/usr/include/CGAL/Interval_nt.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 | // Copyright (c) 1998-2005,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion, Michael Hemmer
#ifndef CGAL_INTERVAL_NT_H
#define CGAL_INTERVAL_NT_H
// This file contains the description of the following classes:
// - Interval_nt<false> It's a number type that needs the FPU rounding mode
// to be set to +inf. It is also typedef'd to
// Interval_nt_advanced for backward compatibility.
// - Interval_nt<true> Same but it does the rounding mode itself so you
// don't have to worry about it. But it's slower.
//
// Note: When rounding is towards +infinity, to make an operation rounded
// towards -infinity, it's enough to take the opposite of some of the operand,
// and the opposite of the result (see operator+, operator*,...).
// TODO :
// - test whether stopping constant propagation only in functions taking
// double as arguments, improves performance.
#include <utility> // for std::pair
#include <CGAL/number_type_config.h>
#include <CGAL/number_utils.h>
#include <CGAL/utils_classes.h>
#include <CGAL/number_utils.h>
#include <CGAL/Uncertain.h>
#include <CGAL/Interval_traits.h>
#include <CGAL/double.h>
#include <CGAL/FPU.h>
#include <CGAL/IO/io.h>
#include <iostream>
namespace CGAL {
template <bool Protected = true>
class Interval_nt
{
typedef Interval_nt<Protected> IA;
typedef std::pair<double, double> Pair;
public:
typedef double value_type;
typedef Uncertain_conversion_exception unsafe_comparison;
typedef Checked_protect_FPU_rounding<Protected> Internal_protector;
typedef Protect_FPU_rounding<!Protected> Protector;
Interval_nt()
#ifndef CGAL_NO_ASSERTIONS
: _inf(1), _sup(0)
// to early and deterministically detect use of uninitialized
#endif
{}
Interval_nt(int i)
: _inf(i), _sup(i) {}
Interval_nt(unsigned i)
: _inf(i), _sup(i) {}
Interval_nt(long long i)
: _inf(static_cast<double>(i)), _sup(static_cast<double>(i))
{
// gcc ignores -frounding-math when converting integers to floats.
#ifdef __GNUC__
long long safe = 1LL << 52; // Use numeric_limits?
bool exact = ((long long)_inf == i) || (i <= safe && i >= -safe);
if (!(__builtin_constant_p(exact) && exact))
#endif
*this += smallest();
}
Interval_nt(unsigned long long i)
: _inf(static_cast<double>(i)), _sup(static_cast<double>(i))
{
#ifdef __GNUC__
unsigned long long safe = 1ULL << 52; // Use numeric_limits?
bool exact = ((unsigned long long)_inf == i) || (i <= safe);
if (!(__builtin_constant_p(exact) && exact))
#endif
*this += smallest();
}
Interval_nt(long i)
{
*this = (sizeof(int)==sizeof(long)) ?
Interval_nt((int)i) :
Interval_nt((long long)i);
}
Interval_nt(unsigned long i)
{
*this = (sizeof(int)==sizeof(long)) ?
Interval_nt((unsigned)i) :
Interval_nt((unsigned long long)i);
}
Interval_nt(double d)
: _inf(d), _sup(d) { CGAL_assertion(is_finite(d)); }
// The Intel compiler on Linux is aggressive with constant propagation and
// it seems there is no flag to stop it, so disable this check for it.
#if !defined(CGAL_DISABLE_ROUNDING_MATH_CHECK) && \
defined(__INTEL_COMPILER) && defined(__linux)
# define CGAL_DISABLE_ROUNDING_MATH_CHECK
#endif
Interval_nt(double i, double s)
: _inf(i), _sup(s)
{
// Previously it was:
// CGAL_assertion_msg(!(i>s);
// But MSVC++ 2012 optimizes the test "!(i>s)" to "i<=s", even with
// /fp:strict. If 'i' or 's' is a NaN, that makes a difference.
CGAL_assertion_msg( (!is_valid(i)) || (!is_valid(s)) || (!(i>s)),
" Variable used before being initialized (or CGAL bug)");
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
CGAL_assertion_code((void) tester;) // Necessary to trigger a runtime test of rounding modes.
#endif
}
Interval_nt(const Pair & p)
: _inf(p.first), _sup(p.second) {}
IA operator-() const { return IA (-sup(), -inf()); }
IA & operator+= (const IA &d) { return *this = *this + d; }
IA & operator-= (const IA &d) { return *this = *this - d; }
IA & operator*= (const IA &d) { return *this = *this * d; }
IA & operator/= (const IA &d) { return *this = *this / d; }
bool is_point() const
{
return sup() == inf();
}
bool is_same (const IA & d) const
{
return inf() == d.inf() && sup() == d.sup();
}
bool do_overlap (const IA & d) const
{
return !(d.inf() > sup() || d.sup() < inf());
}
const double & inf() const { return _inf; }
const double & sup() const { return _sup; }
std::pair<double, double> pair() const
{
return std::pair<double, double>(inf(), sup());
}
static IA largest()
{
return IA(-internal::infinity, internal::infinity);
}
static IA smallest()
{
return IA(-CGAL_IA_MIN_DOUBLE, CGAL_IA_MIN_DOUBLE);
}
#if 0 // def CGAL_HISTOGRAM_PROFILER // not yet ready
~Interval_nt()
{
CGAL_HISTOGRAM_PROFILER("[Interval_nt relative precision in log2 scale]",
(unsigned) ( ::log(relative_precision(*this))) / ::log(2.0) ) );
}
#endif
private:
// Pair inf_sup;
double _inf, _sup;
struct Test_runtime_rounding_modes {
Test_runtime_rounding_modes()
{
// We test whether GCC's -frounding-math option has been forgotten.
// The macros CGAL_IA_MUL and CGAL_IA_DIV stop constant propagation only
// on the second argument, so if -fno-rounding-math, the compiler optimizes
// the 2 negations and we get wrong rounding.
typename Interval_nt<>::Internal_protector P;
CGAL_assertion_msg(-CGAL_IA_MUL(-1.1, 10.1) != CGAL_IA_MUL(1.1, 10.1),
"Wrong rounding: did you forget the -frounding-math option if you use GCC (or -fp-model strict for Intel)?");
CGAL_assertion_msg(-CGAL_IA_DIV(-1., 10) != CGAL_IA_DIV(1., 10),
"Wrong rounding: did you forget the -frounding-math option if you use GCC (or -fp-model strict for Intel)?");
}
};
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
static const Test_runtime_rounding_modes tester;
#endif
};
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
template <bool Protected>
const typename Interval_nt<Protected>::Test_runtime_rounding_modes
Interval_nt<Protected>::tester;
#endif
template <bool Protected>
inline
Uncertain<bool>
operator<(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{
if (a.sup() < b.inf()) return true;
if (a.inf() >= b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{ return b < a; }
template <bool Protected>
inline
Uncertain<bool>
operator<=(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{
if (a.sup() <= b.inf()) return true;
if (a.inf() > b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>=(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{ return b <= a; }
template <bool Protected>
inline
Uncertain<bool>
operator==(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{
if (b.inf() > a.sup() || b.sup() < a.inf()) return false;
if (b.inf() == a.sup() && b.sup() == a.inf()) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator!=(const Interval_nt<Protected> &a, const Interval_nt<Protected> &b)
{ return ! (a == b); }
// Mixed operators with double.
template <bool Protected>
inline
Uncertain<bool>
operator<(double a, const Interval_nt<Protected> &b)
{
if (a < b.inf()) return true;
if (a >= b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>(double a, const Interval_nt<Protected> &b)
{ return b < a; }
template <bool Protected>
inline
Uncertain<bool>
operator<=(double a, const Interval_nt<Protected> &b)
{
if (a <= b.inf()) return true;
if (a > b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>=(double a, const Interval_nt<Protected> &b)
{ return b <= a; }
template <bool Protected>
inline
Uncertain<bool>
operator==(double a, const Interval_nt<Protected> &b)
{
if (b.inf() > a || b.sup() < a) return false;
if (b.inf() == a && b.sup() == a) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator!=(double a, const Interval_nt<Protected> &b)
{ return ! (a == b); }
template <bool Protected>
inline
Uncertain<bool>
operator<(const Interval_nt<Protected> &a, double b)
{
if (a.sup() < b) return true;
if (a.inf() >= b) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>(const Interval_nt<Protected> &a, double b)
{ return b < a; }
template <bool Protected>
inline
Uncertain<bool>
operator<=(const Interval_nt<Protected> &a, double b)
{
if (a.sup() <= b) return true;
if (a.inf() > b) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator>=(const Interval_nt<Protected> &a, double b)
{ return b <= a; }
template <bool Protected>
inline
Uncertain<bool>
operator==(const Interval_nt<Protected> &a, double b)
{
if (b > a.sup() || b < a.inf()) return false;
if (b == a.sup() && b == a.inf()) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
operator!=(const Interval_nt<Protected> &a, double b)
{ return ! (a == b); }
// Non-documented
// Returns true if the interval is a unique representable double.
template <bool Protected>
inline
bool
fit_in_double (const Interval_nt<Protected> & d, double &r)
{
bool b = d.is_point();
if (b)
r = d.inf();
return b;
}
// Non-documented
template <bool Protected>
inline
bool
is_singleton (const Interval_nt<Protected> & d)
{
return d.is_point();
}
// Non-documented
template <bool Protected>
inline
double
magnitude (const Interval_nt<Protected> & d)
{
return (std::max)(CGAL::abs(d.inf()), CGAL::abs(d.sup()));
}
// Non-documented
template <bool Protected>
inline
double
width (const Interval_nt<Protected> & d)
{
return d.sup() - d.inf();
}
// Non-documented
template <bool Protected>
inline
double
radius (const Interval_nt<Protected> & d)
{
return width(d)/2; // This could be improved to avoid overflow.
}
// Non-documented
// This is the relative precision of to_double() (the center of the interval),
// hence we use radius() instead of width().
template <bool Protected>
inline
bool
has_smaller_relative_precision(const Interval_nt<Protected> & d, double prec)
{
return magnitude(d) == 0 || radius(d) < prec * magnitude(d);
}
// Non-documented
template <bool Protected>
double
relative_precision(const Interval_nt<Protected> & d)
{
if (magnitude(d) == 0.0)
return 0.0;
return radius(d) / magnitude(d);
}
template< bool Protected >
class Is_valid< Interval_nt<Protected> >
: public std::unary_function< Interval_nt<Protected>, bool > {
public :
bool operator()( const Interval_nt<Protected>& x ) const {
return is_valid(x.inf()) &&
is_valid(x.sup()) &&
x.inf() <= x.sup();
}
};
template <bool Protected>
std::ostream & operator<< (std::ostream &os, const Interval_nt<Protected> & I )
{
return os << "[" << I.inf() << ";" << I.sup() << "]";
}
#define CGAL_SWALLOW(IS,CHAR) \
{ \
char c; \
do c = is.get(); while (isspace(c)); \
if (c != CHAR) { \
is.setstate(std::ios_base::failbit); \
} \
} \
template <bool Protected>
std::istream & operator>> (std::istream &is, Interval_nt<Protected> & I)
{
char c;
do c = is.get(); while (isspace(c));
is.putback(c);
if(c == '['){ // read original output from operator <<
double inf,sup;
CGAL_SWALLOW(is, '[');// read the "["
is >> iformat(inf);
CGAL_SWALLOW(is, ';');// read the ";"
is >> iformat(sup);
CGAL_SWALLOW(is, ']');// read the "]"
I = Interval_nt<Protected>(inf,sup);
}else{ //read double (backward compatibility)
double d;
is >> d;
I = d;
}
return is;
}
#undef CGAL_SWALLOW
typedef Interval_nt<false> Interval_nt_advanced; // for backward-compatibility
template <bool Protected>
inline
Interval_nt<Protected>
operator+ (const Interval_nt<Protected> &a, const Interval_nt<Protected> & b)
{
typename Interval_nt<Protected>::Internal_protector P;
return Interval_nt<Protected> (-CGAL_IA_SUB(-a.inf(), b.inf()),
CGAL_IA_ADD(a.sup(), b.sup()));
}
template <bool Protected>
inline
Interval_nt<Protected>
operator+ (double a, const Interval_nt<Protected> & b)
{
return Interval_nt<Protected>(a)+b;
}
template <bool Protected>
inline
Interval_nt<Protected>
operator+ (const Interval_nt<Protected> & a, double b)
{
return a+Interval_nt<Protected>(b);
}
template< bool Protected >
inline
Interval_nt<Protected>
operator+( const Interval_nt<Protected>& a ) {
return a;
}
template <bool Protected>
inline
Interval_nt<Protected>
operator- (const Interval_nt<Protected> &a, const Interval_nt<Protected> & b)
{
typename Interval_nt<Protected>::Internal_protector P;
return Interval_nt<Protected>(-CGAL_IA_SUB(b.sup(), a.inf()),
CGAL_IA_SUB(a.sup(), b.inf()));
}
template <bool Protected>
inline
Interval_nt<Protected>
operator- (double a, const Interval_nt<Protected> & b)
{
return Interval_nt<Protected>(a)-b;
}
template <bool Protected>
inline
Interval_nt<Protected>
operator- (const Interval_nt<Protected> & a, double b)
{
return a-Interval_nt<Protected>(b);
}
template <bool Protected>
inline
Interval_nt<Protected>
operator* (const Interval_nt<Protected> &a, const Interval_nt<Protected> & b)
{
typedef Interval_nt<Protected> IA;
typename Interval_nt<Protected>::Internal_protector P;
if (a.inf() >= 0.0) // a>=0
{
// b>=0 [a.inf()*b.inf(); a.sup()*b.sup()]
// b<=0 [a.sup()*b.inf(); a.inf()*b.sup()]
// b~=0 [a.sup()*b.inf(); a.sup()*b.sup()]
double aa = a.inf(), bb = a.sup();
if (b.inf() < 0.0)
{
aa = bb;
if (b.sup() < 0.0)
bb = a.inf();
}
return IA(-CGAL_IA_MUL(aa, -b.inf()), CGAL_IA_MUL(bb, b.sup()));
}
else if (a.sup()<=0.0) // a<=0
{
// b>=0 [a.inf()*b.sup(); a.sup()*b.inf()]
// b<=0 [a.sup()*b.sup(); a.inf()*b.inf()]
// b~=0 [a.inf()*b.sup(); a.inf()*b.inf()]
double aa = a.sup(), bb = a.inf();
if (b.inf() < 0.0)
{
aa=bb;
if (b.sup() < 0.0)
bb=a.sup();
}
return IA(-CGAL_IA_MUL(bb, -b.sup()), CGAL_IA_MUL(aa, b.inf()));
}
else // 0 \in a
{
if (b.inf()>=0.0) // b>=0
return IA(-CGAL_IA_MUL(a.inf(), -b.sup()),
CGAL_IA_MUL(a.sup(), b.sup()));
if (b.sup()<=0.0) // b<=0
return IA(-CGAL_IA_MUL(a.sup(), -b.inf()),
CGAL_IA_MUL(a.inf(), b.inf()));
// 0 \in b
double tmp1 = CGAL_IA_MUL(a.inf(), -b.sup());
double tmp2 = CGAL_IA_MUL(a.sup(), -b.inf());
double tmp3 = CGAL_IA_MUL(a.inf(), b.inf());
double tmp4 = CGAL_IA_MUL(a.sup(), b.sup());
return IA(-(std::max)(tmp1,tmp2), (std::max)(tmp3,tmp4));
}
}
template <bool Protected>
inline
Interval_nt<Protected>
operator* (double a, const Interval_nt<Protected> & b)
{
return Interval_nt<Protected>(a)*b;
}
template <bool Protected>
inline
Interval_nt<Protected>
operator* (const Interval_nt<Protected> & a, double b)
{
return a*Interval_nt<Protected>(b);
}
template <bool Protected>
inline
Interval_nt<Protected>
operator/ (const Interval_nt<Protected> &a, const Interval_nt<Protected> & b)
{
typedef Interval_nt<Protected> IA;
typename Interval_nt<Protected>::Internal_protector P;
if (b.inf() > 0.0) // b>0
{
// e>=0 [a.inf()/b.sup(); a.sup()/b.inf()]
// e<=0 [a.inf()/b.inf(); a.sup()/b.sup()]
// e~=0 [a.inf()/b.inf(); a.sup()/b.inf()]
double aa = b.sup(), bb = b.inf();
if (a.inf() < 0.0)
{
aa = bb;
if (a.sup() < 0.0)
bb = b.sup();
}
return IA(-CGAL_IA_DIV(a.inf(), -aa), CGAL_IA_DIV(a.sup(), bb));
}
else if (b.sup()<0.0) // b<0
{
// e>=0 [a.sup()/b.sup(); a.inf()/b.inf()]
// e<=0 [a.sup()/b.inf(); a.inf()/b.sup()]
// e~=0 [a.sup()/b.sup(); a.inf()/b.sup()]
double aa = b.sup(), bb = b.inf();
if (a.inf() < 0.0)
{
bb = aa;
if (a.sup() < 0.0)
aa = b.inf();
}
return IA(-CGAL_IA_DIV(a.sup(), -aa), CGAL_IA_DIV(a.inf(), bb));
}
else // b~0
return IA::largest();
// We could do slightly better -> [0;infinity] when b.sup()==0,
// but is this worth ?
}
template <bool Protected>
inline
Interval_nt<Protected>
operator/ (double a, const Interval_nt<Protected> & b)
{
return Interval_nt<Protected>(a)/b;
}
template <bool Protected>
inline
Interval_nt<Protected>
operator/ (const Interval_nt<Protected> & a, double b)
{
return a/Interval_nt<Protected>(b);
}
// TODO: What about these two guys? Where do they belong to?
template <bool Protected>
struct Min <Interval_nt<Protected> >
: public std::binary_function<Interval_nt<Protected>,
Interval_nt<Protected>,
Interval_nt<Protected> >
{
Interval_nt<Protected> operator()( const Interval_nt<Protected>& d,
const Interval_nt<Protected>& e) const
{
return Interval_nt<Protected>(
(std::min)(d.inf(), e.inf()),
(std::min)(d.sup(), e.sup()));
}
};
template <bool Protected>
struct Max <Interval_nt<Protected> >
: public std::binary_function<Interval_nt<Protected>,
Interval_nt<Protected>,
Interval_nt<Protected> >
{
Interval_nt<Protected> operator()( const Interval_nt<Protected>& d,
const Interval_nt<Protected>& e) const
{
return Interval_nt<Protected>(
(std::max)(d.inf(), e.inf()),
(std::max)(d.sup(), e.sup()));
}
};
template<bool Protected> inline
Interval_nt<Protected> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Interval_nt<Protected> & x,
const Interval_nt<Protected> & y){
return CGAL::Min<Interval_nt<Protected> > ()(x,y);
}
template<bool Protected> inline
Interval_nt<Protected> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Interval_nt<Protected> & x,
const Interval_nt<Protected> & y){
return CGAL::Max<Interval_nt<Protected> > ()(x,y);
}
// TODO : document, when we are OK with the interface.
// - should it allow other number types for the exponent ?
template < bool b >
Interval_nt<b>
ldexp(const Interval_nt<b> &i, int e)
{
double scale = std::ldexp(1.0, e);
Interval_nt<b> scale_interval (
CGAL_NTS is_finite(scale) ? scale : CGAL_IA_MAX_DOUBLE,
scale == 0 ? CGAL_IA_MIN_DOUBLE : scale);
return i * scale_interval;
}
// We also specialize some corresponding functors returning Uncertain<>.
// TODO: To which concept do these functors belong? Can we remove them??
template < bool b >
struct Equal_to < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x == y; }
};
template < bool b >
struct Not_equal_to < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x != y; }
};
template < bool b >
struct Greater < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x > y; }
};
template < bool b >
struct Less < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x < y; }
};
template < bool b >
struct Greater_equal < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x >= y; }
};
template < bool b >
struct Less_equal < Interval_nt<b>, Interval_nt<b> >
: public std::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x <= y; }
};
// As in MP_float.h, the namespace INTERN_INTERVAL_NT contains (now) global
// functions like square or sqrt which would have collided with the new
// global functions from AST/RET
//
// TODO: IMHO, a better solution would be to put the INTERN_MP_FLOAT-functions
// into the MP_Float-class... But there is surely a reason why this is not
// the case..?
namespace INTERN_INTERVAL_NT {
template <bool Protected>
inline
double
to_double (const Interval_nt<Protected> & d)
{
return (d.sup() + d.inf()) * 0.5;
// This may overflow...
}
template <bool Protected>
inline
std::pair<double, double>
to_interval (const Interval_nt<Protected> & d)
{
return d.pair();
}
template <bool Protected>
inline
Interval_nt<Protected>
sqrt (const Interval_nt<Protected> & d)
{
typename Interval_nt<Protected>::Internal_protector P; // not optimal here.
// sqrt([+a,+b]) => [sqrt(+a);sqrt(+b)]
// sqrt([-a,+b]) => [0;sqrt(+b)] => assumes roundoff error.
// sqrt([-a,-b]) => [0;sqrt(-b)] => assumes user bug (unspecified result).
FPU_set_cw(CGAL_FE_DOWNWARD);
double i = (d.inf() > 0.0) ? CGAL_IA_SQRT(d.inf()) : 0.0;
FPU_set_cw(CGAL_FE_UPWARD);
return Interval_nt<Protected>(i, CGAL_IA_SQRT(d.sup()));
}
template <bool Protected>
inline
Interval_nt<Protected>
square (const Interval_nt<Protected> & d)
{
typename Interval_nt<Protected>::Internal_protector P;
if (d.inf()>=0.0)
return Interval_nt<Protected>(-CGAL_IA_MUL(d.inf(), -d.inf()),
CGAL_IA_MUL(d.sup(), d.sup()));
if (d.sup()<=0.0)
return Interval_nt<Protected>(-CGAL_IA_MUL(d.sup(), -d.sup()),
CGAL_IA_MUL(d.inf(), d.inf()));
return Interval_nt<Protected>(0.0, CGAL_IA_SQUARE((std::max)(-d.inf(),
d.sup())));
}
template <bool Protected>
inline
Interval_nt<Protected>
abs (const Interval_nt<Protected> & d)
{
if (d.inf() >= 0.0) return d;
if (d.sup() <= 0.0) return -d;
return Interval_nt<Protected>(0.0, (std::max)(-d.inf(), d.sup()));
}
template <bool Protected>
inline
Uncertain<Sign>
sign (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return POSITIVE;
if (d.sup() < 0.0) return NEGATIVE;
if (d.inf() == d.sup()) return ZERO;
return Uncertain<Sign>::indeterminate();
}
template <bool Protected>
inline
Uncertain<Comparison_result>
compare (const Interval_nt<Protected> & d, const Interval_nt<Protected> & e)
{
if (d.inf() > e.sup()) return LARGER;
if (e.inf() > d.sup()) return SMALLER;
if (e.inf() == d.sup() && d.inf() == e.sup()) return EQUAL;
return Uncertain<Comparison_result>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_zero (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return false;
if (d.sup() < 0.0) return false;
if (d.inf() == d.sup()) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_one (const Interval_nt<Protected> & d)
{
if (d.inf() > 1) return false;
if (d.sup() < 1) return false;
if (d.inf() == d.sup()) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_positive (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return true;
if (d.sup() <= 0.0) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_negative (const Interval_nt<Protected> & d)
{
if (d.inf() >= 0.0) return false;
if (d.sup() < 0.0) return true;
return Uncertain<bool>::indeterminate();
}
// TODO: Whats this for? Why is this in this file??
inline
std::pair<double, double>
to_interval (const long & l)
{
if (sizeof(double) > sizeof(long)) {
// On 64bit platforms, a long doesn't fit exactly in a double.
// Well, a perfect fix would be to use std::numeric_limits<>, but...
Protect_FPU_rounding<true> P(CGAL_FE_TONEAREST);
Interval_nt<false> approx (static_cast<double>(l));
FPU_set_cw(CGAL_FE_UPWARD);
approx += Interval_nt<false>::smallest();
return approx.pair();
}
else
return std::pair<double,double>(static_cast<double>(l),static_cast<double>(l));
}
} // namespace INTERN_INTERVAL_NT
template< bool B > class Real_embeddable_traits< Interval_nt<B> >
: public INTERN_RET::Real_embeddable_traits_base< Interval_nt<B> , CGAL::Tag_true> {
public:
typedef Interval_nt<B> Type;
typedef Uncertain<CGAL::Sign> Sign;
typedef Uncertain<bool> Boolean;
typedef Uncertain<CGAL::Comparison_result> Comparison_result;
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::abs( x );
}
};
class Sgn
: public std::unary_function< Type, Uncertain< ::CGAL::Sign > > {
public:
Uncertain< ::CGAL::Sign > operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::sign( x );
}
};
class Is_positive
: public std::unary_function< Type, Uncertain<bool> > {
public:
Uncertain<bool> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_positive( x );
}
};
class Is_negative
: public std::unary_function< Type, Uncertain<bool> > {
public:
Uncertain<bool> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_negative( x );
}
};
class Compare
: public std::binary_function< Type, Type, Comparison_result > {
public:
Comparison_result operator()( const Type& x, const Type& y ) const {
return INTERN_INTERVAL_NT::compare( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::to_double( x );
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::to_interval( x );
}
};
class Is_finite
: public std::unary_function< Type, Boolean > {
public :
Boolean operator()( const Type& x ) const {
return CGAL_NTS is_finite( x.inf() ) && CGAL_NTS is_finite( x.sup() );
}
};
};
// Algebraic structure traits
template< bool B >
class Algebraic_structure_traits< Interval_nt<B> >
: public Algebraic_structure_traits_base< Interval_nt<B>,
Field_with_sqrt_tag > {
public:
typedef Interval_nt<B> Type;
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef Uncertain<bool> Boolean;
class Is_zero
: public std::unary_function< Type, Boolean > {
public:
Boolean operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_zero( x );
}
};
class Is_one
: public std::unary_function< Type, Boolean > {
public:
Boolean operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_one( x );
}
};
class Square
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::square( x );
}
};
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::sqrt( x );
}
};
struct Is_square
:public std::binary_function<Interval_nt<B>,Interval_nt<B>&,Boolean >
{
Boolean operator()(const Interval_nt<B>& x) const {
return INTERN_INTERVAL_NT::is_positive( x );
}
Boolean operator()(
const Interval_nt<B>& x,
Interval_nt<B> & result) const {
Boolean is_positive = INTERN_INTERVAL_NT::is_positive( x );
if ( is_positive.inf() == true ){
typename Algebraic_structure_traits<Interval_nt<B> >::Sqrt sqrt;
result = sqrt(x);
}else{
typename Real_embeddable_traits<Interval_nt<B> >::Abs abs;
typename Algebraic_structure_traits<Interval_nt<B> >::Sqrt sqrt;
result = sqrt(abs(x));
}
return is_positive;
}
};
class Divides
: public std::binary_function< Type, Type, Boolean > {
public:
Boolean operator()( const Type& x, const Type&) const {
return ! Is_zero()(x);
}
// second operator computing q
Boolean operator()( const Type& x, const Type& y, Type& q) const {
if (! Is_zero()(x) )
q = y/x ;
return Boolean(true);
}
};
};
// COERCION_TRAITS BEGIN
template < class A, class B , int > struct Coercion_traits_for_level;
template < class A, class B, class C> struct Coercion_traits_interval_nt;
template<class A ,bool P >
struct Coercion_traits_for_level<A,Interval_nt<P>,CTL_INTERVAL>
:public Coercion_traits_interval_nt<A,Interval_nt<P>,
typename Real_embeddable_traits<A>::Is_real_embeddable>{};
template<class A , bool P>
struct Coercion_traits_for_level<Interval_nt<P>,A,CTL_INTERVAL>
:public Coercion_traits_for_level<A,Interval_nt<P>, CTL_INTERVAL>{};
template<class A , bool P >
struct Coercion_traits_interval_nt<A, Interval_nt<P>,Tag_false>
:public Coercion_traits_for_level<A,Interval_nt<P>,0>{};
template<class A , bool P>
struct Coercion_traits_interval_nt<A, Interval_nt<P>, Tag_true>{
typedef Tag_true Are_explicit_interoperable;
typedef Tag_false Are_implicit_interoperable;
typedef Interval_nt<P> Type;
struct Cast {
typedef Interval_nt<P> result_type;
Interval_nt<P> inline operator()(const Interval_nt<P>& x ) const {
return x;
}
Interval_nt<P> inline operator()(const A& x ) const {
return typename Real_embeddable_traits<A>::To_interval()(x);
}
};
};
// COERCION_TRAITS END
template< bool B >
class Interval_traits< Interval_nt<B> >
: public internal::Interval_traits_base< Interval_nt<B> > {
public:
typedef Interval_traits<Interval_nt<B> > Self;
typedef Interval_nt<B> Interval;
typedef double Bound;
typedef CGAL::Tag_false With_empty_interval;
typedef CGAL::Tag_true Is_interval;
struct Construct :public std::binary_function<Bound,Bound,Interval>{
Interval operator()( const Bound& l,const Bound& r) const {
CGAL_precondition( l < r );
return Interval(l,r);
}
};
struct Lower :public std::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return a.inf();
}
};
struct Upper :public std::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return a.sup();
}
};
struct Width :public std::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return width(a);
}
};
struct Median :public std::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return (Lower()(a)+Upper()(a))/2.0;
}
};
struct Norm :public std::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return magnitude(a);
}
};
struct Singleton :public std::unary_function<Interval,bool>{
bool operator()( const Interval& a ) const {
return Lower()(a) == Upper()(a);
}
};
struct Zero_in :public std::unary_function<Interval,bool>{
bool operator()( const Interval& a ) const {
return Lower()(a) <= 0 && 0 <= Upper()(a);
}
};
struct In :public std::binary_function<Bound,Interval,bool>{
bool operator()( Bound x, const Interval& a ) const {
return Lower()(a) <= x && x <= Upper()(a);
}
};
struct Equal :public std::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return a.is_same(b);
}
};
struct Overlap :public std::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return a.do_overlap(b);
}
};
struct Subset :public std::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Lower()(b) <= Lower()(a) && Upper()(a) <= Upper()(b) ;
}
};
struct Proper_subset :public std::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Subset()(a,b) && ! Equal()(a,b);
}
};
struct Hull :public std::binary_function<Interval,Interval,Interval>{
Interval operator()( const Interval& a, const Interval& b ) const {
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
return Interval(
std::make_pair(
min BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),b.inf()),
max BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),b.sup())));
}
};
// struct Empty is Null_functor
struct Intersection :public std::binary_function<Interval,Interval,Interval>{
Interval operator()( const Interval& a, const Interval& b ) const {
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
Bound l(max BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),Lower()(b)));
Bound u(min BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),Upper()(b)));
if(u < l ) throw Exception_intersection_is_empty();
return Construct()(l,u);
}
};
};
} //namespace CGAL
namespace Eigen {
template<class> struct NumTraits;
template<bool b> struct NumTraits<CGAL::Interval_nt<b> >
{
typedef CGAL::Interval_nt<b> Real;
typedef CGAL::Interval_nt<b> NonInteger;
typedef CGAL::Interval_nt<b> Nested;
typedef double Literal;
static inline Real epsilon() { return 0; }
static inline Real dummy_precision() { return 0; }
// Costs could depend on b.
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 0,
ReadCost = 2,
AddCost = 2,
MulCost = 10
};
};
namespace internal {
template<class> struct significant_decimals_impl;
template<bool b>
struct significant_decimals_impl<CGAL::Interval_nt<b> >
: significant_decimals_impl<typename CGAL::Interval_nt<b>::value_type> { };
}
}
#endif // CGAL_INTERVAL_NT_H
|