. It can
/// be omitted if the value type of `SamplesInputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam QueriesInputIterator iterator over points where scale
/// should be computed.
/// @tparam QueriesInputIterator is a model of `ReadablePropertyMap`
/// with value type `Point_3<Kernel>` or `Point_2<Kernel>`. It
/// can be omitted if the value type of `QueriesInputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam OutputIterator is used to store the computed scales. It accepts
/// values of type `Kernel::FT`.
/// @tparam Kernel Geometric traits class. It can be omitted and
/// deduced automatically from the value type of `SamplesPointPMap`.
///
/// @note This function accepts both 2D and 3D points, but sample
/// points and query must have the same dimension.
// This variant requires all parameters.
template <typename SamplesInputIterator,
typename SamplesPointPMap,
typename QueriesInputIterator,
typename QueriesPointPMap,
typename OutputIterator,
typename Kernel
>
OutputIterator
estimate_local_range_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
SamplesPointPMap samples_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
QueriesPointPMap queries_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
OutputIterator output, ///< output iterator to store the computed scales
const Kernel& /*kernel*/) ///< geometric traits.
{
typedef typename boost::property_traits<SamplesPointPMap>::value_type Point_d;
// Build multi-scale KD-tree
internal::Quick_multiscale_approximate_knn_distance<Kernel, Point_d> kdtree (first, beyond, samples_pmap);
// Compute local scales everywhere
for (QueriesInputIterator it = first_query; it != beyond_query; ++ it)
*(output ++) = kdtree.compute_range_scale (it, queries_pmap);
return output;
}
/// \ingroup PkgPointSetProcessingAlgorithms
/// Estimates the global scale in a range sense. The computed scale
/// corresponds to the smallest scale such that the subsets of points
/// inside the sphere range have the appearance of a surface in 3D or
/// the appearance of a curve in 2D (see \ref Point_set_processing_3Scale).
///
///
/// @tparam InputIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap` with
/// value type `Point_3<Kernel>` or `Point_2<Kernel>`. It can
/// be omitted if the value type of `InputIterator` is
/// convertible to `Point_3<Kernel>` or to `Point_2<Kernel>`.
/// @tparam Kernel Geometric traits class. It can be omitted and
/// deduced automatically from the value type of `PointPMap`.
///
/// @note This function accepts both 2D and 3D points.
///
/// @return The estimated scale in the range sense.
// This variant requires all parameters.
template <typename InputIterator,
typename PointPMap,
typename Kernel
>
typename Kernel::FT
estimate_global_range_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_3
const Kernel& kernel) ///< geometric traits.
{
std::vector<typename Kernel::FT> scales;
estimate_local_range_scales (first, beyond, point_pmap,
first, beyond, point_pmap,
std::back_inserter (scales),
kernel);
std::sort (scales.begin(), scales.end());
return std::sqrt (scales[scales.size() / 2]);
}
// ----------------------------------------------------------------------------
// Useful overloads
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
template <typename SamplesInputIterator,
typename SamplesPointPMap,
typename QueriesInputIterator,
typename QueriesPointPMap,
typename OutputIterator
>
OutputIterator
estimate_local_k_neighbor_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
SamplesPointPMap samples_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
QueriesPointPMap queries_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
OutputIterator output) ///< output iterator to store the computed scales
{
typedef typename boost::property_traits<SamplesPointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return estimate_local_k_neighbor_scales (first, beyond, samples_pmap, first_query, beyond_query,
queries_pmap, output, Kernel());
}
template <typename SamplesInputIterator,
typename QueriesInputIterator,
typename OutputIterator
>
OutputIterator
estimate_local_k_neighbor_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
OutputIterator output) ///< output iterator to store the computed scales
{
return estimate_local_k_neighbor_scales
(first, beyond,
make_identity_property_map (typename std::iterator_traits<SamplesInputIterator>::value_type()),
first_query, beyond_query,
make_identity_property_map (typename std::iterator_traits<QueriesInputIterator>::value_type()),
output);
}
template <typename InputIterator,
typename PointPMap
>
std::size_t
estimate_global_k_neighbor_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap) ///< property map: value_type of InputIterator -> Point_3 or Point_2
{
typedef typename boost::property_traits<PointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return estimate_global_k_neighbor_scale (first, beyond, point_pmap, Kernel());
}
template <typename InputIterator
>
std::size_t
estimate_global_k_neighbor_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond) ///< past-the-end iterator over the input points.
{
return estimate_global_k_neighbor_scale
(first, beyond, make_identity_property_map (typename std::iterator_traits<InputIterator>::value_type()));
}
template <typename SamplesInputIterator,
typename SamplesPointPMap,
typename QueriesInputIterator,
typename QueriesPointPMap,
typename OutputIterator
>
OutputIterator
estimate_local_range_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
SamplesPointPMap samples_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
QueriesPointPMap queries_pmap, ///< property map: value_type of InputIterator -> Point_3 or Point_2
OutputIterator output) ///< output iterator to store the computed scales
{
typedef typename boost::property_traits<SamplesPointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return estimate_local_range_scales(first, beyond, samples_pmap, first_query, beyond_query,
queries_pmap, output, Kernel());
}
template <typename SamplesInputIterator,
typename QueriesInputIterator,
typename OutputIterator
>
OutputIterator
estimate_local_range_scales(
SamplesInputIterator first, ///< iterator over the first input sample.
SamplesInputIterator beyond, ///< past-the-end iterator over the input samples.
QueriesInputIterator first_query, ///< iterator over the first point where scale must be estimated
QueriesInputIterator beyond_query, ///< past-the-end iterator over the points where scale must be estimated
OutputIterator output) ///< output iterator to store the computed scales
{
return estimate_local_range_scales
(first, beyond,
make_identity_property_map (typename std::iterator_traits<SamplesInputIterator>::value_type()),
first_query, beyond_query,
make_identity_property_map (typename std::iterator_traits<QueriesInputIterator>::value_type()),
output);
}
template <typename InputIterator,
typename PointPMap
>
typename Kernel_traits<typename boost::property_traits<PointPMap>::value_type>::Kernel::FT
estimate_global_range_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap) ///< property map: value_type of InputIterator -> Point_3 or Point_3
{
typedef typename boost::property_traits<PointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return estimate_global_range_scale (first, beyond, point_pmap, Kernel());
}
template <typename InputIterator>
typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel::FT
estimate_global_range_scale(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond) ///< past-the-end iterator over the input points.
{
return estimate_global_range_scale
(first, beyond, make_identity_property_map (typename std::iterator_traits<InputIterator>::value_type()));
}
/// \endcond
} //namespace CGAL
#endif // CGAL_ESTIMATE_SCALE_3_H
|