This file is indexed.

/usr/include/CGAL/Linear_algebraHd.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (c) 1997-2000  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel <seel@mpi-sb.mpg.de>

//---------------------------------------------------------------------
// file generated by notangle from Linear_algebra.lw
// please debug or modify noweb file
// based on LEDA architecture by S. Naeher, C. Uhrig
// coding: K. Mehlhorn, M. Seel
// debugging and templatization: M. Seel
//---------------------------------------------------------------------

#ifndef CGAL_LINEAR_ALGEBRAHD_H
#define CGAL_LINEAR_ALGEBRAHD_H

#include <CGAL/Kernel_d/Vector__.h>
#include <CGAL/Kernel_d/Matrix__.h>

// #define CGAL_LA_SELFTEST
namespace CGAL {

/*{\Moptions outfile=Linear_algebra.man}*/
/*{\Manpage {Linear_algebraHd}{RT}{Linear Algebra on RT}{LA}}*/

template <class RT_, class AL_ = CGAL_ALLOCATOR(RT_) >
class Linear_algebraHd
{ 
/*{\Mdefinition
The data type |\Mname| encapsulates two classes |Matrix|, |Vector|
and many functions of basic linear algebra. It is parametrized by a
number type |RT|. An instance of data type |Matrix| is a matrix of
variables of type |RT|, the so called ring type. Accordingly,
|Vector| implements vectors of variables of type |RT|. The arithmetic
type |RT| is required to behave like integers in the mathematical
sense. The manual pages of |Vector| and |Matrix| follow below.

All functions compute the exact result, i.e., there is no rounding
error.  Most functions of linear algebra are \emph{checkable}, i.e.,
the programs can be asked for a proof that their output is
correct. For example, if the linear system solver declares a linear
system $A x = b$ unsolvable it also returns a vector $c$ such that
$c^T A = 0$ and $c^T b \neq 0$.  All internal correctness checks can
be switched on by the flag [[CGAL_LA_SELFTEST]].}*/ 

public:

/*{\Mtypes 5.5}*/

typedef RT_ RT;
/*{\Mtypemember the ring type of the components.}*/ 

typedef Linear_Algebra::Vector_<RT_,AL_> Vector;
/*{\Mtypemember the vector type.}*/ 

typedef Linear_Algebra::Matrix_<RT_,AL_> Matrix;
/*{\Mtypemember the matrix type.}*/ 

typedef AL_ allocator_type;
/*{\Mtypemember the allocator used for memory management. |\Mname| is
an abbreviation for |Linear_algebraHd<RT, ALLOC = allocator<RT,LA> >|. Thus  
|allocator_type| defaults to the standard allocator offered by the STL.}*/ 

/*{\Moperations 2 1}*/

static Matrix  transpose(const Matrix& M); 
/*{\Mstatic  returns  $M^T$ ($m\times n$ - matrix). }*/

static bool inverse(const Matrix& M, Matrix& I, RT& D, Vector& c); 
/*{\Mstatic determines whether |M| has an inverse. It also computes 
either the inverse as $(1/D) \cdot |I|$ or when no inverse
exists, a vector $c$ such that $c^T \cdot M = 0 $.  }*/

static Matrix  inverse(const Matrix& M, RT& D)
/*{\Mstatic returns the inverse matrix of |M|. More precisely, $1/D$ 
            times the matrix returned is the inverse of |M|.\\
            \precond  |determinant(M) != 0|. }*/
{ 
  Matrix result; 
  Vector c;
  if (!inverse(M,result,D,c)) 
    CGAL_error_msg("inverse(): matrix is singular."); 
  return result;
}

static RT  determinant (const Matrix& M, Matrix& L, Matrix& U, 
                        std::vector<int>& q, Vector& c);
/*{\Mstatic returns the determinant $D$ of |M| and sufficient information 
            to verify that the value of the determinant is correct. If 
            the determinant is zero then $c$ is a vector such that 
            $c^T \cdot M = 0$. If the determinant is non-zero then $L$ 
            and $U$ are lower and upper diagonal matrices respectively 
            and $q$ encodes a permutation matrix $Q$ with $Q(i,j) = 1$ 
            iff $i = q(j)$ such that $L \cdot M \cdot Q = U$, 
            $L(0,0) = 1$, $L(i,i) = U(i - 1,i - 1)$ for all $i$, 
            $1 \le i < n$, and $D = s \cdot U(n - 1,n - 1)$ where $s$ is 
            the determinant of $Q$. \precond  |M| is square. }*/

static bool verify_determinant (const Matrix& M, RT D, Matrix& L, Matrix& U, 
                                const std::vector<int>& q, Vector& c);
/*{\Mstatic verifies the conditions stated above. }*/

static RT determinant (const Matrix& M); 
/*{\Mstatic  returns the determinant of |M|.
         \precond  |M| is square. }*/

static int sign_of_determinant (const Matrix& M); 
/*{\Mstatic returns the sign of the determinant of |M|.
        \precond  |M| is square. }*/

static bool linear_solver(const Matrix& M, const Vector& b,
                          Vector& x, RT& D, 
                          Matrix& spanning_vectors, 
                          Vector& c);
/*{\Mstatic determines the complete solution space of the linear system 
            $M\cdot x = b$. If the system is unsolvable then 
            $c^T \cdot M = 0$ and $c^T \cdot b \not= 0$. 
            If the system is solvable then $(1/D) x$ is a solution, and 
            the columns of |spanning_vectors| are a maximal set of linearly 
            independent solutions to the corresponding homogeneous system.
            \precond |M.row_dimension() = b.dimension()|. }*/

static bool linear_solver(const Matrix& M, const Vector& b, 
                          Vector& x, RT& D, 
                          Vector& c) 
/*{\Mstatic determines whether the linear system $M\cdot x = b$ is 
           solvable. If yes, then $(1/D) x$ is a solution, if not then 
           $c^T \cdot M = 0$ and $c^T \cdot b \not= 0$.
           \precond |M.row_dimension() = b.dimension()|. }*/
{ 
  Matrix spanning_vectors; 
  return linear_solver(M,b,x,D,spanning_vectors,c); 
}

static bool linear_solver(const Matrix& M, const Vector& b,
                          Vector& x, RT& D) 
/*{\Mstatic as above, but without the witness $c$ 
           \precond |M.row_dimension() = b.dimension()|. }*/
{ 
  Matrix spanning_vectors; Vector c; 
  return linear_solver(M,b,x,D,spanning_vectors,c); 
}

static bool is_solvable(const Matrix& M, const Vector& b) 
/*{\Mstatic determines whether the system $M \cdot x = b$ is solvable \\
        \precond |M.row_dimension() = b.dimension()|. }*/
{ 
  Vector x; RT D; Matrix spanning_vectors; Vector c; 
  return linear_solver(M,b,x,D,spanning_vectors,c); 
}

static bool homogeneous_linear_solver (const Matrix& M, Vector& x); 
/*{\Mstatic determines whether the homogeneous linear system 
        $M\cdot x = 0$ has a non - trivial solution. If
        yes, then $x$ is such a solution. }*/

static int homogeneous_linear_solver (const Matrix& M, Matrix& spanning_vecs); 
/*{\Mstatic determines the solution space of the homogeneous linear
system $M\cdot x = 0$. It returns the dimension of the solution space.
Moreover the columns of |spanning_vecs| span the solution space. }*/

static int independent_columns (const Matrix& M, std::vector<int>& columns); 
/*{\Mstatic returns the indices of a maximal subset of independent 
columns of |M|.}*/

static int rank (const Matrix & M); 
/*{\Mstatic returns the rank of matrix |M| }*/

/*{\Mimplementation The datatype |\Mname| is a wrapper class for the
linear algebra functionality on matrices and vectors.  Operations
|determinant|, |inverse|, |linear_solver|, and |rank| take time
$O(n^3)$, and all other operations take time $O(nm)$. These time
bounds ignore the cost for multiprecision arithmetic operations.

All functions on integer matrices compute the exact result, i.e.,
there is no rounding error. The implemenation follows a proposal of
J. Edmonds (J. Edmonds, Systems of distinct representatives and linear
algebra, Journal of Research of the Bureau of National Standards, (B),
71, 241 - 245). Most functions of linear algebra are { \em checkable
}, i.e., the programs can be asked for a proof that their output is
correct. For example, if the linear system solver declares a linear
system $A x = b$ unsolvable it also returns a vector $c$ such that
$c^T A = 0$ and $c^T b \not= 0$.}*/

}; // Linear_algebraHd


} //namespace CGAL

#include <CGAL/Kernel_d/Linear_algebraHd_impl.h>

#endif // CGAL_LINALG_ALGEBRAHD_H