This file is indexed.

/usr/include/CGAL/QP_solver/Initialization.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Copyright (c) 1997-2007  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Sven Schoenherr
//                 Bernd Gaertner <gaertner@inf.ethz.ch>
//                 Franz Wessendorp 
//                 Kaspar Fischer

#include<CGAL/QP_functions.h>

namespace CGAL {

// creation & initialization
// -------------------------
template < typename Q, typename ET, typename Tags >
QP_solver<Q, ET, Tags>::
QP_solver(const Q& qp, const Quadratic_program_options& options)
  : et0(0), et1(1), et2(2),
    strategyP(0),
    inv_M_B(vout4),
    d(inv_M_B.denominator()),
    m_phase(-1), is_phaseI(false), is_phaseII(false),
    is_RTS_transition(false),
    is_LP(check_tag(Is_linear())), is_QP(!is_LP),
    //no_ineq(check_tag(Has_equalities_only_and_full_rank())),
    no_ineq(QP_functions_detail::is_in_equational_form(qp)), 
    // may change after phase I
    has_ineq(!no_ineq),
    is_nonnegative(check_tag(Is_nonnegative()))
{
  // init diagnostics
  diagnostics.redundant_equations = false;

  // initialization as in the standard-form case:
  set_verbosity(options.get_verbosity());
  // only if C_entry is double, we actually get filtered strategies,
  // otherwise we fall back to the respective non-filtered ones
  set_pricing_strategy(options.get_pricing_strategy()); 

  // Note: we first set the bounds and then call set() because set()
  // accesses qp_fl, qp_l, etc.
  set_explicit_bounds(qp);
  set(qp);

  // initialize and solve immediately:
  init();
  solve();
}

// set-up of QP

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_D(const Q& /*qp*/, Tag_true /*is_linear*/)
{
  // dummy value, never used
  qp_D = 0;
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_D(const Q& qp, Tag_false /*is_linear*/)
{
  qp_D = qp.get_d();
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set(const Q& qp)
{
  // assertions:
  CGAL_qpe_assertion(qp.get_n() >= 0);
  CGAL_qpe_assertion(qp.get_m() >= 0); 

  // store QP
  qp_n = qp.get_n(); qp_m = qp.get_m();
  qp_A = qp.get_a(); qp_b = qp.get_b(); qp_c = qp.get_c(); qp_c0 = qp.get_c0(); 

  set_D(qp, Is_linear());
  qp_r = qp.get_r();
  
  // set up slack variables and auxiliary problem
  // --------------------------------------------
  
  // reserve memory for slack and artificial part of `A':
  if (has_ineq) {
    const unsigned int eq = static_cast<unsigned int>(std::count(qp_r, qp_r+qp_m, CGAL::EQUAL));
    slack_A.reserve(qp_m - eq);
    art_A.reserve  (       eq);
    art_s.insert(art_s.end(), qp_m, A_entry(0));
  } else
    art_A.reserve( qp_m);

  // decide on which bound the variables sit initially:
  if (!check_tag(Is_nonnegative()))
    init_x_O_v_i();

  set_up_auxiliary_problem();
    
  e = static_cast<int>(qp_m-slack_A.size()); // number of equalities
  l = (std::min)(qp_n+e+1, qp_m);  // maximal size of basis in phase I
  
  // diagnostic output:
  CGAL_qpe_debug {
    if (vout.verbose()) {
      if (vout2.verbose()) {
	vout2.out() << "======" << std::endl
		    << "Set-Up" << std::endl
		    << "======" << std::endl;
      }
    }
  }
  vout    << "[ " << (is_LP ? "LP" : "QP")
	  << ", " << qp_n << " variables, " << qp_m << " constraints"
	  << " ]" << std::endl;
  CGAL_qpe_debug {   
      if (vout2.verbose() && (!slack_A.empty())) {
	vout2.out() << " (" << slack_A.size() << " inequalities)";
      }
      if (vout2.verbose()) {
	if (has_ineq)
	  vout2.out() << "flag: has inequalities or rank not full"
		      << std::endl;
	if (vout4.verbose()) print_program();
      }
  }
  
  // set up pricing strategy:
  if (strategyP != static_cast< Pricing_strategy*>(0))
    strategyP->set(*this, vout2);
  
  // set up basis inverse:
  inv_M_B.set(qp_n, qp_m, e);
  
  // set phase:
  m_phase    = 0;
  is_phaseI  = false;
  is_phaseII = false;
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& qp)
{
  set_explicit_bounds (qp, Is_nonnegative());
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& /*qp*/, Tag_true) {
  // dummy values, never used
  qp_fl = 0;
  qp_l = 0;
  qp_fu = 0;
  qp_u = 0;
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& qp, Tag_false) {
  qp_fl = qp.get_fl();
  qp_l = qp.get_l();
  qp_fu = qp.get_fu();
  qp_u = qp.get_u();
}



template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init_x_O_v_i()
{
  // allocate storage:
  x_O_v_i.reserve(qp_n);
  x_O_v_i.resize (qp_n);

  // constants for comparisions:
  const L_entry l0(0);
  const U_entry u0(0);
  
  // our initial solution will have all original variables nonbasic,
  // and so we initialize them to zero (if the bound on the variable
  // allows it), or to the variable's lower or upper bound:
  for (int i = 0; i < qp_n; ++i) {
    CGAL_qpe_assertion( !*(qp_fl+i) || !*(qp_fu+i) || *(qp_l+i)<=*(qp_u+i));

    if (*(qp_fl+i))                    // finite lower bound?
      if (*(qp_fu+i))                  // finite lower and finite upper bound?
	if (*(qp_l+i) == *(qp_u+i))    // fixed variable?
	  x_O_v_i[i] = FIXED;
	else                           // finite lower and finite upper?
	  if (*(qp_l+i) <= l0 && u0 <= *(qp_u+i))
	    x_O_v_i[i] = ZERO;
	  else
	    x_O_v_i[i] = LOWER;
      else                             // finite lower and infinite upper?
	if (*(qp_l+i) <= l0)
	  x_O_v_i[i] = ZERO;
	else 
	  x_O_v_i[i] = LOWER;
    else                               // infinite lower bound?
      if (*(qp_fu+i))                  // infinite lower and finite upper?
	if (u0 <= *(qp_u+i))
	  x_O_v_i[i] = ZERO;
	else
	  x_O_v_i[i] = UPPER;
      else                             // infinite lower and infinite upper?
	x_O_v_i[i] = ZERO;
  }
}

template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_up_auxiliary_problem()
{
  ET            b_max(et0);
  const C_entry c1(1);
  int           i_max = -1; // i_max-th inequality is the most infeasible one
  int           i_max_absolute = -1; // absolute index of most infeasible ineq

  // TAG: TODO using variable i here, which is also the index of the entering
  // variable.
  for (int i = 0; i < qp_m; ++i) {    
    // Note: For nonstandard form problems, our initial solution is not the
    // zero vector (but the vector with values original_variable_value(i),
    // 0<=i<qp_n), and therefore, rhs=b-Ax is not simply b as in the standard
    // form case, but Ax_init-b:
    const ET rhs = check_tag(Is_nonnegative())?
    ET(*(qp_b+i)) : ET(*(qp_b+i)) - multiply__A_ixO(i);
    
    if (has_ineq && (*(qp_r+i) != CGAL::EQUAL)) { // inequality constraint, so we
      // add a slack variable, and (if
      // needed) a special artificial
      if (*(qp_r+i) == CGAL::SMALLER) {        // '<='
        
        // add special artificial ('< -0') in case the inequality is
        // infeasible for our starting point (which is the origin):
        if (rhs < et0) {
          art_s[i] = -c1;
          if (-rhs > b_max) {
            i_max = static_cast<int>(slack_A.size());
            i_max_absolute = i;
            b_max = -rhs;
          }
        }
        
        
        // slack variable:
        slack_A.push_back(std::make_pair(i, false));
      } else {                                 // '>='
        
        // add special artificial ('> +0') in case the inequality is
        // infeasible for our starting point (which is the origin):
        if (rhs > et0) {
          art_s[i] = c1;
          if (rhs > b_max) {
            i_max = static_cast<int>(slack_A.size());
            i_max_absolute = i;
            b_max = rhs;
          }
        }
        
        // store slack column
        slack_A.push_back(std::make_pair(i, true));
      }

    } else {                                     // equality constraint, so we
      // add an artificial variable
      // (Note: if rhs==et0 here then the artificial variable is (at the
      // moment!) not needed. However, we nonetheless add it, for the following
      // reason. If we did and were given an equality problem with the zero
      // vector as the right-hand side then NO artificials would be added at
      // all; so our initial basis would be empty, something we do not want.)
      art_A.push_back(std::make_pair(i, rhs < et0));
    }
  } // end for

  // Note: in order to make our initial starting point (which is the origin) a
  // feasible point of the auxiliary problem, we need to initialize the
  // special artificial value correctly, namely to
  //
  //   max { |b_i| | i is index of an infeasible inequality constraint }. (C1)
  //
  // The index of this "most infeasible" constraint is, at this point of the
  // code, i_max (or i_max is -1 in which case all inequality constraints are
  // feasible and hence no special artififial column is needed at all).

  // prepare initialization of special artificial column:
  // Note: the real work is done in init_basis() below.
  if (i_max >= 0) {
    art_s_i = i_max;                           // Note: the actual
    art_basic = i_max_absolute;                // initialization of art_s_i
					       // will be done in init_basis()
					       // below. We misuse art_s_i to
					       // remember i_max and art_basic
                                               // to remember i_max_absolute
  } else {                                     // no special art col needed
    art_s_i = -1;
    art_s.clear();
  }
}

// initialization (phase I)
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init()
{
  CGAL_qpe_debug {
    vout2 << std::endl
	  << "==============" << std::endl
	  << "Initialization" << std::endl
	  << "==============" << std::endl;
              
  }

  // set status:
  m_phase    = 1;
  m_status   = QP_UPDATE;
  m_pivots   = 0;
  is_phaseI  = true;
  is_phaseII = false;

  // initial basis and basis inverse
  init_basis();
    
  // initialize additional data members
  init_additional_data_members();
        
  // initial solution
  init_solution();

  // initialize pricing strategy
  CGAL_qpe_assertion(strategyP != static_cast< Pricing_strategy*>(0));
  strategyP->init(0);

  // basic feasible solution already available?
  if (art_basic == 0) {

    // transition to phase II
    CGAL_qpe_debug {
      if (vout2.verbose()) {
	vout2.out() << std::endl
		    << "no artificial variables at all "
		    << "--> skip phase I"
		    << std::endl;
      }
    }
    transition();
  }
}

// Set up the initial basis and basis inverse.
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init_basis()
{
  int s_i = -1;
  int s_i_absolute = -1;
  const int s = static_cast<int>(slack_A.size());
  
  // has special artificial column?
  if (!art_s.empty()) {

    // Note: we maintain the information about the special artificial column in
    // the variable art_s_i and the vector s_art; in addition, however, we also
    // add a special "fake" column to art_A. This "fake" column has (in
    // constrast to the special artificial column) only one nonzero entry,
    // namely a +-1 for the most infeasible row (see (C1) above).

    // add "fake" column to art_A:
    s_i = art_s_i;               // s_i-th ineq. is most infeasible, see (C1)
    s_i_absolute = art_basic;    // absolute index of most infeasible ineq
    art_s_i = static_cast<int>(qp_n+s+art_A.size());    // number of special artificial var
    // BG: By construction of art_s_i (= i_max) in set_up_auxiliary_problem(),
    // s_i conforms with the indexing of slack_A, and the sign of the +-1
    // entry is just the negative of the corresponding slackie; this explains
    // the second parameter of make_pair. But the index passed as the
    // first parameter must refer to the ABSOLUTE index of the most 
    // infeasible row. Putting s_i here is therefore a mistake unless
    // we only have equality constraints
    
    // art_A.push_back(std::make_pair(s_i, !slack_A[s_i].second)); 
    CGAL_qpe_assertion(s_i_absolute >= 0);
    CGAL_qpe_assertion(s_i_absolute == slack_A[s_i].first);
    art_A.push_back(std::make_pair(s_i_absolute, !slack_A[s_i].second));
  }
  
  // initialize indices of basic variables:
  if (!in_B.empty()) in_B.clear();
  in_B.reserve(qp_n+s+art_A.size());
  in_B.insert(in_B.end(), qp_n, -1);  // no original variable is basic
  
  init_basis__slack_variables(s_i, no_ineq);
    
  if (!B_O.empty()) B_O.clear();
  B_O.reserve(qp_n);                  // all artificial variables are basic
  for (int i = 0; i < static_cast<int>(art_A.size()); ++i) {
    B_O .push_back(qp_n+s+i);
    in_B.push_back(i);
  }
  art_basic = static_cast<int>(art_A.size());
  
  // initialize indices of 'basic' and 'nonbasic' constraints:
  if (!C.empty()) C.clear();
  init_basis__constraints(s_i, no_ineq);
  
  // diagnostic output:
  CGAL_qpe_debug {
    if (vout.verbose()) print_basis();
  }
  
  // initialize basis inverse (explain: 'art_s' not needed here (todo kf: don't
  // understand this note)):
  // BG: as we only look at the basic constraints, the fake column in art_A
  // will do as nicely as the actual column arts_s
  inv_M_B.init(static_cast<unsigned int>(art_A.size()), art_A.begin());
}

template < typename Q, typename ET, typename Tags >  inline                                 // no ineq.
void QP_solver<Q, ET, Tags>::
init_basis__slack_variables( int, Tag_true)
{
    // nop
}

template < typename Q, typename ET, typename Tags >                                        // has ineq.
void QP_solver<Q, ET, Tags>::
init_basis__slack_variables(int s_i, Tag_false)  // Note: s_i-th inequality is
						 // the most infeasible one,
						 // see (C1).
{
  const int s = static_cast<int>(slack_A.size());
  
  // reserve memory:
  if (!B_S.empty()) B_S.clear();
  B_S.reserve(s);
  
  // all slack variables are basic, except the slack variable corresponding to
  // special artificial variable (which is nonbasic): (todo kf: I do not
  // understand this)
  // BG: the s_i-th inequality is the most infeasible one, and the i-th
  // inequality corresponds to the slackie of index qp_n + i
  for (int i = 0; i < s; ++i) // go through all inequalities
    if (i != s_i) {           
      in_B.push_back(static_cast<typename Indices::value_type>(B_S.size()));
      B_S .push_back(i+qp_n);
    } else
      in_B.push_back(-1);
}

template < typename Q, typename ET, typename Tags >  inline                                 // no ineq.
void QP_solver<Q, ET, Tags>::
init_basis__constraints( int, Tag_true)
{
  // reserve memory:
  C.reserve(qp_m);
  in_C.reserve(qp_m);

  // As there are no inequalities, C consists of all inequality constraints
  // only, so we add them all:
  for (int i = 0; i < qp_m; ++i) {
    C.push_back(i);
  }
}

template < typename Q, typename ET, typename Tags >                                        // has ineq.
void QP_solver<Q, ET, Tags>::
init_basis__constraints(int s_i, Tag_false)  // Note: s_i-th inequality is the
					     // most infeasible one, see (C1).
{
  int i, j;

  // reserve memory:
  if (!in_C.empty()) in_C.clear();
  if (! S_B.empty())  S_B.clear();
  C.reserve(l);
  S_B.reserve(slack_A.size());
  
  // store constraints' indices:
  in_C.insert(in_C.end(), qp_m, -1);
  if (s_i >= 0) s_i = slack_A[s_i].first;    // now s_i is absolute index
                                             // of most infeasible row
  for (i = 0, j = 0; i < qp_m; ++i)
    if (*(qp_r+i) == CGAL::EQUAL) {             // equal. constraint basic
      C.push_back(i);
      in_C[i] = j;
      ++j;
    } else {                                  // ineq. constraint nonbasic
      if (i != s_i)                           // unless it's most infeasible 
	S_B.push_back(i);
    }
    // now handle most infeasible inequality if any
  if (s_i >= 0) {
      C.push_back(s_i);
      in_C[s_i] = j;
  }
}

// Initialize r_C.
template < typename Q, typename ET, typename Tags >                 // Standard form
void  QP_solver<Q, ET, Tags>::
init_r_C(Tag_true)
{
}

// Initialize r_C.
template < typename Q, typename ET, typename Tags >                 // Upper bounded
void  QP_solver<Q, ET, Tags>::
init_r_C(Tag_false)
{
  r_C.resize(C.size());
  multiply__A_CxN_O(r_C.begin());  
}

// Initialize r_S_B.
template < typename Q, typename ET, typename Tags >                 // Standard form
void  QP_solver<Q, ET, Tags>::
init_r_S_B(Tag_true)
{
}

// Initialize r_S_B.
template < typename Q, typename ET, typename Tags >                 // Upper bounded
void  QP_solver<Q, ET, Tags>::
init_r_S_B(Tag_false)
{
  r_S_B.resize(S_B.size());
  multiply__A_S_BxN_O(r_S_B.begin()); 
}

template < typename Q, typename ET, typename Tags >  inline                                 // no ineq.
void  QP_solver<Q, ET, Tags>::
init_solution__b_C(Tag_true)
{
  b_C.reserve(qp_m);
  std::copy(qp_b, qp_b+qp_m, std::back_inserter(b_C));
}

template < typename Q, typename ET, typename Tags >  inline                                 // has ineq.
void  QP_solver<Q, ET, Tags>::
init_solution__b_C(Tag_false)
{ 
  b_C.insert(b_C.end(), l, et0);
  B_by_index_accessor  b_accessor(qp_b); // todo kf: is there some boost
					 // replacement for this accessor?
  std::copy(B_by_index_iterator(C.begin(), b_accessor),
	    B_by_index_iterator(C.end  (), b_accessor),
	    b_C.begin());
}

// initial solution
template < typename Q, typename ET, typename Tags >
void
QP_solver<Q, ET, Tags>::
init_solution()
{
  // initialize exact version of `qp_b' restricted to basic constraints C
  // (implicit conversion to ET):
  if (!b_C.empty()) b_C.clear();
  init_solution__b_C(no_ineq);

  // initialize exact version of `aux_c' and 'minus_c_B', the
  // latter restricted to basic variables B_O:
  if (!minus_c_B.empty()) minus_c_B.clear();
  minus_c_B.insert(minus_c_B.end(), l, -et1);   // todo: what is minus_c_B?
  CGAL_qpe_assertion(l >= static_cast<int>(art_A.size()));
  if (art_s_i > 0)
    minus_c_B[art_A.size()-1] *= ET(qp_n+qp_m); // Note: the idea here is to
						// give more weight to the
						// special artifical variable
						// so that it gets removed very
						// early, - todo kf: why?

  // ...and now aux_c: as we want to make all artificial variables (including
  // the special one) zero, we weigh these variables with >= 1 in the objective
  // function (and leave the other entries in the objective function at zero):
  aux_c.reserve(art_A.size());
  aux_c.insert(aux_c.end(), art_A.size(), 0);
  for (int col=static_cast<int>(qp_n+slack_A.size()); col<number_of_working_variables(); ++col)
    if (col==art_s_i)                           // special artificial?
      aux_c[col-qp_n-slack_A.size()]=  qp_n+qp_m;
    else                                        // normal artificial
      aux_c[col-qp_n-slack_A.size()]= 1;

  // allocate memory for current solution:
  if (!lambda.empty()) lambda.clear();
  if (!x_B_O .empty()) x_B_O .clear();
  if (!x_B_S .empty()) x_B_S .clear();
  lambda.insert(lambda.end(), l, et0);
  x_B_O .insert(x_B_O .end(), l, et0);
  x_B_S .insert(x_B_S .end(), slack_A.size(), et0);

  #if 0 // todo kf: I guess the following can be removed...
  //TESTING the updates of r_C, r_S_B, r_B_O, w
  //    ratio_test_bound_index = LOWER;
  //direction = 1;
  #endif

  // The following sets the pricing direction to "up" (meaning that
  // the priced variable will be increased and not decreased); the
  // statement is completely useless except that it causes debugging
  // output to be consistent in case we are running in standard form.
  // (If we are in standard form, the variable 'direction' is never
  // touched; otherwise, it will be set to the correct value during
  // each pricing step.)
  direction = 1;
    
  // initialization of vectors r_C, r_S_B:
  init_r_C(Is_nonnegative());
  init_r_S_B(Is_nonnegative());

  // compute initial solution:
  compute_solution(Is_nonnegative());

  // diagnostic output:
  CGAL_qpe_debug {
    if (vout.verbose()) print_solution();
  }
}

// Initialize additional data members.
template < typename Q, typename ET, typename Tags >
void
QP_solver<Q, ET, Tags>::
init_additional_data_members()
{
  // todo kf: do we really have to insert et0, or would it suffice to just
  // resize() in the following statements?
  // BG: no clue, but it's at least safe that way

  if (!A_Cj.empty()) A_Cj.clear();
  A_Cj.insert(A_Cj.end(), l, et0);
  if (!two_D_Bj.empty()) two_D_Bj.clear();
  two_D_Bj.insert(two_D_Bj.end(), l, et0);
  
  if (!q_lambda.empty()) q_lambda.clear();
  q_lambda.insert(q_lambda.end(), l, et0);
  if (!q_x_O.empty()) q_x_O.clear();
  q_x_O.insert(q_x_O.end(), l, et0);
  if (!q_x_S.empty()) q_x_S.clear();
  q_x_S.insert(q_x_S.end(), slack_A.size(), et0);
  
  if (!tmp_l.empty()) tmp_l.clear();
  tmp_l.insert(tmp_l.end(), l, et0);
  if (!tmp_l_2.empty()) tmp_l_2.clear();
  tmp_l_2.insert(tmp_l_2.end(), l, et0);
  if (!tmp_x.empty()) tmp_x.clear();
  tmp_x.insert(tmp_x.end(), l, et0);
  if (!tmp_x_2.empty()) tmp_x_2.clear();
  tmp_x_2.insert(tmp_x_2.end(), l, et0);
}

} //namespace CGAL

// ===== EOF ==================================================================