/usr/include/CGAL/boost/graph/helpers.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | // Copyright (c) 2014 GeometryFactory (France). All rights reserved.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Andreas Fabri
#ifndef CGAL_BOOST_GRAPH_HELPERS_H
#define CGAL_BOOST_GRAPH_HELPERS_H
#include <boost/foreach.hpp>
#include <boost/range/empty.hpp>
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/boost/graph/properties.h>
#include <CGAL/boost/graph/internal/Has_member_clear.h>
#include <CGAL/function_objects.h>
namespace CGAL {
namespace Euler {
template< typename Graph>
void fill_hole(typename boost::graph_traits<Graph>::halfedge_descriptor h,
Graph& g);
template<typename Graph , typename VertexRange >
typename boost::graph_traits<Graph>::face_descriptor add_face(const VertexRange& vr,
Graph& g);
}//Euler
/*!
\ingroup PkgBGLHelperFct
returns `true` if the halfedge `hd` is on a border.
*/
template <typename FaceGraph>
bool is_border(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return face(hd,g) == boost::graph_traits<FaceGraph>::null_face();
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if the halfedge `hd` or the opposite halfedge is on a border.
*/
template <typename FaceGraph>
bool is_border_edge(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return is_border(hd, g) || is_border(opposite(hd,g), g);
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if the edge `e` is on a border.
*/
template <typename FaceGraph>
bool is_border(typename boost::graph_traits<FaceGraph>::edge_descriptor ed, const FaceGraph& g)
{
return is_border_edge(halfedge(ed,g), g);
}
/*!
\ingroup PkgBGLHelperFct
returns a halfedge which is on a border and whose target vertex is `vd`, if such a halfedge exists.
*/
template <typename FaceGraph>
boost::optional<typename boost::graph_traits<FaceGraph>::halfedge_descriptor>
is_border(typename boost::graph_traits<FaceGraph>::vertex_descriptor vd,
const FaceGraph& g)
{
CGAL::Halfedge_around_target_iterator<FaceGraph> havib, havie;
for(boost::tie(havib, havie) = halfedges_around_target(halfedge(vd, g), g); havib != havie; ++havib) {
if(is_border(*havib,g)) {
typename boost::graph_traits<FaceGraph>::halfedge_descriptor h = *havib;
return h;
}
}
// empty
return boost::optional<typename boost::graph_traits<FaceGraph>::halfedge_descriptor>();
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if there are no border edges.
*/
template <typename FaceGraph>
bool is_closed(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
BOOST_FOREACH(halfedge_descriptor hd, halfedges(g)){
if(is_border(hd,g)){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if the target of `hd` has exactly two incident edges.
*/
template <typename FaceGraph>
bool is_bivalent(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return hd == opposite(next(opposite(next(hd,g),g),g),g);
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if all vertices have exactly two incident edges.
*/
template <typename FaceGraph>
bool is_bivalent_mesh(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
BOOST_FOREACH(vertex_descriptor vd, vertices(g)){
halfedge_descriptor hd = halfedge(vd,g);
if((hd == boost::graph_traits<FaceGraph>::null_halfedge()) ||
(! is_bivalent(hd,g))){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if the target of `hd` has exactly three incident edges.
*/
template <typename FaceGraph>
bool is_trivalent(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return hd == opposite(next(opposite(next(opposite(next(hd,g),g),g),g),g),g);
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if all
vertices have exactly three incident edges.
*/
template <typename FaceGraph>
bool is_trivalent_mesh(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
BOOST_FOREACH(vertex_descriptor vd, vertices(g)){
halfedge_descriptor hd = halfedge(vd,g);
if((hd == boost::graph_traits<FaceGraph>::null_halfedge()) ||
(! is_trivalent(halfedge(hd,g),g))){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the connected component denoted by `hd` is a triangle.
\pre `g` must be valid.
*/
template <typename FaceGraph>
bool is_isolated_triangle(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor beg = hd;
if(is_border(hd,g)) return false;
for(int i=0; i<3;i++){
if(! is_border(opposite(hd,g),g)) return false;
hd = next(hd,g);
}
return hd == beg;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the face denoted by `hd` is a triangle, that is it has three incident halfedges.
*/
template <typename FaceGraph>
bool is_triangle(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return hd == next(next(next(hd,g),g),g);
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if all faces are triangles.
*/
template <typename FaceGraph>
bool is_triangle_mesh(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
BOOST_FOREACH(face_descriptor fd, faces(g)){
if(! is_triangle(halfedge(fd,g),g)){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the connected component denoted by `hd` is a quadrilateral.
*/
template <typename FaceGraph>
bool is_isolated_quad(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor beg = hd;
if(is_border(hd,g)) return false;
for(int i=0; i<4;i++){
if(! is_border(opposite(hd,g),g)) return false;
hd = next(hd,g);
}
return hd == beg;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the face denoted by `hd` is a quad, that is it has four incident halfedges.
*/
template <typename FaceGraph>
bool is_quad(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
return hd == next(next(next(next(hd,g),g),g),g);
}
/*!
\ingroup PkgBGLHelperFct
returns `true` if all faces are quadrilaterals.
*/
template <typename FaceGraph>
bool is_quad_mesh(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
BOOST_FOREACH(face_descriptor fd, faces(g)){
if(! is_quad(halfedge(fd,g),g)){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the connected component denoted by `hd` is a tetrahedron.
*/
template <typename FaceGraph>
bool is_tetrahedron( typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h1 = hd;
if(is_border(h1,g)) return false;
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h2 = next(h1,g);
halfedge_descriptor h3 = next(h2,g);
halfedge_descriptor h4 = next(opposite(h1,g),g );
halfedge_descriptor h5 = next(opposite(h2,g),g );
halfedge_descriptor h6 = next(opposite(h3,g),g );
// check halfedge combinatorics.
// at least three edges at vertices 1, 2, 3.
if ( h4 == opposite(h3,g) ) return false;
if ( h5 == opposite(h1,g) ) return false;
if ( h6 == opposite(h2,g) ) return false;
// exact three edges at vertices 1, 2, 3.
if ( next(opposite(h4,g),g) != opposite(h3,g) ) return false;
if ( next(opposite(h5,g),g) != opposite(h1,g) ) return false;
if ( next(opposite(h6,g),g) != opposite(h2,g) ) return false;
// three edges at v4.
if ( opposite(next(h4,g),g) != h5 ) return false;
if ( opposite(next(h5,g),g) != h6 ) return false;
if ( opposite(next(h6,g),g) != h4 ) return false;
// All facets are triangles.
if ( next(next(next(h1,g),g),g) != h1 ) return false;
if ( next(next(next(h4,g),g),g) != h4 ) return false;
if ( next(next(next(h5,g),g),g) != h5 ) return false;
if ( next(next(next(h6,g),g),g) != h6 ) return false;
// all edges are non-border edges.
if ( is_border(h1,g) ) return false; // implies h2 and h3
if ( is_border(h4,g) ) return false;
if ( is_border(h5,g) ) return false;
if ( is_border(h6,g) ) return false;
return true;
}
template <typename FaceGraph>
bool is_valid_halfedge_descriptor( typename boost::graph_traits<FaceGraph>::halfedge_descriptor h, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
face_descriptor f = face(h,g);
halfedge_descriptor done(h);
do{
if(face(h,g) != f){
std::cerr << "halfedge " << h << " is invalid\n";
return false;
}
halfedge_descriptor hn = h;
hn = next(h,g);
if(prev(hn,g) != h){
std::cerr << "halfedge " << h << " is invalid\n";
return false;
}
h = hn;
} while(h != done);
return true;
}
template <typename FaceGraph>
bool is_valid_vertex_descriptor( typename boost::graph_traits<FaceGraph>::vertex_descriptor v, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h = halfedge(v,g), done(h);
if(h == boost::graph_traits<FaceGraph>::null_halfedge()){
return true;
}
do{
if(target(h,g) != v){
std::cerr << "vertex " << v << " is invalid\n";
return false;
}
h = opposite(next(h,g),g);
}while(h != done);
return true;
}
template <typename FaceGraph>
bool is_valid_face_descriptor( typename boost::graph_traits<FaceGraph>::face_descriptor f, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h = halfedge(f,g);
if(face(h,g) != f){
std::cerr << "face " << f << " is invalid\n";
return false;
}
return true;
}
template <typename FaceGraph>
bool is_valid_polygon_mesh(const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
BOOST_FOREACH(vertex_descriptor v, vertices(g)){
if(! is_valid_vertex_descriptor(v,g)){
return false;
}
}
BOOST_FOREACH(halfedge_descriptor h, halfedges(g)){
if(! is_valid_halfedge_descriptor(h,g)){
return false;
}
}
BOOST_FOREACH(face_descriptor f, faces(g)){
if(! is_valid_face_descriptor(f,g)){
return false;
}
}
return true;
}
/*!
\ingroup PkgBGLHelperFct
returns `true` iff the connected component denoted by `hd` is a hexahedron.
*/
template <typename FaceGraph>
bool is_hexahedron( typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h1 = hd;
if(is_border(h1,g)) return false;
typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
halfedge_descriptor h2 = next(h1,g);
halfedge_descriptor h3 = next(h2,g);
halfedge_descriptor h4 = next(h3,g);
halfedge_descriptor h1o = opposite(h1,g);
halfedge_descriptor h2o = opposite(h2,g);
halfedge_descriptor h3o = opposite(h3,g);
halfedge_descriptor h4o = opposite(h4,g);
if(opposite(next(h2o,g),g) != prev(h1o,g)) return false;
if(opposite(next(h3o,g),g) != prev(h2o,g)) return false;
if(opposite(next(h4o,g),g) != prev(h3o,g)) return false;
if(opposite(next(h1o,g),g) != prev(h4o,g)) return false;
if(! is_quad(h1,g)) return false;
if(! is_quad(h1o,g)) return false;
if(! is_quad(h2o,g)) return false;
if(! is_quad(h3o,g)) return false;
if(! is_quad(h4o,g)) return false;
h1o =next(next(h1o,g),g);
h2o =next(next(h2o,g),g);
h3o =next(next(h3o,g),g);
h4o =next(next(h4o,g),g);
if(next(opposite(h2o,g),g) != opposite(h1o,g)) return false;
if(next(opposite(h3o,g),g) != opposite(h2o,g)) return false;
if(next(opposite(h4o,g),g) != opposite(h3o,g)) return false;
if(next(opposite(h1o,g),g) != opposite(h4o,g)) return false;
if(! is_quad(opposite(h4o,g),g)) return false;
return true;
}
/**
* \ingroup PkgBGLHelperFct
* \brief Creates an isolated triangle
* with its vertices initialized to `p0`, `p1` and `p2`, and adds it to the graph `g`.
* \returns the non-border halfedge that has the target vertex associated with `p0`.
**/
template<typename Graph, typename P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_triangle(const P& p0, const P& p1, const P& p2, Graph& g)
{
typedef typename boost::graph_traits<Graph> Traits;
typedef typename Traits::halfedge_descriptor halfedge_descriptor;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::face_descriptor face_descriptor;
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
Point_property_map ppmap = get(CGAL::vertex_point, g);
vertex_descriptor v0, v1, v2;
v0 = add_vertex(g);
v1 = add_vertex(g);
v2 = add_vertex(g);
ppmap[v0] = p0;
ppmap[v1] = p1;
ppmap[v2] = p2;
halfedge_descriptor h0 = halfedge(add_edge(g),g);
halfedge_descriptor h1 = halfedge(add_edge(g),g);
halfedge_descriptor h2 = halfedge(add_edge(g),g);
set_next(h0, h1, g);
set_next(h1, h2, g);
set_next(h2, h0, g);
set_target(h0, v1, g);
set_target(h1, v2, g);
set_target(h2, v0, g);
set_halfedge(v1, h0, g);
set_halfedge(v2, h1, g);
set_halfedge(v0, h2, g);
face_descriptor f = add_face(g);
set_face(h0,f,g);
set_face(h1,f,g);
set_face(h2,f,g);
set_halfedge(f,h0,g);
h0 = opposite(h0,g);
h1 = opposite(h1,g);
h2 = opposite(h2,g);
set_next(h0, h2, g);
set_next(h2, h1, g);
set_next(h1, h0, g);
set_target(h0, v0, g);
set_target(h1, v1, g);
set_target(h2, v2, g);
set_face(h0, boost::graph_traits<Graph>::null_face(),g);
set_face(h1, boost::graph_traits<Graph>::null_face(),g);
set_face(h2, boost::graph_traits<Graph>::null_face(),g);
return opposite(h2,g);
}
namespace internal {
template<typename Graph>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_quad(typename boost::graph_traits<Graph>::vertex_descriptor v0,
typename boost::graph_traits<Graph>::vertex_descriptor v1,
typename boost::graph_traits<Graph>::vertex_descriptor v2,
typename boost::graph_traits<Graph>::vertex_descriptor v3, Graph& g)
{
typedef typename boost::graph_traits<Graph>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<Graph>::face_descriptor face_descriptor;
halfedge_descriptor h0 = halfedge(add_edge(g),g);
halfedge_descriptor h1 = halfedge(add_edge(g),g);
halfedge_descriptor h2 = halfedge(add_edge(g),g);
halfedge_descriptor h3 = halfedge(add_edge(g),g);
set_next(h0, h1, g);
set_next(h1, h2, g);
set_next(h2, h3, g);
set_next(h3, h0, g);
set_target(h0, v1, g);
set_target(h1, v2, g);
set_target(h2, v3, g);
set_target(h3, v0, g);
set_halfedge(v1, h0, g);
set_halfedge(v2, h1, g);
set_halfedge(v3, h2, g);
set_halfedge(v0, h3, g);
face_descriptor f = add_face(g);
set_face(h0,f,g);
set_face(h1,f,g);
set_face(h2,f,g);
set_face(h3,f,g);
set_halfedge(f,h0,g);
h0 = opposite(h0,g);
h1 = opposite(h1,g);
h2 = opposite(h2,g);
h3 = opposite(h3,g);
set_next(h0, h3, g);
set_next(h3, h2, g);
set_next(h2, h1, g);
set_next(h1, h0, g);
set_target(h0, v0, g);
set_target(h1, v1, g);
set_target(h2, v2, g);
set_target(h3, v3, g);
set_face(h0, boost::graph_traits<Graph>::null_face(),g);
set_face(h1, boost::graph_traits<Graph>::null_face(),g);
set_face(h2, boost::graph_traits<Graph>::null_face(),g);
set_face(h3, boost::graph_traits<Graph>::null_face(),g);
return opposite(h3,g);
}
} // namespace internal
/**
* \ingroup PkgBGLHelperFct
* \brief Creates an isolated quad with
* its vertices initialized to `p0`, `p1`, `p2`, and `p3`, and adds it to the graph `g`.
* \returns the non-border halfedge that has the target vertex associated with `p0`.
**/
template<typename Graph, typename P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_quad(const P& p0, const P& p1, const P& p2, const P& p3, Graph& g)
{
typedef typename boost::graph_traits<Graph> Traits;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
Point_property_map ppmap = get(CGAL::vertex_point, g);
vertex_descriptor v0, v1, v2, v3;
v0 = add_vertex(g);
v1 = add_vertex(g);
v2 = add_vertex(g);
v3 = add_vertex(g);
ppmap[v0] = p0;
ppmap[v1] = p1;
ppmap[v2] = p2;
ppmap[v3] = p3;
return internal::make_quad(v0, v1, v2, v3, g);
}
/**
* \ingroup PkgBGLHelperFct
* \brief Creates an isolated hexahedron
* with its vertices initialized to `p0`, `p1`, ...\ , and `p7`, and adds it to the graph `g`.
* \returns the halfedge that has the target vertex associated with `p0`, in the face with the vertices with the points `p0`, `p1`, `p2`, and `p3`.
**/
template<typename Graph, typename P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_hexahedron(const P& p0, const P& p1, const P& p2, const P& p3,
const P& p4, const P& p5, const P& p6, const P& p7, Graph& g)
{
typedef typename boost::graph_traits<Graph> Traits;
typedef typename Traits::halfedge_descriptor halfedge_descriptor;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
Point_property_map ppmap = get(CGAL::vertex_point, g);
vertex_descriptor v0, v1, v2, v3, v4, v5, v6, v7;
v0 = add_vertex(g);
v1 = add_vertex(g);
v2 = add_vertex(g);
v3 = add_vertex(g);
v4 = add_vertex(g);
v5 = add_vertex(g);
v6 = add_vertex(g);
v7 = add_vertex(g);
ppmap[v0] = p0;
ppmap[v1] = p1;
ppmap[v2] = p2;
ppmap[v3] = p3;
ppmap[v4] = p4;
ppmap[v5] = p5;
ppmap[v6] = p6;
ppmap[v7] = p7;
halfedge_descriptor ht = internal::make_quad(v7, v4, v5, v6, g);
halfedge_descriptor hb = prev(internal::make_quad(v1, v0, v3, v2, g),g);
for(int i=0; i <4; i++){
halfedge_descriptor h = halfedge(add_edge(g),g);
set_target(h,target(hb,g),g);
set_next(h,opposite(hb,g),g);
set_next(opposite(next(ht,g),g),h,g);
h = opposite(h,g);
set_target(h,target(ht,g),g);
set_next(h,opposite(ht,g),g);
set_next(opposite(next(hb,g),g),h,g);
hb = next(hb,g);
ht = prev(ht,g);
}
for(int i=0; i <4; i++){
Euler::fill_hole(opposite(hb,g),g);
hb = next(hb,g);
}
return next(next(hb,g),g);
}
/**
* \ingroup PkgBGLHelperFct
* \brief Creates an isolated tetrahedron
* with its vertices initialized to `p0`, `p1`, `p2`, and `p3`, and adds it to the graph `g`.
* \returns the halfedge that has the target vertex associated with `p0`, in the face with the vertices with the points `p0`, `p1`, and `p2`.
**/
template<typename Graph, typename P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_tetrahedron(const P& p0, const P& p1, const P& p2, const P& p3, Graph& g)
{
typedef typename boost::graph_traits<Graph> Traits;
typedef typename Traits::halfedge_descriptor halfedge_descriptor;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::face_descriptor face_descriptor;
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
Point_property_map ppmap = get(CGAL::vertex_point, g);
vertex_descriptor v0, v1, v2, v3;
v0 = add_vertex(g);
v2 = add_vertex(g); // this and the next line are switched to keep points in order
v1 = add_vertex(g);
v3 = add_vertex(g);
ppmap[v0] = p0;
ppmap[v1] = p2;// this and the next line are switched to reorient the surface
ppmap[v2] = p1;
ppmap[v3] = p3;
halfedge_descriptor h0 = halfedge(add_edge(g),g);
halfedge_descriptor h1 = halfedge(add_edge(g),g);
halfedge_descriptor h2 = halfedge(add_edge(g),g);
set_next(h0, h1, g);
set_next(h1, h2, g);
set_next(h2, h0, g);
set_target(h0, v1, g);
set_target(h1, v2, g);
set_target(h2, v0, g);
set_halfedge(v1, h0, g);
set_halfedge(v2, h1, g);
set_halfedge(v0, h2, g);
face_descriptor f = add_face(g);
set_face(h0,f,g);
set_face(h1,f,g);
set_face(h2,f,g);
set_halfedge(f,h0,g);
h0 = opposite(h0,g);
h1 = opposite(h1,g);
h2 = opposite(h2,g);
set_next(h0, h2, g);
set_next(h2, h1, g);
set_next(h1, h0, g);
set_target(h0, v0, g);
set_target(h1, v1, g);
set_target(h2, v2, g);
halfedge_descriptor h3 = halfedge(add_edge(g),g);
halfedge_descriptor h4 = halfedge(add_edge(g),g);
halfedge_descriptor h5 = halfedge(add_edge(g),g);
set_target(h3, v3, g);
set_target(h4, v3, g);
set_target(h5, v3, g);
set_halfedge(v3, h3, g);
set_next(h0, h3, g);
set_next(h1, h4, g);
set_next(h2, h5, g);
set_next(h3, opposite(h4,g), g);
set_next(h4, opposite(h5,g), g);
set_next(h5, opposite(h3,g), g);
set_next(opposite(h4,g), h0, g);
set_next(opposite(h5,g), h1, g);
set_next(opposite(h3,g), h2, g);
set_target(opposite(h3,g), v0, g);
set_target(opposite(h4,g), v1, g);
set_target(opposite(h5,g), v2, g);
f = add_face(g);
set_halfedge(f,h0,g);
set_face(h0, f, g);
set_face(h3, f, g);
set_face(opposite(h4,g), f, g);
f = add_face(g);
set_halfedge(f,h1,g);
set_face(h1, f, g);
set_face(h4, f, g);
set_face(opposite(h5,g), f, g);
f = add_face(g);
set_halfedge(f,h2,g);
set_face(h2, f, g);
set_face(h5, f, g);
set_face(opposite(h3,g), f, g);
return opposite(h2,g);
}
/// \cond SKIP_IN_DOC
template <class Traits, class TriangleMesh, class VertexPointMap>
bool is_degenerate_triangle_face(
typename boost::graph_traits<TriangleMesh>::halfedge_descriptor hd,
TriangleMesh& tmesh,
const VertexPointMap& vpmap,
const Traits& traits)
{
CGAL_assertion(!is_border(hd, tmesh));
const typename Traits::Point_3& p1 = get(vpmap, target( hd, tmesh) );
const typename Traits::Point_3& p2 = get(vpmap, target(next(hd, tmesh), tmesh) );
const typename Traits::Point_3& p3 = get(vpmap, source( hd, tmesh) );
return traits.collinear_3_object()(p1, p2, p3);
}
template <class Traits, class TriangleMesh, class VertexPointMap>
bool is_degenerate_triangle_face(
typename boost::graph_traits<TriangleMesh>::face_descriptor fd,
TriangleMesh& tmesh,
const VertexPointMap& vpmap,
const Traits& traits)
{
return is_degenerate_triangle_face(halfedge(fd,tmesh), tmesh, vpmap, traits);
}
/// \endcond
/**
* \ingroup PkgBGLHelperFct
* \brief Creates a triangulated regular prism
* having `nb_vertices` vertices in each of its bases and adds it to the graph `g`.
* If `center` is (0, 0, 0), then the first point of the prism is (`radius`, `height`, 0)
* \param nb_vertices the number of vertices per base. It must be greater than or equal to 3.
* \param g the graph in which the regular prism will be created.
* \param base_center the center of the circle in which the lower base is inscribed.
* \param height the distance between the two bases.
* \param radius the radius of the circles in which the bases are inscribed.
* \param is_closed determines if the bases must be created or not. If `is_closed` is `true`, `center` is a vertex.
* \returns the halfedge that has the target vertex associated with the first point in the first face.
*/
template<class Graph, class P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_regular_prism(
typename boost::graph_traits<Graph>::vertices_size_type nb_vertices,
Graph& g,
const P& base_center = P(0,0,0),
typename CGAL::Kernel_traits<P>::Kernel::FT height = 1.0,
typename CGAL::Kernel_traits<P>::Kernel::FT radius = 1.0,
bool is_closed = true)
{
CGAL_assertion(nb_vertices >= 3);
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename CGAL::Kernel_traits<P>::Kernel::FT FT;
const FT to_rad = CGAL_PI / 180.0;
const FT precision = 360.0/nb_vertices;
const FT diameter = 2*radius;
Point_property_map vpmap = get(CGAL::vertex_point, g);
std::vector<vertex_descriptor> vertices;
vertices.resize(nb_vertices*2);
for(typename boost::graph_traits<Graph>::vertices_size_type i=0; i<nb_vertices*2; ++i)
vertices[i] = add_vertex(g);
//fill vertices
for(typename boost::graph_traits<Graph>::vertices_size_type i=0; i < nb_vertices; ++i)
{
put(vpmap,
vertices[i],
P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(),
height+base_center.y(),
-0.5*diameter*sin(i*precision*to_rad) + base_center.z()));
put(vpmap,
vertices[i+nb_vertices],
P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(),
base_center.y(),
-0.5*diameter*sin(i*precision*to_rad)+base_center.z()));
}
std::vector<vertex_descriptor> face;
face.resize(3);
//fill faces
for(typename boost::graph_traits<Graph>::vertices_size_type i=0; i<nb_vertices; ++i)
{
face[0] = vertices[(i+1)%(nb_vertices)];
face[1] = vertices[i];
face[2] = vertices[(i+1)%(nb_vertices) + nb_vertices];
Euler::add_face(face, g);
face[0] = vertices[(i+1)%(nb_vertices) + nb_vertices];
face[1] = vertices[i];
face[2] = vertices[i + nb_vertices];
Euler::add_face(face, g);
}
//close
if(is_closed)
{
//add the base_center of the fans
vertex_descriptor top = add_vertex(g);
vertex_descriptor bot = add_vertex(g);
put(vpmap, top, P(base_center.x(),height+base_center.y(),base_center.z()));
put(vpmap, bot, P(base_center.x(),base_center.y(),base_center.z()));
//add the faces
for(typename boost::graph_traits<Graph>::vertices_size_type i=0; i<nb_vertices; ++i)
{
face[0] = vertices[i];
face[1] = vertices[(i+1)%(nb_vertices)];
face[2] = top;
Euler::add_face(face, g);
face[0] = bot;
face[1] = vertices[(i+1)%(nb_vertices) + nb_vertices];
face[2] = vertices[i + nb_vertices];
Euler::add_face(face, g);
}
}
return halfedge(vertices[0], vertices[1], g).first;
}
/**
* \ingroup PkgBGLHelperFct
* \brief Creates a pyramid having `nb_vertices` vertices in its base and adds it to the graph `g`.
*
* If `center` is (0, 0, 0), then the first point of the base is (`radius`, 0`, 0)
* \param nb_vertices the number of vertices in the base. It must be greater than or equal to 3.
* \param g the graph in which the pyramid will be created
* \param base_center the center of the circle in which the base is inscribed.
* \param height the distance between the base and the apex.
* \param radius the radius of the circle in which the base is inscribed.
* \param is_closed determines if the base must be created or not. If `is_closed` is `true`, `center` is a vertex.
* \returns the halfedge that has the target vertex associated with the apex point in the first face.
*/
template<class Graph, class P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_pyramid(
typename boost::graph_traits<Graph>::vertices_size_type nb_vertices,
Graph& g,
const P& base_center = P(0,0,0),
typename CGAL::Kernel_traits<P>::Kernel::FT height = 1.0,
typename CGAL::Kernel_traits<P>::Kernel::FT radius = 1.0,
bool is_closed = true)
{
CGAL_assertion(nb_vertices >= 3);
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename CGAL::Kernel_traits<P>::Kernel::FT FT;
const FT to_rad = CGAL_PI / 180.0;
const FT precision = 360.0/nb_vertices;
const FT diameter = 2*radius;
Point_property_map vpmap = get(CGAL::vertex_point, g);
std::vector<vertex_descriptor> vertices;
vertices.resize(nb_vertices);
for(typename boost::graph_traits<Graph>::vertices_size_type i=0;
i<nb_vertices; ++i)
vertices[i] = add_vertex(g);
vertex_descriptor apex = add_vertex(g);
//fill vertices
put(vpmap,
apex,
P(base_center.x(),
base_center.y() + height,
base_center.z()));
for(typename boost::graph_traits<Graph>::vertices_size_type i=0;
i < nb_vertices; ++i)
{
put(vpmap,
vertices[i],
P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(),
base_center.y(),
-0.5*diameter*sin(i*precision*to_rad)+base_center.z()));
}
std::vector<vertex_descriptor> face;
face.resize(3);
//fill faces
for(typename boost::graph_traits<Graph>::vertices_size_type i=0;
i<nb_vertices; ++i)
{
face[0] = apex;
face[1] = vertices[i];
face[2] = vertices[(i+1)%(nb_vertices)];
Euler::add_face(face, g);
}
//close
if(is_closed)
{
//add the center of the fan
vertex_descriptor bot = add_vertex(g);
put(vpmap, bot, P(base_center.x(),base_center.y(),base_center.z()));
//add the faces
for(typename boost::graph_traits<Graph>::vertices_size_type i=0;
i<nb_vertices; ++i)
{
face[0] = bot;
face[1] = vertices[(i+1)%(nb_vertices)];
face[2] = vertices[i];
Euler::add_face(face, g);
}
}
return halfedge(vertices[0], apex, g).first;
}
/**
* \ingroup PkgBGLHelperFct
* \brief Creates an icosahedron centered in `center` and adds it to the graph `g`.
* \param g the graph in which the icosahedron will be created.
* \param center the center of the sphere in which the icosahedron is inscribed.
* \param radius the radius of the sphere in which the icosahedron is inscribed.
* \returns the halfedge that has the target vertex associated with the first point in the first face.
*/
template<class Graph, class P>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_icosahedron(
Graph& g,
const P& center = P(0,0,0),
typename CGAL::Kernel_traits<P>::Kernel::FT radius = 1.0)
{
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
Point_property_map vpmap = get(CGAL::vertex_point, g);
// create the initial icosahedron
std::vector<vertex_descriptor> v_vertices;
v_vertices.resize(12);
for(int i=0; i<12; ++i)
v_vertices[i] = add_vertex(g);
typename CGAL::Kernel_traits<P>::Kernel::FT t =
(radius + radius*CGAL::approximate_sqrt(5.0)) / 2.0;
put(vpmap, v_vertices[0],P(-radius + center.x(), t + center.y(), 0.0 + center.z()));
put(vpmap, v_vertices[1],P( radius + center.x(), t + center.y(), 0.0 + center.z()));
put(vpmap, v_vertices[2],P(-radius + center.x(), -t + center.y(), 0.0 + center.z()));
put(vpmap, v_vertices[3],P( radius + center.x(), -t + center.y(), 0.0 + center.z()));
put(vpmap, v_vertices[4],P( 0.0 + center.x(), -radius + center.y(), t + center.z()));
put(vpmap, v_vertices[5],P( 0.0 + center.x(), radius + center.y(), t + center.z()));
put(vpmap, v_vertices[6],P( 0.0 + center.x(), -radius + center.y(), -t + center.z()));
put(vpmap, v_vertices[7],P( 0.0 + center.x(), radius + center.y(), -t + center.z()));
put(vpmap, v_vertices[8],P( t + center.x(), 0.0 + center.y(), -radius + center.z()));
put(vpmap, v_vertices[9],P( t + center.x(), 0.0 + center.y(), radius + center.z()));
put(vpmap, v_vertices[10],P(-t + center.x(), 0.0 + center.y(), -radius + center.z()));
put(vpmap, v_vertices[11],P(-t + center.x(), 0.0 + center.y(), radius + center.z()));
std::vector<vertex_descriptor> face;
face.resize(3);
face[1] = v_vertices[0]; face[0] = v_vertices[11]; face[2] = v_vertices[5];
Euler::add_face(face, g);
face[1] = v_vertices[0]; face[0] = v_vertices[5]; face[2] = v_vertices[1];
Euler::add_face(face, g);
face[1] = v_vertices[0]; face[0] = v_vertices[1]; face[2] = v_vertices[7];
Euler::add_face(face, g);
face[1] = v_vertices[0]; face[0] = v_vertices[7]; face[2] = v_vertices[10];
Euler::add_face(face, g);
face[1] = v_vertices[0]; face[0] = v_vertices[10]; face[2] = v_vertices[11];
Euler::add_face(face, g);
face[1] = v_vertices[1] ; face[0] = v_vertices[5] ; face[2] = v_vertices[9];
Euler::add_face(face, g);
face[1] = v_vertices[5] ; face[0] = v_vertices[11]; face[2] = v_vertices[4];
Euler::add_face(face, g);
face[1] = v_vertices[11]; face[0] = v_vertices[10]; face[2] = v_vertices[2];
Euler::add_face(face, g);
face[1] = v_vertices[10]; face[0] = v_vertices[7] ; face[2] = v_vertices[6];
Euler::add_face(face, g);
face[1] = v_vertices[7] ; face[0] = v_vertices[1] ; face[2] = v_vertices[8];
Euler::add_face(face, g);
face[1] = v_vertices[3] ; face[0] = v_vertices[9] ; face[2] = v_vertices[4];
Euler::add_face(face, g);
face[1] = v_vertices[3] ; face[0] = v_vertices[4] ; face[2] = v_vertices[2];
Euler::add_face(face, g);
face[1] = v_vertices[3] ; face[0] = v_vertices[2] ; face[2] = v_vertices[6];
Euler::add_face(face, g);
face[1] = v_vertices[3] ; face[0] = v_vertices[6] ; face[2] = v_vertices[8];
Euler::add_face(face, g);
face[1] = v_vertices[3] ; face[0] = v_vertices[8] ; face[2] = v_vertices[9];
Euler::add_face(face, g);
face[1] = v_vertices[4] ; face[0] = v_vertices[9] ; face[2] = v_vertices[5] ;
Euler::add_face(face, g);
face[1] = v_vertices[2] ; face[0] = v_vertices[4] ; face[2] = v_vertices[11];
Euler::add_face(face, g);
face[1] = v_vertices[6] ; face[0] = v_vertices[2] ; face[2] = v_vertices[10];
Euler::add_face(face, g);
face[1] = v_vertices[8] ; face[0] = v_vertices[6] ; face[2] = v_vertices[7] ;
Euler::add_face(face, g);
face[1] = v_vertices[9] ; face[0] = v_vertices[8] ; face[2] = v_vertices[1] ;
Euler::add_face(face, g);
return halfedge(v_vertices[1], v_vertices[0], g).first;
}
/*!
* \ingroup PkgBGLHelperFct
*
* \brief Creates a row major ordered grid with `i` cells along the width and `j` cells
* along the height and adds it to the graph `g`.
*
* \param i the number of cells along the width.
* \param j the number of cells along the height.
* \param g the graph in which the grid will be created.
* \param calculator the functor that will assign coordinates to the grid vertices.
* \param triangulated decides if a cell is composed of one quad or two triangles.
* If `triangulated` is `true`, the diagonal of each cell is oriented from (0,0) to (1,1)
* in the cell coordinates.
*
* \tparam CoordinateFunctor that takes two `boost::graph_traits<Graph>::%vertices_size_type`
* and outputs a `boost::property_traits<boost::property_map<Graph,CGAL::vertex_point_t>::%type>::%value_type`.
* <p>%Default: a point with positive integer coordinates (`w`, `h`, 0), with `w` in [0..`i`] and `h` in [0..`j`]
* \returns the non-border non-diagonal halfedge that has the target vertex associated with the first point of the grid (default is (0,0,0) ).
*/
#ifndef DOXYGEN_RUNNING
template<class Graph, class CoordinateFunctor>
#else
template<class Graph, class CoordinateFunctor = CGAL::Creator_uniform_3<
typename boost::graph_traits<Graph>::vertices_size_type,
typename boost::property_traits<typename boost::property_map<Graph, vertex_point_t>::type>::value_type> >
#endif
typename boost::graph_traits<Graph>::halfedge_descriptor
make_grid(typename boost::graph_traits<Graph>::vertices_size_type i,
typename boost::graph_traits<Graph>::vertices_size_type j,
Graph& g,
const CoordinateFunctor& calculator,
bool triangulated = false)
{
typedef typename boost::property_map<Graph,vertex_point_t>::type Point_property_map;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typename boost::graph_traits<Graph>::vertices_size_type w(i+1), h(j+1);
Point_property_map vpmap = get(CGAL::vertex_point, g);
// create the initial icosahedron
//create the vertices
std::vector<vertex_descriptor> v_vertices;
v_vertices.resize(static_cast<std::size_t>(w*h));
for(std::size_t k = 0; k < v_vertices.size(); ++k)
v_vertices[k] = add_vertex(g);
//assign the coordinates
for(typename boost::graph_traits<Graph>::vertices_size_type a = 0; a<w; ++a)
{
for(typename boost::graph_traits<Graph>::vertices_size_type b=0; b<h; ++b)
{
put(vpmap, v_vertices[a+w*b], calculator(a,b,0));
}
}
//create the faces
std::vector<vertex_descriptor> face;
if(triangulated)
face.resize(3);
else
face.resize(4);
for(typename boost::graph_traits<Graph>::vertices_size_type a = 0; a<w-1; ++a)
{
for(typename boost::graph_traits<Graph>::vertices_size_type b = 0; b<h-1; ++b)
{
if(triangulated)
{
face[0] = v_vertices[w*b+a];
face[1] = v_vertices[w*b+a+1];
face[2] = v_vertices[w*(b+1)+a];
Euler::add_face(face, g);
face[0] = v_vertices[w*b+a+1];
face[1] = v_vertices[w*(b+1)+a+1];
face[2] = v_vertices[w*(b+1)+a];
Euler::add_face(face, g);
}
else
{
face[0] = v_vertices[w*b+ a];
face[1] = v_vertices[w*b+ a+1];
face[2] = v_vertices[w*(b+1)+ a+1];
face[3] = v_vertices[w*(b+1)+ a];
Euler::add_face(face, g);
}
}
}
return halfedge(v_vertices[1], v_vertices[0], g).first;
}
//default Functor
template<class Graph>
typename boost::graph_traits<Graph>::halfedge_descriptor
make_grid(typename boost::graph_traits<Graph>::vertices_size_type w,
typename boost::graph_traits<Graph>::vertices_size_type h,
Graph& g,
bool triangulated = false)
{
typedef typename boost::graph_traits<Graph>::vertices_size_type Size_type;
typedef typename boost::property_traits<typename boost::property_map<Graph, vertex_point_t>::type>::value_type Point;
return make_grid(w, h, g, CGAL::Creator_uniform_3<Size_type, Point>(), triangulated);
}
namespace internal {
template<typename FaceGraph>
inline
typename boost::enable_if<Has_member_clear<FaceGraph>, void>::type
clear_impl(FaceGraph& g)
{ g.clear(); }
template<typename FaceGraph>
inline
typename boost::disable_if<Has_member_clear<FaceGraph>, void>::type
clear_impl(FaceGraph& g)
{
typedef typename boost::graph_traits<FaceGraph>::edge_descriptor edge_descriptor;
typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
BOOST_FOREACH(edge_descriptor ed, edges(g)) {
remove_edge(ed, g);
}
BOOST_FOREACH(vertex_descriptor vd, vertices(g)) {
remove_vertex(vd, g);
}
BOOST_FOREACH(face_descriptor fd, faces(g)) {
remove_face(fd, g);
}
}
} //end of internal namespace
/**
* \ingroup PkgBGLHelperFct
*
* removes all vertices, faces and halfedges from a graph. Calls
* `remove_edge()`, `remove_vertex()`, and `remove_face()` for each
* edge, vertex or face.
*
* If the graph has a member function `clear()`, it will be called
* instead.
*
* @tparam FaceGraph model of `MutableHalfedgeGraph` and `MutableFaceGraph`
*
* @param g the graph to clear
*
**/
template<typename FaceGraph>
void clear(FaceGraph& g)
{
internal::clear_impl(g);
CGAL_postcondition(num_edges(g) == 0);
CGAL_postcondition(num_vertices(g) == 0);
CGAL_postcondition(num_faces(g) == 0);
}
/**
* \ingroup PkgBGLHelperFct
*
* checks whether the graph is empty, by checking that it does not contain any vertex.
*
* @tparam FaceGraph model of `FaceGraph`
*
* @param g the graph to test
*
**/
template<typename FaceGraph>
bool is_empty(const FaceGraph& g)
{
return boost::empty(vertices(g));
}
} // namespace CGAL
// Include "Euler_operations.h" at the end, because its implementation
// requires this header.
#include <CGAL/boost/graph/Euler_operations.h>
#endif // CGAL_BOOST_GRAPH_HELPERS_H
|